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GREENeR: An R Package to Estimate and
Visualize Nutrients Pressures on Surface
Waters
by Angel Udías, Bruna Grizzetti, Olga Vigiak, Alberto Aloe, Cesar Alfaro, and Javier Gomez

Abstract Nutrient pollution affects fresh and coastal waters around the globe. Planning mitigating
actions requires tools to assess fluxes of nutrient emissions to waters and expected restoration impacts.
Conceptual river basin models take advantage of data on nutrient emissions and concentrations
at monitoring stations, providing a physical interpretation of monitored conditions, and enabling
scenario analysis. The GREENeR package streamlines water quality model in a region of interest,
considering nutrient pathways and the hydrological structure of the river network. The package
merges data sources, analyzes local conditions, calibrate the model, and assesses yearly nutrient levels
along the river network, determining contributions of load in freshwaters from diffuse and point
sources. The package is enriched with functions to perform thorough parameter sensitivity analysis
and for mapping nutrient sources and fluxes. The functionalities of the package are demonstrated
using datasets from the Vistula river basin.

1 Introduction

Nitrogen and phosphorus are key nutrients that heavily impact aquatic ecosystems. Detecting primary
sources of nutrient pollution and their downstream spread, alongside assessing achievable reductions
through restoration policies, are crucial for effective natural resource management. They aid in
identifying priority intervention areas and planning actions to restore the ecological balance of
receiving waters.

Modelling tools can be useful to assess the impacts of future scenarios, policy measures, and
climate changes at the regional and continental scale (Arheimer, Dahné, and Donnelly 2012; Bartosova
et al. 2019; Beusen et al. 2022; Bouraoui et al. 2014; Ludwig et al. 2010; Seitzinger et al. 2005), and to
check the coherence of different policy targets, for instance between water and agricultural policies.
The assessment of policy scenarios requires a flexible and spatially detailed analysis to account for
climatic, hydrological, and socio-economic gradients (Bruna Grizzetti et al. 2021).

Several types of models can be applied to predict the transport of nutrients in river basins Fu et al.
(2019). Among them, statistical or conceptual models have the advantage of being readily applied in
large watersheds. These model rely on calibration of few parameters for establishing links between
emissions at sources and fate in the stream network. They take full advantage of nutrient emissions
and concentrations data at monitoring stations, which are now accessible with increasing spatial and
temporal resolution.

A classic example of river basin conceptual model is SPARROW (Smith, Schwarz, and Alexander
1997; Schwarz et al. 2006), which is widely applied in the U.S. to assess water quality over large
regions. SPARROW has inspired the Geospatial Regression Equation for European Nutrient (GREEN)
losses model (B. Grizzetti et al. 2005; Bruna Grizzetti, Bouraoui, and Aloe 2012; Bruna Grizzetti et
al. 2021) which is adapted to European conditions. GREEN has been used for assessing the nutrient
loads to the European seas (Bruna Grizzetti, Bouraoui, and Aloe 2012; Bruna Grizzetti et al. 2021),
nitrogen retention in European freshwaters (Bruna Grizzetti, Bouraoui, and Aloe 2012; La Notte et
al. 2017), and for policy scenario analysis (La Notte et al. 2017; Bouraoui et al. 2014; Leip et al. 2015;
Malagó et al. 2019; Bruna Grizzetti et al. 2021). Despite their usefulness, this type of river basin models
are seldom compiled as dedicated R packages, for example SPARROW has some scripts available to
process information for and analysis of models results in the R environment.

The GREEN model application comprises several key steps, including data extraction and orga-
nization, data harmonization and integration, examination and validation of input data sets, model
calibration and parameter selection, model run, and result visualization. All of these features are now
integrated into an R package (GREENeR) that comprises functions to streamline the process, evaluate
and visualize all the steps, thus strengthening the robustness of model application.

1.1 About water surface nutrients estimation with GREEN

GREEN (B. Grizzetti et al. 2005; Bruna Grizzetti, Bouraoui, and Aloe 2012; B. Grizzetti, Bouraoui, and
De Marsily 2008; Bruna Grizzetti et al. 2021) is a conceptual model to assess total nitrogen TN and
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total phosphorous TP from a region of interest (usually a river basin), accounting for both diffuse and
point sources. The package allows the analysis of different scenarios of nutrient input in the region of
interest, where “scenario” indicates a combination of annual time-series of inputs, such as nitrogen or
phosphorus and the topological structure of the region. The model comprises several nutrient sources
and pathways:

1. agricultural diffuse sources include nutrients from mineral fertilisers and manure application,
nitrogen crop and soil fixation. These sources undergo retention in the land phase (basin
retention that account for e.g. crop uptake and volatilization losses) before reaching the stream;

2. other diffuse emissions, such as from scattered dwellings (i.e., isolated houses and small ag-
glomerations that are not connected to sewerage systems), and atmospheric nitrogen deposition
(for nitrogen module) or background losses (for phosphorus module), are also reduced, e.g. due
to soil processes, before reaching the stream network;

3. point sources consist of urban and industrial wastewater discharges that are discharged into
surface waters directly.

Once in the river network, all nutrient loads are reduced by in-stream retention in rivers and lakes.

Basin retention of agriculture sources is a decay function proportional to the inverse of the total
annual precipitation in the catchment. Conversely, river retention is a decay function proportional to
the river length, considered as a proxy for water residence time. Finally, lake retention is simulated as
a function of the lakes residence time and average depth.

The basin is divided into spatial subunits (called catchments), with a given area, a river reach, an
inlet node, and an outlet node. The catchments are topologically connected from the headwaters to
the outlet in a cascading sequence. The sequence of nutrient load accumulation through the stream
network is defined by Shreve’s order (Shreve 1966). Nutrient input from the different sources, basin
and river retention are simulated in each catchment and routed through the river network. For each
catchment i in the basin, the GREEN nutrient load Li is estimated by the general equation:

Li,y = (1 − Lreti) · (DSAi,y · (1 − Breti,y) + DSBi,y + PSi,y + Ui,y) · (1 − Rreti) (1)

where Li,y is the nutrient load at the catchment outlet-node (ton/yr) in y year; and the other variables
represent different sources and sinks of nutrients.

Sources of nutrients are:

• DSAi,y. Annual nutrient diffuse sources on agricultural land in the catchment (ton/yr): mineral
and manure fertilization, atmospheric nitrogen deposition, plant and soil fixation for TN;
mineral and manure fertilization, and background losses for TP.

• DSBi,y. Annual nutrient diffuse sources in the catchment related with scatter dwellings and at-
mospheric nitrogen deposition on non-agricultural land for TN (DSBi,y = 0.38 · FFi,y · AtmNi,y +
sdcoe f f · SdNi,y, where FFi,y is the fraction of non-agricultural land cover in the catchment, and
AtmNi,y is the annual atmospheric nitrogen deposition on the catchment (ton/yr)); nutrient
diffuse sources in the catchment related with scatter dwellings and background losses on
non-agricultural areas for TP (DSBi,y = sdcoe f f · SdPi,y).

• PSi,y. Nutrient point sources in the catchment (ton/yr).

• Ui,y. Nutrient load from upstream catchments (ton/yr).

Sinks of nutrients are:

• Lreti denotes the lake retention (fraction) of the i catchment. Lret is currently defined according
to Kronvang et al. (2004), but limited to a 10% maximum reduction:

Lret = max
(

0.1, 1 − 1
1 + (dre f /z) · RT

)
(2)

where z represents the average lake depth (m); RT is the hydraulic residence time (yr); and dre f
denotes a nutrient-related coefficient (dre f = 7.3 for TN and dre f = 26 for TP).

• Breti,y is the fraction of basin retention of the i catchment in y year:

Breti,y = 1 − exp(−alphaP · NrmInvRaini,y) (3)

where NrmInvRaini,y is the inverse of annual precipitation (mm) of the i catchment in y year, normal-
ized by its maximum (Frank and Todeschini 1994). To keep basin retention coefficients comparable
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across regions, the minimum precipitation minPrec is set to 50 mm/y, and thus NrmInvRaini,y is
defined as

NrmInvRaini,y =
1/ max(50, precipitationi,y)

(1/minPrec)

• Rreti is the fraction of river retention of the i catchment:

Rreti = 1 − exp(−alphaL · NrmLengthKmi) (4)

where NrmLengthKmi is the length (km) of the catchment reach, normalized by the maximum in the
dataset:

NrmLengthKmi =
catchment length i reach, in km

max(Reach length in the region, in km)

Since the maximum reach length depends on the region and its subdivision of network reaches, the
calibrated coefficient alphaL cannot be compared across regions that adopt different discretization.
Note that basin retention varies from year to year according to annual precipitation, whereas the
fraction of river and lake retention for a given catchment is constant in time.

Equation (1) is applied sequentially from the most upstream nodes to the basin outlet. The model
parameters are:

1. the basin retention coefficient (alphaP), which together with annual precipitation regulates
nutrient retention of diffuse agricultural sources (Equation (3));

2. the river retention coefficient (alphaL: Equation (4)), which regulates the river retention per river
km.

3. the fraction of domestic diffuse sources that reaches the stream network (sdcoe f f ).

2 About the GREENeR package

2.1 Package organization

This work presents a new efficient and enhanced implementation of the model GREEN developed as
an R package named GREENeR. GREENeR is developed in the R statistical software and provides
tools and methods for applying GREEN to an area of interest and assessing annual time series of
nutrient loads in a river network and at the basin outlet, plus contributions of nutrient sources to these
loads. Some of the key features of the package comprise: a) functions for the creation of scenarios
from data sources; b) computational efficiency; c) parallel-capable ; d) an extended suite of fine tuning
options to control model calibration; e) built-in parameter sensitivity analysis; and f) functions to
perform customised post-process analyses.

The functions of GREENeR package are arranged in three groups: i) functions to perform graphical
summaries of model inputs; ii) functions to perform model parameters calibration and sensitivity
analysis; iii) functions to compute, analyze and visualize through graphs and maps the model outputs,
i.e. total loads and contributions by source. The package supports parallel processing, which helps
reduce the computational load in handling large basins.

The time-series can represent either historic (current or past) conditions that can be associated
to observations for model calibration, or hypothetical conditions foreseen under theoretical changes
(e.g. to forecast results of nutrient management plans, or under climatic change).

A scenario contains:

1. The geospatial geometry of the catchments of the region, which currently is defined according
to the Catchment Characterisation and Modelling Database for European Rivers v2 (CCM2) (De
Jager and Vogt 2007).

2. The annual time series (1990-2018) of nutrient inputs per catchment.

3. Additional catchment information (annual precipitation, annual forest fraction, lake retention,
reach length).

4. Observed total load (TN or TP) from monitoring stations.

Two historical scenarios, one for TN and one for TP, of the Lay basin (France) are provided with
the GREENeR package. The Lay basin has an area of 1971 km2, and is divided into 189 CCM2
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catchments. The mean catchment area is 10.4 km2. Nutrient observations comprised 22 TN entries
from six monitoring stations and 58 TP data entries from eight monitoring stations (data from WISE
Waterbase (EEA 2021)).

Further, in this article we present examples drawn for the TN historic scenario of the transboundary
Vistula (Wisla) river basin, one of the largest river basins of Europe. The Vistula scenario comprises
15465 CCM2 catchments that compose the 193.894 km2 river basin, TN inputs for 1990-2018, as well
as 1364 observed TN loads from 412 monitoring stations. The TN input dataset is part of the larger
dataset created to assess nutrient concentration in the European freshwaters (Vigiak et al. 2023).

2.2 Key functions in the GREENeR package

A brief overview of the package and its main functions is given in Figure 1.

Figure 1: Schematic diagram of the procedure of GREENeR, including functions, data inputs and
outputs, to estimate the nutrient loads. The green boxes represent data objects and the blue boxes
represent the functions.

The key functions included in the package are:

• read_geometry(): imports the geospatial vector format (shapefile or ESRI shapefile) with the
spatial information of the catchments in R.

• read_NSdata(): imports the annual time series of nutrient inputs per catchment and type of
nutrient source (manure, mineral fertilization, point sources, scatter dwellings), plus the forest
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fraction, and the observed annual nutrient loads from monitoring station data. The original
data are stored in several comma-separated tables (CSV files).

• input_maps(): creates a map showing the mean nutrient load input by source.

• input_plot(): creates either a grouped barplot representing the average input load by source
for the whole basin, or three density plots showing the distribution of nutrient sources.

• input_Tserie(): creates a time series plot showing basin inputs by source.

• shreve(): returns the Shreve order of the catchments, a useful indicator of stream size, discharge,
and drainage area (Strahler 1957) calculated based on the sum of the orders of up of upstream
tributaries (Shreve 1966). Commercial GIS software usually provides a Shreve calculation
function, but in other software, it is harder to find. In GREEN, the Shreve’s order defines the
cascade of upstream-downstream catchments.

• calib_green(): conducts sensitivity analysis of model calibration utilizing a Latin Hypercube
Sampling (LHS) scheme (Manache and Melching 2004) for three model parameters. It evaluates
model performance by calculating several “goodness-of-fit” (GoF) metrics (Refsgaard and
Henriksen 2004) against available observations during the specified simulation period (years).

• select_params(): extracts the best parameter set according to a selected GoF metric from the
object generated by the calibration function, calib_green().

• calib_boxplot(): creates a figure of boxplots that show the relationships between the best
parameter sets determined by the specific GoF metric in each boxplot title, and six other
commonly used hydrological metrics (Althoff and Rodrigues 2021; Mauricio Zambrano-Bigiarini
2014). In the lower panel, the figure also highlights the distribution of model parameters; the
value of the best parameter set is marked as a red dot in each boxplot.

• region_nut_balance(): runs the GREEN model with the selected parameter set, and returns the
mean annual mass balance of nutrient fluxes for the whole simulation period of the region. The
results of this function can be visualized using a Sankey diagram via the N4_sankey() function.

• green(): runs the GREEN model with the selected parameter set and returns nutrient load time
series for the simulation period. It generates less information than the green_shares() function,
but its execution is faster, so it is used as a function for calibration iterations and is embedded in
the calib_green() function.

• green_shares(): runs the GREEN model with the selected parameter set and returns time series
of nutrient loads and the contributions of each nutrient source in the simulation period. The
results of the model can be examined by nutrient_tserie() and nutrient_maps() functions.

• scatter_plot(): generates dot plots correlating parameters realizations in the calibration data
with GoF metric, visualizing the impact of each parameter on model outcomes. The plot vary
based on selected GoF metric from green_calib() function.

• simobs_annual_plot(): generates scatter plots comparing model load predictions (PredictLoad)
with observations (ObsLoad) for each year of the stimulation period.

2.3 Input data requirements

GREENeR requires information on the nutrient inputs, the topology, and the geospatial geometry
of the region of interest. The spatio-temporal input data must include all nutrient source fields, and
differs in the two nutrient scenarios (TN or TP). In the case of TN (e.g. Figure 2), fields are (Equation
(5) in Appendix 1):

• Atmospheric: Annual amount of atmospheric nitrogen deposition (ton/yr).

• Mineral: Annual amount of nitrogen from mineral fertilisers (ton/yr).

• Manure: Annual amount of nitrogen in manure fertilisers (ton/yr).

• Fix: Annual amount of nitrogen fixation by leguminous crops and fodder (ton/yr).

• Soil: Annual amount of nitrogen fixation in soils (ton/yr).

• Sc.Dwellings: Nitrogen input from scattered dwellings (ton/yr).

• PointS: Nitrogen input from point sources (ton/yr).
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Figure 2: Maps showing the mean annual TN inputs in the Vistula river basin in 1990-2018. The figure
was generated with GREENeR input_maps() function. TOT.Diff = sum of diffuse inputs.

In the case of TP, fields are (Equation (6) in Appendix 1):

• Background: annual amount of phosphorus from background losses (ton/yr).

• Mineral: annual amount of phosphorus from mineral fertilisers (ton/yr).

• Manure: annual amount of phosphorus in manure fertilisers (ton/yr).

• Sc.Dwellings: phosphorus input from scattered dwellings (ton/yr).

• PointS: phosphorus input from point sources (ton/yr).

European datasets for 1990-2018 generated to assess historic and current nutrient fluxes (Vigiak et al.
2023) are available upon request. The model and the package are compatible with an external dataset
and can be customized with local information as long as the data structure is respected.

In both nutrient cases, GREENeR needs additional annual catchment information:

• ForestFraction: annual fraction (0-1) of non-agricultural land cover area in the catchment (FF in
Equations (5) and (6), in the Appendix 1).

• Rain: annual precipitation (mm, Equation (3)).

• LakeFrRet: lake retention fraction (0-1) (Lret in Equation (1), in the Appendix 1). Note, this dif-
fers for TN or TP scenarios (Equation (2)). At European scale, average lake depth and hydraulic
residence time can be obtained from HydroLAKES database (https://www.hydrosheds.org/
pages/hydrolakes, Messager et al. (2016)).

• Length: is the length (km) of the catchment reach (Equation (4)).

The catchment topology outlines the hydrological network configuration within the region. Each
catchment must have a unique numerical identifier (HydroID)), to establish the network structure via
a source HydroID and destination HydroID table. It is important to note that any outlet of the basin
will be given as destination HydroID identifier “-1”. Complementing the topology of the hydrologic
network, the length of catchment reach should also be included (Equation (4)).

Finally, in order to calibrate the model, it is necessary to have some observed nutrient loads from
monitoring stations associated to any catchment of the region. Ultimately, the quality, size, and spatial
distribution of observed loads determine the robustness of the calibration process. In Europe, a large
dataset of annual concentrations is publicly available (WISE Waterbase, EEA 2021), but annual flow
must be derived from other sources (Bruna Grizzetti et al. 2021; Vigiak et al. 2023).
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2.4 Performance and memory use

The GREENeR package performance and memory usage depends on the size of the region (number
of catchments) and the number of years of the simulation. As a reference, the Danube basin (i.e. the
largest European basin, with 138013 catchments) TN dataset for 1990-2018 requires approximately 389
Mb of memory to store the annual data. Table 1 shows the memory occupied by the scenarios for 6
European basins. In addition, it shows the computation times required in the execution of some key
functions of the package. All executions were conducted on two computer configurations:

• CPU1: Desktop running window 10 with one Intel(R) Core i5-8259U CPU (4 cores, two threads
per core) CPU at 2.30 GHz and 16 GB of RAM memory

• CPU2: Workstation running Linux with one AMD EPYC 7352 (24 cores, two threads per core)
CPU at 2.3 GHz and 128 GB of RAM memory

The time required for the execution of the different functions increases linearly with the number
of catchments (or Shreve order) of the region (Table 1). The calib_green() function is the most
computationally demanding. However, the parallel implementation of this function drastically
reduces the time required for this process. Calibration can be carried out in about 6 hours for practical
implementation in large basins.

Table 1: Computational requirements to run some GREENeR functions in six European basins
scenarios of 29 years. The columns Shreve order, Area and Number of catchments characterize
the size of each basin. Mem is the amount of memory occupied by the GREEN model scenario
generated by GREENeR package. The green(), green_shares() and calib_green() columns show
the computation time required to execute the corresponding GREENeR functions for each scenarios
under CPU1 and CPU2 computer configurations. All runs of calib_green() have been performed
with 200 iterations. The reported times are the average of 5 runs of each process.

Basin
name

Shreve
order

Area
(Km2)

Number of
catchments

Mem
(MB)

green()
(sec)

green_shares()
(sec)

calib_green()
(sec)

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

Lay 95 1971 189 0.5 6 4 15 12 316 31
Miño 2803 16985 5572 15.7 57 45 147 90 4110 394
Seine 2902 75989 5793 16.3 77 55 177 106 6320 452
Ebro 9351 85611 18568 52.3 160 123 425 224 10876 995
Vistula 7757 193894 15465 43.6 132 100 314 187 9004 814
Danube 69505 802032 138013 388.6 1120 766 2855 1108 94682 5638

3 Estimating nutrient loads using the GREENeR package

The entire procedure is summarized on Figure 1. Once the input data have been uploaded, the
region scenario (Nutrient data and Catch data) is generated. The calib_green() function explores the
parameter set ranges with LHC scheme, calculating GoF of parameter sets. Sensitivity analysis of its
results is conducted to determine the best parameter set. Finally, the green_shares() function is used
to estimate the nutrient loads and source apportionment (i.e. contribution to loads by source), per year
and per catchment.

3.1 Scenario preparation

Assembling input data for running the GREEN model is time consuming. To facilitate the process, the
read_NSdata() function assembles and organises annual information to generate a list of two objects:
Nutrient Time Series Data Object and Catch Data Object of GREEN scenario. It needs four CSV
files with specific data, namely:

• Time-series of annual nutrient inputs per catchment.

• Time-series of annual observed loads at monitoring stations.

• Basin topology and lake properties.

• Other: precipitation, forest fraction, reach length.

The spatial identifiers (HydroID) and temporal (year) units must be coherent in all the files. Besides or-
ganizing the input data, the read_NSdata() function also calculates the Shreve order of each catchment,
normalises the precipitation (calculating NrmInvRaini,y) and the reach length (NrmLengthKmi).
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csv_path <- "data/csv/"
scen <- read_NSdata(csv_path,"nutrients.csv","monitoring.csv", "forestFr.csv",

"precipitation.csv","topology.csv", "lakeProperties.csv",
"length.csv")

nutrient <- scen[[1]]
catch <- scen[[2]]

The shreve() function can calculate the Shreve order independently based on the topology of the
basin:

shreve_order <- shreve(catch)

Finally, the geospatial geometry of the catchments should be uploaded to enable the visualisation
functionalities in map form. The read_geometry() function loads the geometry information file, i.e. a
geospatial vector with the geometry of the catchment region:

geometry <- read_geometry(file = "data/shapes/Wisla.shp")

The geo-reference information, geometry and attributes of the spatial entities must be in a shapefile
format (.shp), editable with ArcGIS or similar software. The identifiers of each catchment (HydroID)
must be consistent with those in the CSV files of the scenario dataset.

Once the scenario has been generated, the library includes functions to examine the nutrient
sources in a basin, and explore their distribution over time or in space. The input_plot() function
provides annual average nutrient loads for the whole period and density plots of nutrient loads.
The input_Tserie() function allows to examine the temporal evolution of the inputs, whereas the
input_maps() function generates maps of nutrient inputs distribution in the basin (Figure 2).

input_maps(nutient, catch, geometry, "Wisla", "gr1")

3.2 Calibration procedure and sensitivity analysis

The calibration process is essential to find a suitable set of parameters for the model. In GREENeR
package, the core function calib_green() enables to run a parameter sensitivity analysis and concur-
rently assessing the model performance according to several GoF metrics.

Sensitivity Analysis (SA) investigates how the variation in the output of a numerical model can
be attributed to variations of its input factors. SA aims at identifying the most influential inputs or
parameters, and quantifying how much they contribute to the variability/uncertainty of the model
outputs. SA provides information on how much of the output variance is controlled by each parameter,
or combination of parameters. SA is increasingly being used in environmental modelling for a variety
of purposes, including uncertainty assessment, model calibration and diagnostic evaluation, dominant
control analysis, and robust decision-making (Pianosi et al. 2016; Saltelli, Annoni, et al. 2011; Butler et
al. 2014; Norton 2015; Mannina et al. 2018). This is achieved by running the model for many samples
of the parameter space to determine their impact on the model outputs. SA allows identification of the
parameters and input variables that strongly influence the model response (model output). Conversely,
it may be of interest to the modeller to verify that although some model parameters may not be very
well established they do not significantly contribute to output uncertainty. Saltelli, Tarantola, and
Campolongo (2000) single out three main classes of SA methods: screening, local, and global methods.
Local sensitivity analysis methods focus on assessing the impact of small variations in the input values
of a model on the output results. Global sensitivity methods seek to understand how variations in the
full range of input values affect the results. Puy et al. (2022) provide a comprehensive overview of
several R packages for performing global sensitivity analysis.

Screening methods are economical and qualitative methods. Only screening methods are included
in this implementation of the library as they provide a quick assessment of the relative importance
of variables. This is particularly useful in exploratory studies and in cases where an initial subset of
relevant variables needs to be identified.

Adequate sampling of parameter space is very important in model calibration. Several studies of
uncertainty analysis in water resources problems (Melching and Bauwens 2001) concluded that Monte
Carlo simulation and Latin Hypercube Sampling (LHS) (McKay, Beckman, and Conover 1979; Carnell
2012) methods are very powerful, robust, and flexible. Other approaches are possible (Mauricio
Zambrano-Bigiarini 2014), but the LHS has the advantage that it is easily parallelisable, it explores the
full range of parameter sets, it does not direct the search depending on the values of previous iterations
like other optimisation methods (gradients, genetic algorithms, etc.), and is therefore independent of
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the GoF metric. This allows performing a posteriori sensitivity analysis for several metrics without
having to repeat the process.

The calib_green() function computes 15 GoF metrics (Althoff and Rodrigues 2021; Mauricio
Zambrano-Bigiarini 2014) (listed in Appendix 2), and returns an object with all parameter sets gener-
ated by the LHS and the corresponding GoF scores. Running calib_green() requires the following
settings:

1. The expected ranges for each parameter. The ranges are defined by two vectors of three values,
one for the lower limits and one for the upper limits of the three parameters. The values
correspond to each model parameter in sequence: alphaP (Equation (3)), alphaL (Equation (4)),
and sdcoe f f (Equations (5) and (6)).

2. The number of iterations to be performed during the calibration process. The higher the number
of iterations, the more likely it is to achieve good results, but the longer the computation time.
Depending on the basin and parameter range width, it is recommended to run at least 200
iterations to have enough information to continue the calibration process.

3. The years to be included in the calibration process.

n_iter <- 2000
low <- c(10, 0.000, 0.1)
upp <- c(50, 0.1, 0.9)
years <- c(1990:2018)

calibration <- calib_green(nutrient, catch, n_iter, low, upp, years)

The calibration process is automatically parallelised by the package and uses all computer cores except
one. The computation time depends on the computer, the number of catchments in the basin, and the
number of iterations (Table 1). The calib_green() function returns a data frame with a row for each
iteration with parameter values and the resulting 15 GoF metric scores. An example of four parameter
sets is shown below (cut to the first five GoF metrics).

#> alpha_P alpha_L sd_coeff NSE mNSE rNSE KGE PBIAS %
#> s1 39.31203 0.07628558 0.6325056 0.5623 0.6452 0.9595 0.2512 -44.1
#> s2 35.06049 0.05510985 0.1577470 0.6733 0.6948 0.9563 0.3763 -36.3
#> s3 28.34947 0.04418381 0.7209566 0.8690 0.7737 0.8998 0.7926 -1.7
#> s4 40.73533 0.01351723 0.6195734 0.8370 0.7734 0.9607 0.6292 -22.6

The selection of the appropriate GoF metric(s) for calibration and evaluation of hydrological models
can be challenging even for very experienced hydrologists. Choosing the right GoF metric for model
calibration largely depends on the overall study scope, which defines the main interest (e.g. high or
low load, upper or lower catchment area), and on the available observation dataset (size and quality)
(Kumarasamy and Belmont 2018). Automated calibration typically relies, often exclusively, on a
single GoF metric, with the Nash-Suttclife efficiency (NSE) been the most frequently used metric in
hydrological models (Hoshin V. Gupta et al. 2009; Westerberg et al. 2011; Wöhling, Samaniego, and
Kumar 2013). As described in Singh and Frevert (2002), a single criterion is inherently predisposed to
bias towards certain components of the data time series. Automated procedures may be improved
by using more than one criteria as discussed by Hoshin Vijai Gupta, Sorooshian, and Yapo (1998).
Although automation can help the calibration process become more objective, efficient and practical, it
is not a substitute for expert hydrologic intuition and understanding. Whether automated or manual
calibration is used, a common approach is to adjust the parameters that display the highest sensitivity
(Madsen 2003; Doherty and Skahill 2006).

GREENeR includes several functions to assist in selecting the best parameter set. The calib_boxplot()
function shows (Figure 3) relationships between best parameter sets chosen according to one GoF
parameter (title of each boxplot) in relation to six most frequently used metrics. Additionally, in the
lower panel, the figure shows the distribution of model parameters in the most performing subset of
parameter sets. The best parameter set according to each GoF metrics is marked as a red dot in each
boxplot (Figure 3).

calib_boxplot(calibration, rate_bs = 5)
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Figure 3: Calibration results for the Vistula river basin (TN Scenario). The figure displays the output
of the calib_boxplot() function, and compare several GoF metrics (bR2, KGE, mNSE, NSE, PBIAS, R2,
rNSE, VE) with each other and with the model parameters distributions. The top two rows show
boxplots of each metric (specified in the title) with others (in the x labels). The lowest row shows the
parameter value distributions for the top 5% (or another threshold indicated in rate_bs parameter of
the function) parameter sets ranked according to the GoF metrics in the x label. The red dots represent
the best parameter values for each boxplot.

The select_params() function extracts the parameter set that scored the best GoF metric of choice
from the calibration result object.

best_params <- select_params(calibration, param = "NSE")

alpha_P <- best_params$alpha_P
alpha_L <- best_params$alpha_L
sd_coeff <- best_params$sd_coeff

It is not recommended to use the parameters extracted by the select_params() function without hav-
ing performed an analysis of all the calibration results. Instead, alternative parameter sets (according
to different GoF) should be compared before making the final selection.

Screening and SA of model parameters can be done via the scatter_plot() and calib_dot()
functions of GREENeR package. The scatter_plot() function shows all parameter realizations in the
LHS dataset against a selected GoF metric to visualize the influence of each parameter on the metric
scores. The result depends on the GoF metric of choice (any metric calculated with calib_green() can
be selected) (Figure 4).

scatter_plot(calibration, param = "R2")
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Figure 4: Scatter plots of model parameters against R2 metric generated by the scatter_plot() function
for the Vistula river basin (TN).

Figure 4 example shows that the highest R2 are achieved for values of the parameter alphaP around
33.3 and for the parameter alphaL around 0.025, whereas the model is insensitive to the sdcoe f parame-
ter. Further, scatter_plot() function helps check if the parameter ranges defined in the search were
suitable, or if the number of iterations was sufficient. In Figure 4, the best values of the parameters
alphaP and alphaL are in the central part of the plots, thus the search parameter ranges were appropri-
ate, and the distribution of dots is sufficient to visualize the effect of each parameter, indicating that
the number of iterations was adequate.

The calib_dot() function shows the distribution of parameters in relation to each other for a
chosen GoF metric, and highlights potential correlations between parameters (Figure 5).

calib_dot(calibration, param = "KGE")

Figure 5: Dot plots of parameter pairs for the Kling-Gupta efficiency (KGE) generated by the calib_dot()
function for the Vistula river basin (TN).
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In Figure 5, the Kling-Gupta Efficiency metric (KGE, Althoff and Rodrigues 2021) shows interactions
between alphaP and alphaL, i.e. a higher alphaP should be associated to a lower alphaL for achieving
similar KGE. The best alphaP values identified for both R2 and KGE metrics are similar, whereas
alphaL values vary considerably (see also Figure 3).

The GREENeR package includes two useful model calibration functions: compare_calib() and
simobs_annual_plot(). compare_calib() shows a scatter plot that compares observed data points
with corresponding values predicted by two parameter sets. Figure 6 displays a plot generated by
the compare_calib() for the Vistula (TN) basin scenario when using the best parameter sets based on
NSE and rNSE metrics. The plot reveals that when rNSE parameter set result in an underestimation of
loads in the upper range.

metrics <- c("NSE","rNSE")
compare_calib(nutrient, catch, alpha_p1 = 31, alpha_l1 = 0.02, sd_coef1 = 0.6,

alpha_p2 = 50, alpha_l2 = 0.01, sd_coef2 = 0.6, years = c(1990:2018),
name_basin = "Wisla", metrics)

Figure 6: Result of compare_calib() for the Vistula river basin (TN), comparing the best set of parame-
ters selected according to the NSE and rNSE metrics.

The simobs_annual_plot() function compares observed and predicted values over the years (Figure
7), which identifies erroneous model performance or data distribucion problems over time.

year_range <- c(1994, 1996:2001, 2006:2009, 2012)
simobs_annual_plot(nutrient, catch, alpha_P, alpha_L, sd_coeff, year_range,

name_basin = "Wisla", max_value = 10000)
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Figure 7: Result of the simobs_annual_plot() for the Vistula river basin (TN), with the parameter set
selected for highest NSE and limiting the plots to the interval between 0 and 10000

3.3 Estimation of catchment nutrient loads and contribution in the basin

Once the most appropriate parameter set has been selected, it is possible to run the model to estimate
nutrient loads in the region. The green_shares() function runs GREEN with the selected parameter
set and returns catchment nutrient loads and the contributions by source in the simulation period.

The nutrient_tserie() function shows the temporal evolution of the total load at the basin outlet
in the simulation period with contributions by sources (Figure 8). Other options of the function show
nutrient loads in different zones of the basin (upper, central and lower part).

nutrient_load <- green_shares(nutrient, catch, alpha_P, alpha_L, sd_coeff, years)
nutrient_tserie(nutrient_load, geometry, "Wisla basin", "gr3")

Figure 8: TN load at the Vistula river basin outlet from 1990 to 2018. Colors indicate the contribution
of different sources (Min = mineral, Man = manure, Atm = atmospheric deposition, Fix = crop fixation,
Soil = soil fixation, Sd = scattered dwellings and Ps = point sources).

The nutrient_maps() function uses the object returned by green_shares() to generate maps of the
distribution of nutrient loads by source for a given year or as the mean for several years (Figure 9).
The results are shown in logarithmic scale to improve the visualization as nutrient loads in a region
may vary over several orders of magnitude. Alternative options of the function show the total load at
the outlets of the catchment or the specific loads (i.e. load per catchment area; in kt/km2/y).
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map_title <- "Output Loads for the Vistula basin"
nutrient_maps(nutrient_load, geometry, map_title, "gr1", legend_position = 1)

Figure 9: Maps of TN loads in the Vistula river basin by different sources and in total (the sum of all
other maps, bottom right), in logarithm scale as generated with nutrient_maps() function.

3.4 Estimation of nutrient fluxes and sources contribution in the basin

The region_nut_balance() function runs GREEN with the selected parameter set, and returns the
nutrient mass balance and fluxes of the region (mean value for the simulation period). The results of
this function can be visualized in a Sankey diagram with the function N4_sankey() (Figure 10) .

nut_bal <- region_nut_balance(nutrient, catch, alpha_P, alpha_L, sd_coeff,
years)

sank <- N4_sankey(nut_bal)

Figure 10: Sankey plot for the Vistula river basin for TN scenario, average for period 1990-2018. The
plot represents nitrogen input sources on the left (Min=mineral, Man=manure, Atm=atmospheric
deposition, Fix=crop fixation, Soil=soil fixation, Sd=scattered dwellings and Ps=point sources), and
nitrogen sinks (land, river and lake retention) and outlet discharge (load to outlet) on the right. The
bars in the middle visualize nitrogen agricultural diffuse sources and loads to the stream network.
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4 Conclusion

The GREENeR package provides several functions to assess nutrient pressures in fresh and coastal
waters based on the GREEN model (Bruna Grizzetti, Bouraoui, and Aloe 2012; Bruna Grizzetti et al.
2021). It allows assessing annual nutrient loads and concentrations throughout the river network and
at river outlets, as well as the contributions of diffuse and point sources to the total load. GREENeR
includes functions to route nutrient sources in a region, considering different pathways and the
hydrological structure of the river network. The package is enriched by functions that aid selecting the
set of parameters that best suits the study scope. Several functions assist in the preparation of scenarios
by assembling input data from the appropriate sources, and in visualising inputs and nutrient fluxes
in space and time. The version of the GREEN model implemented in the package is computationally
efficient and includes parallel running capabilities for the calibration process, greatly reducing the
time required for large basins or regional applications, e.g. at continental scale as in (Vigiak et al. 2023).
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6 Appendix

6.1 Appendix 1

Diffuse and point sources are defined differently for each nutrient module, i.e. nitrogen or phosphorus.
Equation (5) formulates the general GREEN function stated in equation (1) in the case of nitrogen. In
GREEN nitrogen model, the total nitrogen load Li of catchment i is estimated as:

Li = (1 − Lreti) · ((MinNi + ManNi + FixNi + SoilNi + (1 − FFi) · AtmNi)·
(1 − Breti) + 0.38 · FFi · AtmNi + sdcoe f f · SdNi + PsNi + Ui) · (1 − Rreti)

(5)

where MinNi is the annual amount of nitrogen from mineral fertilisers (ton/yr); ManNi is the annual
amount of nitrogen in manure fertilisers (ton/yr); FixNi is the annual amount of nitrogen fixation by
leguminous crops and fodder (ton/yr); SoilNi is the annual amount of nitrogen fixation by bacteria
in soils (ton/yr); AtmNi is the annual nitrogen deposition from atmosphere (ton/yr); FFi is the non-
agricultural land cover in the catchment (fraction); SdNi is the nitrogen input from scattered dwellings
(ton/yr); PsNi is the nitrogen input from point sources (ton/yr); and, finally, Ui is the nitrogen load
from upstream catchments (ton/yr).

Note that nitrogen atmospheric deposition losses are split into two parts, i.e. inputs to agricultural
land, which undergo the basin retention (such as crop uptake) that depends on annual precipitation,
while in forest areas they are reduced by a fixed rate, before entering into the stream. The contribution
of atmospheric nitrogen deposition in non-agricultural land is thus estimated as 0.38 · FF · AtmN. For
an atmospheric deposition of 10 kgN/ha this corresponds to a background of 3.8 kgN/ha (in line with
the values reported by HELCOM (2003)).

Phosphorous background losses are split into two parts, with the inputs to agricultural land under-
going basin retention, while in forest areas they are considered entering into the stream. Background
losses for phosphorus are estimated at 0.15 kgP/ha (in line with the values reported by (HELCOM
2003).

In GREEN phosphorus model, the total annual phosphorus load Li of catchment i the equation
estimates:

Li = (1 − Lreti) · ((MinPi + ManPi + (1 − FFi) · BgPi) · (1 − Breti)+

FFi · BgPi + sdcoe f f · SdPi + PsPi + Uii) · (1 − Rreti)
(6)

where MinPi is the annual amount of phosphorus mineral fertilisers (ton/yr); ManPi is the annual
amount of phosphorus in manure fertilisers (ton/yr); FFi is the non-agricultural land cover in the
catchment (fraction);BgPi is the annual amount of phosphorus background losses (ton/yr); SdPi is the
phosphorus input from scattered dwellings (ton/yr); PsPi is the phosphorus input from point sources
(ton/yr); and Uii is the phosphorus load from upstream catchments (ton/yr).
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6.2 Appendix 2

The calib_green() function applies the following GoF metrics (Althoff and Rodrigues 2021; Mauricio
Zambrano-Bigiarini 2014) (NSE, rNSE, mNSE, R2, PBIAS), where:

• NSE: Nash-Sutcliffe efficiency.

• rNSE: Relative Nash-Sutcliffe efficiency.

• mNSE: Modified Nash-Sutcliffe efficiency.

• cp: Coefficient of Persistence.

• VE: Volumetric Efficiency.

• KGE : Kling-Gupta efficiency.

• d : Index of Agreement.

• md: Modified index of agreement.

• rd: Relative Index of Agreement.

• r: Linear correlation coefficient.

• R2: Coefficient of determination.

• PBIAS: Percent bias.

• MAE: mean absolute error.

• RMSE: Root mean square error.

• ME: Mean error.

• MSE: Mean square error.

• NRMSE: Normalized Root Mean Square Error.

See (Papacharalampous, Tyralis, and Koutsoyiannis 2019; Nash and Sutcliffe 1970; Kitanidis and
Bras 1980; Yapo, Gupta, and Sorooshian 1996; Krause, Boyle, and Bäse 2005; Criss and Winston 2008;
Hoshin Vijai Gupta, Sorooshian, and Yapo 1998; Mauricio Zambrano-Bigiarini 2014) for further details.
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