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Statistical Models for Repeated
Categorical Ratings: The R Package rater
by Jeffrey M. Pullin, Lyle C. Gurrin, and Damjan Vukcevic

Abstract A common problem in many disciplines is the need to assign a set of items into categories
or classes with known labels. This is often done by one or more expert raters, or sometimes by an
automated process. If these assignments or ‘ratings’ are difficult to make accurately, a common tactic
is to repeat them by different raters, or even by the same rater multiple times on different occasions.
We present an R package rater, available on CRAN, that implements Bayesian versions of several
statistical models for analysis of repeated categorical rating data. Inference is possible for the true
underlying (latent) class of each item, as well as the accuracy of each rater. The models are extensions
of, and include, the Dawid–Skene model, and we implemented them using the Stan probabilistic
programming language. We illustrate the use of rater through a few examples. We also discuss in
detail the techniques of marginalisation and conditioning, which are necessary for these models but
also apply more generally to other models implemented in Stan.

1 Introduction

The practice of measuring phenomena by having one or more raters assign to items one of a set of
ratings is common across many fields. For example, in medicine one or more doctors may classify a
diagnostic image as being evidence for one of several diagnoses, such as types of cancer. This process
of rating is often done by one or more expert raters, but may also be performed by a large group of
non-experts (e.g., in natural language processing (NLP), where a large number of crowd-sourced raters
are used to classify pieces of text; see Passonneau and Carpenter (2014) and Ipeirotis, Provost, and
Wang (2010)) or by a machine or other automated process (e.g., a laboratory diagnostic test, where ‘test’
may refer to either the raters and/or the ratings). Other fields where ratings occur include astronomy,
for classifying astronomical images (Smyth et al. 1994), and bioinformatics, for inferring error rates
for some bioinformatics algorithms (Jakobsdottir and Weeks 2007). Indeed, both studies apply the
Dawid–Skene model that we present below and implement in our software package.

The assignment of items to categories, which are variously referred to as gradings, annotations
or labelled data, we will call ratings. Our hope is that these are an accurate reflection of the true
characteristics of the items being rated. However, this is not guaranteed; all raters and rating systems
are fallible. We would expect some disagreement between the raters, especially from non-experts,
and even expert raters may disagree when there are some items that are more difficult to rate than
others. A typical way of dealing with this problem is to obtain multiple ratings for each item from
different raters, some of whom might rate the item more than once on separate occasions. By using
an aggregate index (e.g., by averaging the ratings) one can hope to reduce bias and variance when
estimating both population frequencies and individual item categories.

Despite the fact that ratings data of this type are common, there are few software packages that
can be used to fit useful statistical models to them. To address this, we introduce rater, a software
package for R (R Core Team 2021) designed specifically for such data and available on CRAN. Our
package provides the ability to fit the Dawid–Skene model (Dawid and Skene 1979) and several of its
extensions. The goal is to estimate accurately the underlying true class of each item (to the extent that
this is meaningful and well-defined) as well as to quantify and characterise the accuracy of each rater.
Models of these data should account for the possibility that accuracy differs between the raters and
that the errors they make might be class-specific. The package accepts data in multiple formats and
provides functions for extracting and visualizing parameter estimates.

While our package implements optimisation-based inference, the default mode of inference is
Bayesian, using Markov Chain Monte Carlo (MCMC). We chose a Bayesian approach for several
reasons. The first is because the standard classical approach, using an EM algorithm, often gives
parameter estimates on the boundary of the parameter space (i.e., probabilities of exactly 0 or 1),
which would typically be implausible. Examples of this can be seen in the original paper by Dawid
and Skene (1979), and also in our own results below that compare MCMC and optimisation-based
inference (e.g., compare Figure 2 and Figure 4). A second reason is to take advantage of the convenient
and powerful Stan software (Stan Development Team 2021), which made implementing our package
considerably easier. Stan is a probabilistic programming language that implements MCMC and
optimisation algorithms for fitting Bayesian models. The primary inference algorithm used by Stan
is the No U-Turn Sampler (NUTS) variant of the Hamiltonian Monte Carlo (HMC) sampler, which
uses gradient information to guide exploration of the posterior distribution. A third reason is that
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Table 1: Formats for balanced rating data.

(a) Long

Item Rater Rating

1 1 3
1 2 4
2 1 2
2 2 2
3 1 2
3 2 2

(b) Wide

Item Rater 1 Rater 2

1 3 4
2 2 2
3 2 2

(c) Wide (grouped)

Rater 1 Rater 2 Tally

3 4 1
2 2 2

it allows users to easily incorporate any prior information when it is available. In this context, prior
information might be information about the quality of the raters or specific ratings mistakes that are
more common.

We illustrate our methods and software using two examples where the raters are healthcare
practitioners: one with anaesthetists rating the health of patients, and another with dentists assessing
the health of teeth. In both examples, we are interested in obtaining more accurate health assessments
by combining all of the experts’ ratings rather than using the ratings of a single expert, as well as
estimating the accuracy of each expert and characterising the types of errors they make.

Our paper is organised as follows. Section 2 describes the various data formats that can be used
with the function implemented in the package. Section 4 introduces the Dawid–Skene model and
several of its extensions. Section 5 briefly describes the implementation and goes into more detail
about some of the more interesting aspects, followed by an exposition of the technique called Rao–
Blackwellization in Section 6, which is connected with many aspects of the implementation. Section 7
introduces the user interface of rater along with some examples. Section 8 concludes with a discussion
of the potential uses of the model.

2 Data formats

There are several different formats in which categorical rating data can be expressed. We make a
distinction between balanced and unbalanced data. Balanced data have each item rated at least once by
each rater. Unbalanced data contain information on some items that were not rated by every rater;
stated alternatively, there is at least one rater who does not rate every item.

Table 1 and Table 2 illustrate three different formats for categorical rating data. Format (a) has one
row per item-rater rating episode. It requires variables (data fields) to identify the item, the rater and
the rating. This presentation of data is often referred to as the ‘long’ format. It is possible for a rater
to rate a given item multiple times; each such rating would have its own row in this format. Format
(b) has one row per item, and one column per rater, with each cell being a single rating. Format (c)
aggregates rows (items) that have identical rating patterns and records a frequency tally. Formats (b)
and (c) are examples of ‘wide’ formats. They only make sense for data where each rater rates each
item at most once. Note that the long format will never require any structural missing values for any
of the variables, whereas the wide formats require the use of a missing value indicator unless they
represent data generated by a balanced design, see Table 2. One benefit of the grouped format is that it
allows a more computationally efficient implementation of the likelihood function. See Section 5 for
details about how this is implemented in rater.

3 Existing approaches

A typical approach for modelling categorical ratings is to posit an unobserved underlying true class
for each item, i.e., we represent the true class as a latent variable. One of the first such models was
developed by Dawid and Skene (1979). This model is still studied and used to this day, and has served
as a foundation for several extensions (e.g., Paun et al. 2018). Our R package, rater, is the first one
specifically designed to provide inference for the Dawid–Skene model and its variants.

The Python library pyanno (Berkes et al. 2011) also implements a Bayesian version of the Dawid–
Skene model in addition to the models described by Rzhetsky (2009). However, unlike rater, pyanno
only supports parameter estimation via optimisation rather than MCMC; i.e., it will only compute
posterior modes rather than provide samples from the full posterior distribution. In addition, pyanno
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Table 2: Formats for unbalanced rating data. Missing values are indicated by ‘NA’.

(a) Long

Item Rater Rating

1 1 3
1 2 4
2 1 2
2 2 2
3 1 2
3 2 2
4 1 3
5 1 3
6 2 4

(b) Wide

Item Rater 1 Rater 2

1 3 4
2 2 2
3 2 2
4 3 NA
5 3 NA
6 NA 4

(c) Wide (grouped)

Rater 1 Rater 2 Tally

3 4 1
2 2 2
3 NA 2

NA 4 1

does not support variants of the Dawid–Skene model nor the support for grouped data implemented
in rater.

More broadly, many different so-called ‘latent class’ models have been developed and implemented
in software, for a wide diversity of applications (e.g., Goodman 1974). A key aspect of the categorical
ratings context is that we assume our categories are known ahead of time, i.e., the possible values for
the latent classes are fixed. The Dawid–Skene model has this constraint built-in, whereas other latent
class models are better tailored to other scenarios. Nevertheless, many of these models are closely
related and are implemented as R packages.

Of most interest for categorical ratings analysis are the packages poLCA (Linzer and Lewis 2011),
BayesLCA (White and Murphy 2014) and randomLCA (Beath 2017), all of which are capable of fitting
limited versions of the Dawid–Skene model. We explore the relationship between different latent
class models in more detail in Section 4.7. Briefly: randomLCA can fit the Dawid–Skene model only
when the data uses binary categories, BayesLCA can only fit the homogeneous Dawid–Skene model,
and poLCA can fit the Dawid–Skene model with an arbitrary number of categories but only supports
wide data (where raters do not make repeated ratings on items). Neither poLCA nor randomLCA
support fully Bayesian inference with MCMC, and none of the packages support fitting variants of the
Dawid–Skene model (which are available in rater).

4 Models

One of the first statistical models proposed for categorical rating data was that of Dawid and Skene
(1979). We describe this model below, extended to include prior distributions to allow for Bayesian
inference. Recently, a number of direct extensions to the Dawid–Skene model have been proposed. We
describe several of these below, most of which are implemented in rater. For ease of exposition, unless
otherwise stated, all notation in this section will assume we are working with balanced data and where
each item is rated exactly once by each rater, one exception is that we present the Dawid–Skene model
for arbitrary data at the end of Section 4.1.

Assume we have I items (for example, images, people, etc.) and J raters, with each item presumed
to belong to one of the K categories: we refer to this as its ‘true’ category and also as its latent class
(since it is unobserved). Let yi,j ∈ {1, . . . , K} be the rating for item i given by rater j.

4.1 Dawid–Skene model

The model has two sets of parameters:

• πk: the prevalence of category k in the population from which the items are sampled. πk ∈ (0, 1)
for k ∈ {1, . . . , K}, with ∑K

k=1 πi = 1. All classes have some non-zero probability of occurring.
We collect all the πk parameters together into a vector, π = (π1, . . . , πK).

• θj,k,k′ : the probability that rater j responds with class k′ when rating an item of true class
k. Here, j ∈ {1, . . . , J} and k, k′ ∈ {1, 2, ..., K}. We will refer to the K × K matrix θj,k,k′ for a
given j as the error matrix for rater j. We represent the kth row of this matrix as the vector

θj,k =
(

θj,k,1, θj,k,2, . . . , θj,k,K

)
: this shows how rater j responds to an item with true class k, by

rating it as being in class 1, 2, . . . , K, according to the respective probabilities.
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The model also has the following set of latent variables:

• zi: the true class of item i. zi ∈ {1..., K} for i ∈ {1, ..., I}.

Under the Bayesian perspective, the model parameters and latent variables are both unobserved
random variables that define the joint probability distribution of the model. As such, inference on
them is conducted in the same way. However, we make the distinction here to help clarify aspects of
our implementation later on.

The model is defined by the following distributional assumptions:

zi ∼ Categorical(π), ∀i ∈ {1, . . . , I},

yi,j | zi ∼ Categorical(θj,zi ), ∀i ∈ {1, . . . , I}, j ∈ {1, . . . , J}.

In words, the rating for item i given by rater j will follow the distribution specified by: the error matrix
for rater j, but taking only the row of that matrix that corresponds to the value of the latent variable
for item i (the zith row).

We now have a fully specified model, which allows use of likelihood-based methods. The likeli-
hood function for the observed data (the yi,js) is

Pr(y | θ, π) =
I

∏
i=I

 K

∑
k=1

πk ·
J

∏
j=1

θj,k,yi,j

 .

Note that the unobserved latent variables, z = (z1, z2, . . . , zI), do not appear because they are
integrated out (via the sum over the categories k). Often it is useful to work with the complete data
likelihood where the z have specific values, for example if implementing an EM algorithm (such as
described by Dawid and Skene (1979)). The somewhat simpler likelihood function in that case is

Pr(y, z | θ, π) =
I

∏
i=I

πzi ·
J

∏
j=1

θj,zi ,yi,j

 .

In our implementation we use the first version of the likelihood, which marginalises over z (see Section
5.1). We do this to avoid needing to sample from the posterior distribution of z using Stan, as the
HMC sampling algorithm used by Stan requires gradients with respect to all parameters and gradients
cannot be calculated for discrete parameters such as z. Alternative Bayesian implementations, perhaps
using Gibbs sampling approaches, could work with the second version of the likelihood and sample
values of z directly.

To allow for Bayesian inference, we place weakly informative prior probability distributions on
the parameters:

π ∼ Dirichlet(α),

θj,k ∼ Dirichlet(βk).

The hyper-parameters defining these prior probability distributions are:

• α: a vector of length K with all elements greater than 0

• β: a K × K matrix with all elements greater than 0, with βk referring to the kth row of this matrix.

We use the following default values for these hyper-parameters in rater: αk = 3 for k ∈ {1, . . . , K},
and

βk,k′ =

Np if k = k′

N(1 − p)
K − 1

otherwise
∀k, k′ ∈ {1, . . . , K}.

Here, N corresponds to an approximate pseudocount of hypothetical prior observations and p an
approximate probability of a correct rating (applied uniformly across all raters and categories). This
affords us the flexibility to centre the prior on a particular assumed accuracy (via p) as well as tune
how informative the prior will be (via N). In rater we set the default values to be N = 8 and p = 0.6,
reflecting a weakly held belief that the raters are have a better than coin-flip chance of choosing the
correct class. This should be suitable for many datasets, where the number of categories is small,
for example, less than ten. This default would, however, be optimistic if the number of categories is
very large, for example, one hundred. In that case it would make sense for the user to specify a more
realistic prior (see Section 7.5). A derivation of the default prior specification is shown in Section 4.2.

We can also write the Dawid–Skene model in notation that does not assume the data are balanced.
Let I, J, K be as above. Let N be the total number of ratings in the dataset (previously we had the

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=rater
https://CRAN.R-project.org/package=rater


CONTRIBUTED RESEARCH ARTICLE 97

special case N = I · J). Define the following quantities relating to the nth rating: it was performed by
rater jn, who rated item in, and the rating itself is yn. We can now write the Dawid–Skene model as:

zi ∼ Categorical(π), ∀i ∈ {1, . . . , I},

yn | zin ∼ Categorical(θjn ,zin
), ∀n ∈ {1, . . . , N}.

4.2 Hyper-parameters for the Dawid–Skene model

Hyper-parameters for the error matrices

The values we proposed for the β hyper-parameters are designed to be flexible and have an approxi-
mate intuitive interpretation. The derivation is as follows.

First, consider the variant of the model where the true latent class (z) of each item is known; this
model is described under ‘Case 1. True responses are available’ by Dawid and Skene (1979). Under this
model, we can ignore π because the distribution of y depends only on θ. It is a categorical distribution
with parameters given by specific rows of the error matrices (as determined by z, which is known)
rather than being a sum over all possible rows (according to the latent class distribution).

Under this model, the Dirichlet prior is conjugate; we obtain a Dirichlet posterior for each row
of each rater’s error matrix. Consider an arbitrary rater j and an arbitrary latent class k′. Let c =
(c1, c2, . . . , cK) be the number of times this rater rates an item as being in each of the K categories when
it is of true class k′. Let njk′ = ∑K

k=1 ck be the total number of such ratings. Also, recall that θj,k′ refers
to the vector of probabilities from the k′th row of the error matrix for rater j. We have that

c ∼ Multinomial
(

njk′ , θj,k′
)

,

giving the posterior
θj,k′ | c ∼ Dirichlet(βk′ + c).

Under this model, the hyper-parameter vector βk′ has the same influence on the posterior as the
vector of counts c. We can therefore interpret the hyper-parameters as ‘pseudocounts’. This gives
a convenient way to understand and set the values of the hyper-parameters. Our choices were as
follows:

• We constrain their sum to be a given value N = ∑K
k=1 βk′ ,k, which we interpret as a pseudo-

sample size (of hypothetical ratings from rater j of items with true class k′).

• We then set βk′ ,k′ to a desired value so that it reflects a specific assumed accuracy. In particular,
the prior mean of θk′ ,k′ , the probability of a correct rating, will be βk′ ,k′/N. Let this be equal to p,
an assumed average prior accuracy.

• Finally, in the absence of any information about the different categories, it is reasonable to
treat them as exchangeable and thus assume that errors in the ratings are on average uniform
across categories. This implies that the values of all of the other hyper-parameters (βk′ ,k where
k ̸= k′) are equal and need to be set to a value to meet the constraint that the sum of the
hyper-parameters in the vector βk′ is N.

• These choices imply the hyper-parameter values described in Section 4.1.

In the Dawid–Skene model, the latent classes (z) are of course not known. Therefore, we do not
have a direct interpretation of the β hyper-parameters as pseudocounts. However, we can treat them
approximately as such.

We chose N = 8 and p = 0.6 as default values based on obtaining reasonably good performance
in simulations across a diverse range of scenarios (data not shown).

Relationship to previous work

The Stan User’s Guide (Stan Development Team 2021, sec. 7.4) suggests the following choice of values
for β:

βk′ ,k =

{
2.5 × K if k′ = k
1 otherwise

, ∀k′, k ∈ {1, . . . , K}.

It is interesting to compare this to our suggested values, above. By equating the two, we can re-write
the Stan choice in terms of p and N:

p = 2.5 × K/N
N = 3.5 × K − 1.
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We see that the Stan default is to use an increasingly informative prior (N gets larger) as the number of
categories (K) increases. The assumed average prior accuracy also varies based on K. For example:

• For K = 2 categories, p = 0.83 and N = 6.

• For K = 5 categories, p = 0.76 and N = 16.5.

• As K increases, p slowly reduces, with a limiting value of 2.5/3.5 = 0.71.

Our default values of p = 0.6 and N = 8 give a prior that is less informative and less optimistic
about the accuracy of the raters.

In practice we have experienced issues when fitting models via optimisation when the non-
diagonal entries of β are less than 1 (i.e., when βk′ ,k < 1 for some k′ ̸= k). The default hyper-parameters
selected in rater ensure that when there are only a few possible categories—specifically, when K ⩽ 4—
then this does not occur. When K is larger than this and the default hyper-parameters give rise to
non-diagonal entries smaller than 1, rater will report a useful warning message. This only arises when
using optimisation; it does not arise when using MCMC. Users who wish to use optimisation with a
large number of categories can specify different hyper-parameters to avoid the warning message.

Hyper-parameters for the prevalence

The α hyper-parameters define the prior for the prevalence parameters π. All of these are essentially
nuisance parameters and not of direct interest, and would typically have little influence on the
inference for θ or z. The inclusion in the model of a large amount of prior information on the values of
the prevalence parameters would clearly influence the posterior distributions of the corresponding
population class frequencies. We would, however, expect inferences about the accuracy of raters
(whether this is assumed to be class-specific or not) to depend largely on the number of ratings
captured by the dataset, not the prevalence parameters themselves. We have, therefore, not explored
varying α and have simply set them to the same values as suggested in the Stan User’s Guide (Stan
Development Team 2021): αk = 3 for all k.

4.3 Hierarchical Dawid–Skene model

Paun et al. (2018) introduce a ‘Hierarchical Dawid–Skene’ model that extends the original one
by replacing the Dirichlet prior on θj,k (and the associated hyper-parameter β) with a hierarchical
specification that allows for partial pooling, which allows the sharing of information about raters’
performance across rater-specific parameters. It requires two K × K matrices of parameters, µ and σ,
with

µk,k′ ∼
{

Normal(2, 1), k = k′

Normal(0, 1), k ̸= k′
∀k, k′ ∈ {1, . . . , K}

σk,k′ ∼ Half-Normal(0, 1) ∀k, k′ ∈ {1, . . . , K}.

We then have that:

γj,k,k′ ∼ Normal(µk,k′ , σk,k′ ) ∀j ∈ {1, . . . , J}, k, k′ ∈ {1, . . . K}

which are then normalised into probabilities via the multinomial logit link function (also known as the
softmax function) in order to define the elements of the error matrices, which are:

θj,k,k′ =
eγj,k,k′

∑K
k′=1 eγj,k,k′

.

Other details, such as the distribution of z and y, are defined in the same way as per the Dawid–
Skene model. The implementation in rater differs from the implementation from Paun et al. (2018)
by modifying the prior parameters to encode the assumption that the raters are generally accurate.
Specifically, the higher means of the diagonal elements of µ encode that the raters are accurate, as
after transformation by the softmax function larger values of µ will produce higher probabilities in
θ. The assumption that the raters are accurate is also encoded in the prior distribution for θ in the
Dawid–Skene model described above.

One interpretation of the hierarchical model is as a ‘partial pooling’ compromise between the full
Dawid–Skene model and the model with only one rater (see Section 4.5). This is depicted in Figure 1.
Another interpretation of the model is that it treats the accuracy of raters given a specific latent class as
a random effect, not a fixed effect as in the Dawid–Skene model. Paun et al. (2018) show, via a series of
simulations and examples, that this hierarchical model generally improves the quality of predictions
over the original Dawid–Skene model.
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4.4 Class-conditional Dawid–Skene

Another variant of the Dawid–Skene model imposes constraints on the entries in the error matrices
of the raters. Given the presumption of accurate raters, one natural way to do this is to force all
non-diagonal entries in a given row of the error matrix to take a constant value that is smaller than the
corresponding diagonal entry. Formally the model is the same as the Dawid–Skene model except that
we have:

θj,k,k′ =

pj,k if k = k′
1 − pj,k

(K − 1)
otherwise.

To make the model fully Bayesian we use the following prior probability distributions:

pj,k ∼ Beta(β1,k, β2,k), ∀j ∈ 1, . . . , J.

In rater we set β1,k = Np and β2,k = N(1 − p) for all k, where N = 8 and p = 0.6 as in Section 4.1.
While the constraints in this model may lead to imprecise or biased estimation of parameters for any
raters that are substantially inaccurate or even antagonistic, the reduced number of parameters of this
model relative to the full Dawid–Skene model make it much easier to fit. This model was referred to
as the ‘class-conditional Dawid–Skene model’ by Li and Yu (2014).

4.5 Homogeneous Dawid–Skene model

Another related model is the ‘multinomial model’ described by Paun et al. (2018), where the full
Dawid–Skene model is constrained so that the accuracy of all raters is assumed to be identical. The
constraint can be equivalently formulated as the assumption that all of the ratings were done by a
single rater, thus the raters and the sets of rating they produce are exchangeable. This model can be
fitted using rater by simply modifying the data so that only one rater rates every item present and
then fitting the usual Dawid–Skene model.

4.6 Relationships between the models

All of the models presented in this paper can be directly related to the original Dawid–Skene model.
Figure 1 shows the relationships between the models implemented in the package, which are coloured
blue. The hierarchical model can be seen as a ‘partial pooling’ model where information about the
performance of the raters is shared. The Dawid–Skene model can then be seen as the ‘no pooling’
extreme where all raters’ error matrices are estimated independently, while the homogeneous model is
the other extreme of complete pooling where one error matrix is fitted for all of the raters. In addition,
the class-conditional model is a direct restriction of the Dawid–Skene model where extra constraints
are placed on the error matrices.

4.7 Relationships to existing models

The Dawid–Skene model is also closely related to existing latent class models. Usually, in latent class
models, the number of latent classes can be chosen to maximise a suitable model selection criterion,
such as the BIC, or to make the interpretation of the latent classes easier. In the Dawid–Skene model,
however, the number of latent classes must be fixed to the number of categories to ensure that the
error matrices can be interpreted in terms of the ability of the raters to rate the categories that appear
in the data. Some specific models to which the Dawid–Skene model is related are depicted in Figure 1
and are coloured white.

The latent class model implemented in BayesLCA is equivalent to the Dawid–Skene model fitted
to binary data if the number of classes (G in the notation of White and Murphy (2014)) is set to 2. In
that case, each of the M dimensions of the binary response variable can be interpreted as a rater, so
that J = M.

The Dawid–Skene model is also a special case of the model implemented in poLCA (Linzer and
Lewis 2011). The models are equivalent if they have the same number of latent classes (R = K, where
R is the number of latent classes in the poLCA model) and if all of the J categorical variables in the
poLCA model take values in the set {1, . . . K} (that is, Kj = K for all j ∈ J), so that each of the J
variables can be interpreted as the ratings of a particular rater.

In addition, the Dawid–Skene model is a special case of the model implemented in randomLCA
(Beath 2017). When no random effects are specified and K = 2, the model is equivalent to the Dawid–
Skene model with two classes. While randomLCA allows selecting an arbitrary number of latent
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Class-conditional DS
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J = 1

K = 2
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σ2 → 0

Equal o�-
diagonal θ

K = 2

Figure 1: Relationships between models. Models coloured blue are implemented in rater. DS:
Dawid–Skene. LCM: latent class model.

Table 3: Features of rater and existing R packages for fitting latent class models. DS: Dawid–Skene.

Package DS model Fitting method Response type Repeated ratings Data formats

rater Yes Bayesian Polytomous Yes Wide, grouped, long
BayesLCA When K = 2 Bayesian Binary No Wide, grouped
randomLCA When K = 2 Frequentist Binary No Wide, grouped
poLCA Yes Frequentist Polytomous No Wide

classes, it only supports binary data.

Finally, when K = 2 the Dawid–Skene model reduces to the so-called ‘traditional’ or ‘standard’
latent class model as first described by Hui and Walter (1980). See Asselineau et al. (2018) for a more
modern description.

4.8 Relationships to existing packages

These relationships to existing latent class models means the functionality implemented in rater is
similar to that of existing R packages for fitting these models. The features of rater and existing
packages are summarised in Table 3.

Some further details about these relationships:

• The two Bayesian packages implement different methods of inference. rater uses Hamiltonian
Monte Carlo and optimisation of the log-posterior. BayesLCA implements Gibbs sampling, the
expectation–maximization (EM) algorithm and a Variational Bayesian approach.

• Unlike the other packages, the implementation of the wide data format in randomLCA supports
missing data. This feature is not implemented in rater because the long data format allows both
missing data and repeated ratings.

Overall, the main features that distinguish rater from the other packages are its full support for the
Dawid–Skene model and extensions, and its support for repeated ratings.

5 Implementation details

rater uses Stan (Carpenter et al. 2017) to fit the above models to data. It therefore supports both
optimisation and Markov chain Monte Carlo (MCMC) sampling, in particular using the No U-Turn
Sampler (NUTS) algorithm (Hoffman and Gelman 2014). For most datasets we recommend using
NUTS, due to the fact that it will generate realisations of the full posterior distribution. Optimisation
may be useful, however, for particularly large datasets, especially if K is large, or if there is a need to
fit a large number of models.
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5.1 Marginalisation

The NUTS algorithm relies on computing derivatives of the (log) posterior distribution with respect to
all parameters. It cannot, therefore, be used when the posterior contains discrete parameters, such as
the latent class in the Dawid–Skene model. To overcome this difficulty the Stan models implemented
in rater use marginalised forms of the posterior to allow NUTS to be used. In other words, for the
Dawid–Skene model we implement the likelihood Pr(y | θ, π), as described earlier in Section 4.1,
together with priors for θ and π.

To avoid any confusion, we stress the fact that our choice to marginalise over the vector z is
purely because it is discrete and we want to use the NUTS algorithm. It is not due to the fact that
the components of the vector z are inherently latent variables. Alternative Bayesian implementations
could avoid marginalisation and sample the zi’s directly (although this may be less efficient, see
Section 6.3 for discussion). Similarly, if the components of z were all continuous, we would be able to
sample them using NUTS. If one or more of the other non-latent parameters were discrete, then we
would need to marginalise over them too.

5.2 Inference for the true class via conditioning

Marginalising over z allows us to use NUTS and sample efficiently from the posterior probability
distribution of θ and π. We are still able to obtain the posterior distribution of the components zi
of z as follows. For each posterior draw of θ and π, we calculate the conditional posterior for zi,
Pr(zi | θ∗, π∗, y), where the conditioning is on the drawn values, θ∗ and π∗. This can be done using
Bayes’ theorem, for example in the Dawid–Skene model,

Pr(zi = k | θ∗, π∗, y) =
Pr(y | zi = k, θ∗, π∗)Pr(zi = k | θ∗, π∗)

Pr(y | θ∗, π∗)

=
π∗

k ∏J
j=1 θ∗j,k,yi,j

∑K
m=1 π∗

m ∏J
j=1 θ∗j,m,yi,j

.

To get a Monte Carlo estimate of the marginal posterior, Pr(zi | y), we take the mean of the above
conditional probabilities across the posteriors draws of θ and π. To formally justify this step we can
use the same argument that justifies the general MCMC technique of Rao–Blackwellization, see Section
6. In practice, this calculation is straightforward with Stan because we can write the log posterior
in terms of the (log scale) unnormalised versions of the conditional probabilities and output them
alongside the posterior draws. Then it is simply a matter of renormalising them, followed by taking
the mean across draws.

5.3 Data summarisation

rater implements the ability to use different forms of the likelihood depending on the format of the
data that is available. For example, for a balanced design the full likelihood for the Dawid–Skene
model is

Pr(y | θ, π) =
I

∏
i=1

 K

∑
k=1

πk ·
J

∏
j=1

θj,k,yi,j

 .

Looking closely, we see that the contribution of any two items with the same pattern of ratings, that
is, the same raters giving the same ratings, is identical. We can therefore rewrite it as a product over
patterns rather than items,

Pr(y | θ, π) =
L

∏
l=1

 K

∑
k=1

πk ·
J

∏
j=1

θj,k,yl,j

nl

,

where L is the number of distinct rating ‘patterns’, nl is the number of times pattern l occurs and yl,j
denotes the rating given by rater j within pattern l. This corresponds directly to having the data in the
‘grouped’ format, see Section 2.

This rewriting is useful for balanced designs where there are many ratings but few distinct patterns,
as it removes the need to iterate over every rating during computation of the posterior, reducing the
time for model fitting. An example of this type of data are the caries data presented in Section 7.

This technique is not always helpful. For example, if the data has many missing entries, the
number of distinct patterns L may be similar or equal to than the total number of ratings. Conse-
quently, rewriting to use the grouped format may not save much computation. For this reason, the
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implementation of rater does not allow missing values in grouped data. Note that in the long data
format we simply drop rows that correspond to missing data, a result of which is that missing data is
never explicitly represented in rater.

Both the randomLCA and BayesLCA packages support grouped format data input. Of these,
CRANpkg{randomLCA} supports missing values in grouped format data.

6 Marginalisation and Rao–Blackwellization

The technique of marginalisation for sampling discrete random variables discussed in Section 5 is
well known in the Stan community. We feel, however, that the interpretation and use of the relevant
conditional probabilities and expectations has not been clearly described before, so we attempt to do
so here. We begin with a brief review of the theory of marginalisation, which is a special case of a more
general technique often referred to as ‘Rao–Blackwellization’. See Owen (2013) for an introduction
and Robert and Roberts (2021) for a recent survey of the use of Rao–Blackwellization in MCMC.

6.1 Connection with the Rao–Blackwell theorem

Suppose we are interested in estimating µ = E( f (X, Y)) for some function f of random variables
X and Y. An example of such an expectation is µ = E(Y) where we take f (x, y) = y. If we can
sample from the joint distribution of X and Y, pX,Y(x, y), the obvious Monte Carlo estimator of this
expectation is

µ̂ =
1
n

n

∑
i=1

f (xi, yi)

where (xi, yi) are samples from the joint distribution. Now let h(x) = E( f (X, Y) | X = x). An
alternate conditional estimator—the so-called Rao–Blackwellized estimator—of µ is

µ̂cond =
1
n

n

∑
i=1

h(xi)

where the xi are sampled from the distribution of X. This estimator is justified by the fact that,

E(h(X)) = E(E( f (X, Y) | X)) = E( f (X, Y)) = µ

For this to be effective we need to be able to efficiently compute (ideally, analytically) the conditional
expectation h(X). The original motivation for using this technique was to reduce the variance of
Monte Carlo estimators. This follows from noting that

var( f (X, Y)) = E(var( f (X, Y) | X)) + var(E( f (X, Y) | X))

= E(var( f (X, Y) | X)) + var(h(X)),

and since the first term on the right-hand side is non-negative, we have ( f (X, Y)) ⩾ (h(X)).

From this result it follows that, if the draws xi are independent samples, then

var(µ̂cond) < var(µ̂)

for all functions f (X, Y). In the applications we consider here, however, xi will be drawn using MCMC
and therefore draws will not be independent. In this case it is possible to construct models and
functions f (·) for which conditioning can increase the variance of the estimator (Geyer 1995).

The name ‘Rao–Blackwellization’ arose due to the similarity of the above argument to that used
in the proof of the Rao–Blackwell theorem (Blackwell 1947), which states that given an estimator µ̂
of a parameter µ, the conditional expectation of µ̂ given a sufficient statistic for µ is potentially more
efficient and certainly no less efficient than µ̂ as an estimator of µ. The Rao–Blackwellized estimators
presented above do not, however, make any use of sufficiency and do not have the same optimality
guarantees that the Rao–Blackwell theorem provides, making the name less than apt. Following Geyer
(1995), we prefer to think of the estimators presented above as simply being formed from averaging
conditional expectations.

6.2 Marginalisation in Stan

The motivation for marginalisation in Stan is to enable estimation of µ = E( f (X, Y)) without having
to sample from (X, Y) if either X or Y is discrete. Suppose that Y is discrete and X continuous. To
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compute a Monte Carlo estimate of E( f (X, Y)) using Stan we carry out four steps.

First, marginalise out Y from pX,Y(x, y) to give pX(x). (See Equation (2.4.1) in Section 4.1 for how
this is done in the Dawid–Skene model.) This marginal distribution, which only contains continuous
parameters, should then be implemented as a Stan model. Second, using Stan as usual, sample from
the distribution of the continuous parameters X to give Monte Carlo samples {xi}. Given only the
samples from the distribution of X, we can estimate E( f (X, Y)) using the Rao–Blackwellized estimator
described in the previous section. Doing so requires us to evaluate h(X) = E( f (X, Y) | X) for all
functions f (·) in which we may be interested; this is the third step of the process. Finally, as the fourth
step, we can evaluate h(x) for each of the Monte Carlo draws xi and estimate E( f (X, Y)) by

1
n

n

∑
i=1

h(xi).

Evaluating the conditional expectation

The third step outlined above may appear to require substantial mathematical manipulation. In
practice, however, we can use the discrete nature of the latent class to simplify the calculation.
Specifically, for any function f (x, y) we have

h(X) = E( f (X, Y) | X) = ∑
k

f (X, k)Pr(Y = k | X),

where we sum over the values in the latent discrete parameters. An essential part of this formula is the
probability of the discrete parameters conditional on the continuous parameters, Pr(Y = k | X). This
quantity can be derived easily through Bayes’ theorem or can be encoded as part of the marginalised
Stan model; see Section 5.2 or the next section for how this is done in the case of the Dawid–Skene
model.

In the Dawid–Skene model, and many other models with discrete variables, the discrete variables
only take values in a finite set. Some models however may have discrete parameters which take
countably infinite values, such as Poisson distributions. In this case, marginalisation is still possible but
will generally involve approximating infinite sums, both when marginalising out the discrete random
variables and calculating the expectations (as in the equation above), which may be computationally
expensive.

Furthermore, for the cases where f (x, y) is a function of only x or y, the general formula simplifies
further. Firstly, when f (x, y) = f (x) we have

h(X) = ∑
k

f (X)Pr(Y = k | X) = f (X)∑
k

Pr(Y = k | X) = f (X).

This means that we can estimate E( f (X)) with the standard, seemingly unconditional, estimator:

n

∑
i=1

f (xi).

Even after marginalisation, computing expectations of functions of the continuous parameters can be
performed as if no marginalisation had taken place.

Secondly, when f (x, y) = f (y) we have that

h(X) = ∑
k

f (k)Pr(Y = k | X).

An important special case of this result is when f (x, y) = 1(y = k), where 1 is the indicator
function. This is important because it allows us to recover the probability mass function of the discrete
random variable Y, since E( f (X, Y)) = E(1(Y = k)) = Pr(Y = k). In this case we have

h(X) = ∑
k

1(y = k)Pr(Y = k | X) = Pr(Y = k | X).

We therefore estimate Pr(Y = k) with:

1
n

n

∑
i=1

Pr(Y = k | X = xi).

Again, we stress that our ability to do these calculations relies upon being able to easily compute
Pr(Y = k | X = xi) for each of the Monte Carlo draws xi.
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Estimating the conditional probability of the true class

For the categorical rating problem (using the Dawid–Skene model), the discrete random variable of
interest for each item i is the true class of the item, zi. We use the technique from the previous section to
calculate the posterior probability of the true class, as described in Section 5.2. In this case, the discrete
variable is zi (taking on the role that Y played in the previous section), the continuous variables are
θ and π (which together take on the role that X played in the previous section), and all probability
calculations are always conditional on the data (the ratings, y).

6.3 Efficiency of marginalisation

It is not immediately obvious whether marginalisation is more or less efficient than techniques that
actually realise a value for the discrete random variable at each iteration, such as Gibbs sampling.
Marginalising can be viewed as a form of Rao–Blackwellization, a general MCMC technique designed
to reduce the variability of Monte Carlo estimators. This link strongly suggests that marginalisation
is more efficient than using discrete random variables. Unfortunately, limitations of the theory of
Rao–Blackwellization (see Section 6.1) and the difficulty of theoretically comparing different sampling
algorithms, such as Gibbs sampling and NUTS, means that it is unclear whether marginalisation will
always be computationally superior for a given problem.

However, in practice marginalisation does seem to improve convergence at least for non-conjugate
models. For example, Yackulic et al. (2020) show that for the Cormack–Jolly–Seber model marginal-
isation greatly speeds up inference in JAGS, BUGS and WinBUGS. They also demonstrate that the
marginalised model implemented in Stan is orders of magnitude more efficient than the marginalised
models in the other languages. These results show that marginalisation has the potential to speed up
classic algorithms and also allows the use of more efficient gradient-based algorithms, such as NUTS,
for problems involving discrete random variables.

A recent similar exploration of marginalisation for some simple mixture models and the Dawid–
Skene model, using JAGS and Stan, suggests that the software implementation has a greater impact
on efficiency than the choice of whether or not marginalisation is used (Zhang et al. 2022). In their
comparisons, Stan usually achieved the best performance (and note that Stan requires marginalisation
of discrete parameters).

For these reasons, we recommend that practitioners using models with discrete parameters
consider marginalisation if more efficiency is desired, and implement their models using Stan rather
than JAGS.

7 Example usage

To demonstrate rater we use two example datasets.

The first dataset is taken from the original paper introducing the Dawid–Skene model (Dawid
and Skene 1979). The data consist of ratings, on a 4-point scale, made by five anaesthetists of patients’
pre-operative health. The ratings were based on the anaesthetists assessments of a standard form
completed for all of the patients. There are 45 patients (items) and four anaesthetists (raters) in total.
The first anaesthetist assessed the forms a total of three times, spaced several weeks apart. The other
anaesthetists each assessed the forms once. As in the Dawid–Skene paper, we will not seek to model
the effect of time on the ratings of the first anaesthetist.

First we load the rater package:

library(rater)

#> * The rater package uses `Stan` to fit bayesian models.
#> * If you are working on a local, multicore CPU with excess RAM please call:
#> * options(mc.cores = parallel::detectCores())
#> * This will allow Stan to run inference on multiple cores in parallel.

This will display information about altering options used by Stan to make best use of computational
resources on your machine. We can then load and look at a snippet of the anaesthesia data, which is
included in the package.

data("anesthesia", package = "rater")
head(anesthesia)
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#> item rater rating
#> 1 1 1 1
#> 2 1 1 1
#> 3 1 1 1
#> 4 1 2 1
#> 5 1 3 1
#> 6 1 4 1

These data are arranged in ‘long’ format where each row corresponds to a single rating. The first
column gives the index of the item that was rated, the second the index of the rater that rated the item
and the third the actual rating that was given. This layout of the data supports raters rating the same
item multiple times, as happens in the dataset. It is also the most convenient from the perspective of
fitting models but may not always be the optimal way to store or represent categorical rating data; see
Section 7.6 for an example using the ‘grouped’ data format.

7.1 Fitting the model

We can fit the Dawid–Skene model using MCMC by running the command:

fit_1 <- rater(anesthesia, dawid_skene())

This command will print the running output from Stan, providing an indication of the progress of
the sampler (for brevity, we have not shown this output here). To fit the model via optimisation, we
set the method argument to "optim":

fit_2 <- rater(anesthesia, dawid_skene(), method = "optim")

The second argument of the rater() function specifies the model to use. We have implemented
this similarly to the family argument in glm(), which can be passed as either a function or as a
character string. The above examples pass the model as a function. We could have instead passed it as
a string, for example:

fit_2 <- rater(anesthesia, "dawid_skene", method = "optim")

Either version will fit the Dawid–Skene model using the default choice of prior. The benefit of
passing the model as a function is that it allows you to change the prior, see Section 7.5.

7.2 Inspecting the fitted model

rater includes several ways to inspect the output of fitted models. These are summarised in Table 4,
and we illustrate many of them here. Firstly, we can generate a text summary:

summary(fit_1)

#> Model:
#> Bayesian Dawid and Skene Model
#>
#> Prior parameters:
#>
#> alpha: default
#> beta: default
#>
#> Fitting method: MCMC
#>
#> pi/theta samples:
#> mean 5% 95% Rhat ess_bulk
#> pi[1] 0.37 0.27 0.48 1 9094.91
#> pi[2] 0.41 0.30 0.52 1 8050.47
#> pi[3] 0.14 0.07 0.23 1 6864.65
#> pi[4] 0.07 0.03 0.14 1 6665.16
#> theta[1, 1, 1] 0.86 0.79 0.93 1 7728.01
#> theta[1, 1, 2] 0.10 0.05 0.17 1 7857.38
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Table 4: Methods to inspect fitted models and what values they return.

Function MCMC mode Optimisation mode

summary() Basic information about the fitted model Basic information about the fitted model
point_estimate() Posterior means for π and θ, posterior modes for z Posterior modes for all quantities
posterior_interval() Credible intervals for π and θ N/A
posterior_samples() MCMC draws for π and θ N/A
mcmc_diagnostics() MCMC convergence diagnostics for π and θ N/A
class_probabilities() Posterior distribution for z Posterior distribution for z conditional on the posterior modes for π and θ

#> theta[1, 1, 3] 0.02 0.00 0.05 1 5619.81
#> theta[1, 1, 4] 0.02 0.00 0.05 1 6283.33
#> # ... with 76 more rows
#>
#> z:
#> MAP Pr(z = 1) Pr(z = 2) Pr(z = 3) Pr(z = 4)
#> z[1] 1 1.00 0.00 0.00 0.00
#> z[2] 3 0.00 0.00 0.98 0.02
#> z[3] 2 0.38 0.62 0.00 0.00
#> z[4] 2 0.01 0.99 0.00 0.00
#> z[5] 2 0.00 1.00 0.00 0.00
#> z[6] 2 0.00 1.00 0.00 0.00
#> z[7] 1 1.00 0.00 0.00 0.00
#> z[8] 3 0.00 0.00 1.00 0.00
#> # ... with 37 more items

This function will show information about which model has been fitted and the values of the
prior parameters that were used. The displayed text also contains information about the parameter
estimates and posterior distributions, and the convergence of the sampler.

We can extract point estimates for any of the parameters or the latent classes via the point_estimate()
function. For example, the following will return the latent class with the highest posterior probability
(i.e., the posterior modes) for each item:

point_estimate(fit_1, "z")

#> $z
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#> 1 3 2 2 2 2 1 3 2 2 4 2 1 2 1 1 1 1 2 2 2 2 2 2 1 1
#> 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#> 2 1 1 1 1 3 1 2 2 3 2 2 3 1 1 1 2 1 2

The following will return the posterior means of the prevalence probabilities:

point_estimate(fit_1, "pi")

#> $pi
#> [1] 0.37432122 0.40674116 0.14406295 0.07487466

From the outputs above, we can see that the model has inferred that most patients have health
that should be classified as category 1 or 2 (roughly 40% each), and categories 3 and 4 being rarer
(about 14% and 7% respectively). Based on the point estimates, there are examples of patients from
each category in the dataset.

The function call point_estimate(fit1, "theta") will return posterior means for the parameters
in the error matrices (not shown here, for brevity). When used with optimisation fits, point_estimate()
will return posterior modes rather than posterior means for the parameters.

7.3 Inspecting posterior distributions

To represent uncertainty, we need to look beyond point estimates. The function posterior_interval()
will return credible intervals for the parameters. For example, 80% credible intervals for the elements
of the error matrices:
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head(posterior_interval(fit_1, 0.8, "theta"))

#> 10% 90%
#> theta[1, 1, 1] 0.805074415 0.91666962
#> theta[1, 1, 2] 0.055802572 0.15309851
#> theta[1, 1, 3] 0.001813371 0.03941595
#> theta[1, 1, 4] 0.001760845 0.03832660
#> theta[1, 2, 1] 0.026218408 0.10590753
#> theta[1, 2, 2] 0.791396057 0.90637035

The function posterior_samples() will return the actual MCMC draws. For example (here just
illustrating the draws of the π parameter):

head(posterior_samples(fit_1, "pi")$pi)

#>
#> iterations [,1] [,2] [,3] [,4]
#> [1,] 0.4830595 0.3579169 0.1254949 0.03352871
#> [2,] 0.2939839 0.3834238 0.2516929 0.07089945
#> [3,] 0.3636097 0.4148082 0.1309119 0.09067012
#> [4,] 0.3798456 0.3133947 0.2353036 0.07145615
#> [5,] 0.3639428 0.4291340 0.1760525 0.03087066
#> [6,] 0.3845465 0.3831443 0.1721656 0.06014354

Neither of the above will work for optimisation fits, which are limited to point estimates only. For
the latent classes, we can produce the probability distribution as follows:

head(class_probabilities(fit_1))

#>
#> [,1] [,2] [,3] [,4]
#> 1 9.999994e-01 1.340790e-07 2.916232e-08 4.521956e-07
#> 2 8.469190e-08 2.570243e-05 9.773942e-01 2.257999e-02
#> 3 3.823085e-01 6.171346e-01 1.075246e-04 4.493620e-04
#> 4 5.252130e-03 9.942742e-01 3.418545e-04 1.318565e-04
#> 5 2.473083e-07 9.999633e-01 3.338995e-05 3.062785e-06
#> 6 1.674456e-06 9.993819e-01 5.813534e-04 3.502596e-05

This works for both MCMC and optimisation fits. For the former, the output is the posterior
distribution on z, while for the latter it is the distribution conditional on the point estimates of the
parameters (π and θ).

7.4 Plots

It is often easier to interpret model outputs visually. Using rater, we can plot the parameter estimates
and distribution of latent classes.

The following command will visualise the posterior means of the error rate parameters, with the
output shown in Figure 2:

plot(fit_1, "raters")

We can see high values along the diagonals of these matrices, which indicates that each of the
5 anaesthetists is inferred as being fairly accurate at rating pre-operative health. Looking at the
non-diagonal entries, we can see that typically the most common errors are 1-point differences on the
rating scale.

The following command visualises the latent class probabilities, with the output shown in Figure
3:

plot(fit_1, "latent_class", item_index = c(2, 3, 12, 36, 38))
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Figure 2: Visual representation of the inferred parameters in the error matrices (θ) for the Dawid–Skene
model fitted via MCMC to the anaesthesia dataset. The values shown are posterior means, with each
cell shaded on a gradient from white (value close to 0) to dark blue (value close to 1).
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Figure 3: Visualisation of the inferred probability of each latent class, for a selected subset of items, for
the Dawid–Skene model fitted via MCMC to the anaesthesia dataset.
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Figure 4: Visual representation of the inferred parameters in the error matrices (θ) for the Dawid–Skene
model fitted via optimisation to the anaesthesia dataset. Compare with Figure 2, which used MCMC
instead of optimisation.

For the purpose of illustration, for this plot we have selected the 5 patients with the greatest
uncertainty in their pre-operative health (latent class). The other 40 patients all have almost no
posterior uncertainty for their pre-operative health. Thus, suppose we wished to use the model to
infer the pre-operative health by combining all of the anaesthetists’ ratings, we can do so confidently
for all but a handful of patients.

The same output for the models fitted via optimisation rather than MCMC (using fit_2 instead of
fit_1) are shown in Figure 4 and Figure 5. We can see that this estimation method leads to the same
broad conclusions, however the optimisation-based estimates have considerably less uncertainty: they
are typically closer to 0 or 1. This behaviour reflects the fact that optimisation-based inference will
usually not capture the full uncertainty and will lead to overconfident estimates. Thus, we recommend
using MCMC (which we have set as the default).

While it is typically of less interest, it is also possible to visualise the prevalence estimates, together
with credible intervals, using the following command (see output in Figure 6):

plot(fit_1, "prevalence")

7.5 Different models and priors

The second argument to the rater() function specifies what model to use, including details of the
prior if not using the default one. This gives a unified place to specify both the model and prior.

For example, this is how to set a different prior using the Dawid–Skene model:

diff_alpha_fit <- rater(anesthesia, dawid_skene(alpha = rep(10, 4)))

When specifying the β hyper-parameters for the Dawid–Skene model, the user can either specify a
single matrix or a 3-dimensional array. If only a matrix specified, it will be interpreted as the hyper-
parameter values for all raters. This is useful in the common situation where the overall quality of the
raters is known but there is no information on the quality of any specific rater. When a 3-dimensional
array is passed, it is taken to specify the hyper-parameters for each of the raters (i.e., a separate matrix
for each rater). This is useful when prior information about the quality of specific raters is available,
for example when some ‘raters’ are diagnostic tests with known performance characteristics.

This is how to use the class-conditional Dawid–Skene model (with default prior):

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 110

0

0.02

0

0

0

0

0.98

1

0

1

1

0

0

1

0

0

0

0

0

038

36

12

3

2

1 2 3 4
Latent Class

Ite
m

Figure 5: Visualisation of the inferred probability of each latent class, for a selected subset of items, for
the Dawid–Skene model fitted via optimisation to the anaesthesia dataset. Compare with Figure 3,
which used MCMC instead of optimisation.
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Figure 6: Visualisation of the inferred population prevalence parameters, with 90% credible intervals,
for the Dawid–Skene model fitted to the anaesthesia dataset.
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Figure 7: Visual representation of the inferred parameters in the error matrices (θ) for the class-
conditional Dawid–Skene model fitted via MCMC to the anaesthesia dataset. Compare with Figure 2,
which used the standard Dawid–Skene model.

diff_model_fit <- rater(anesthesia, class_conditional_dawid_skene())

Compared with the Dawid–Skene model, the latter uses error matrices with the constraint that all
off-diagonal entries must be the same. We can visualise the θ parameter using the following command
(output in Figure 7) and see that all off-diagonal elements are indeed equal:

plot(diff_model_fit, "theta")

7.6 Using grouped data

The second example dataset is taken from Espeland and Handelman (1989). It consists of 3,689 binary
ratings, made by 5 dentists, of whether a given tooth was healthy or had caries/cavities. The ratings
were performed using X-ray only, which was thought to be more error-prone than visual/tactile
assessment of each tooth (see Handelman et al. (1986) for more information and a description of the
wider dataset from which these binary ratings were taken).

data("caries", package = "rater")
head(caries)

#> rater_1 rater_2 rater_3 rater_4 rater_5 n
#> 1 1 1 1 1 1 1880
#> 2 1 1 1 1 2 789
#> 3 1 1 1 2 1 43
#> 4 1 1 1 2 2 75
#> 5 1 1 2 1 1 23
#> 6 1 1 2 1 2 63

This is an example of ‘grouped’ data. Each row represents a particular ratings ‘pattern’, with the
final column being a tally that records how many instances of that pattern appear in the data. rater
accepts data in either ‘long’, ‘wide’ or ‘grouped’ format. The ‘long’ format is the default because it can
represent data with repeated ratings. When available the ‘grouped’ format can greatly speed up the
computation of certain models and is convenient for datasets that are already recorded in that format.
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Figure 8: Visual representation of the inferred parameters in the error matrices (θ) for the Dawid–Skene
model fitted via MCMC to the caries dataset.

The ‘wide’ format doesn’t provide any computational advantages but is a common format for data
without repeated ratings and so is provided for convenience.

Here’s how we fit the model to grouped data (note the data_format argument):

fit3 <- rater(caries, dawid_skene(), data_format = "grouped")

From there, we can inspect the model fit in the same way as before. For example (output shown in
Figure 8):

plot(fit3, "raters")

The first 4 dentists are highly accurate at diagnosing healthy teeth (rating = 1), but less so at
diagnosing caries (rating = 2). In contrast, the 5th dentist was much better at diagnosing caries than
healthy teeth.

7.7 Convergence diagnostics

A key part of applied Bayesian statistics is assessing whether the MCMC sampler has converged on
the posterior distribution. To summarise the convergence of a model fit using MCMC, rater provides
the mcmc_diagnostics() function.

head(mcmc_diagnostics(fit_1))

#> Rhat ess_bulk
#> pi[1] 0.9997012 9094.906
#> pi[2] 1.0009095 8050.465
#> pi[3] 1.0000406 6864.648
#> pi[4] 1.0021824 6665.159
#> theta[1, 1, 1] 1.0013982 7728.007
#> theta[1, 1, 2] 1.0011678 7857.378

This function calculates and displays the R̂ statistic (Rhat) and bulk effective sample size (ess_bulk)
for all of the π and θ parameters. Users can then check for the convergence of specific parameters
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Figure 9: A trace plot for the π1 parameter from the Dawid–Skene model fitted via MCMC to the
anaesthesia dataset.

by applying standard rules, such as considering that convergence has been reached for a specific
parameter if it’s R̂ < 1.01 (Vehtari et al. 2021).

Users wishing to calculate other metrics, or produce convergence visualisations such as trace plots,
can either extract the underlying Stan model from the rater fit using the get_stanmodel() function, or
convert the fit into a mcmc.list from the coda package using the as_mcmc.list() function. Functions
in the rstan and coda packages will then allow visualisation based assessment of convergence and the
calculation of other, more advanced, diagnostics.

For example, the following code uses rstan to draw the trace plot (shown in Figure 9) for one
of the parameters from the Dawid–Skene model fitted to the anaesthesia data. We can see that the
four chains show good mixing. The trace plots for the other parameters (not shown here) are similar,
indicating that the MCMC sampling procedure has converged.

stan_fit <- get_stanfit(fit_1)
rstan::traceplot(stan_fit, pars = "pi[1]")

7.8 Model assessment and comparison

Finally, rater provides facilities to assess and compare fitted models. First, it provides the posterior_predict()
function to simulate from the posterior predictive distributions of all the models implemented in rater.
The simulated data can then be used, for example, to perform posterior predictive checks. These
checks compare the data simulated from the fitted model to the observed data. A number of datasets
are simulated from the posterior predictive distribution and a summary statistic is calculated for
each dataset. The same summary statistic is calculated on the observed dataset and is compared to
the distribution of simulated statistics. A large discrepancy between the simulated statistics and the
observed statistic indicates possible model misspecification.

To illustrate this functionality, we consider assessing the fit of the Dawid–Skene model to the anaes-
thesia dataset. In this example, we simulate 1,000 datasets from the posterior predictive distribution,
and use the proportion of the ratings that are class 2 as a statistic to summarise each dataset.

class2prop <- function() {
simdata <- posterior_predict(fit_1, anesthesia[, 1:2])
sum(simdata$rating == 2) / nrow(simdata)

}
ppc_statistics <- replicate(1000, class2prop())
head(ppc_statistics)

#> [1] 0.5587302 0.4507937 0.4126984 0.4190476 0.4666667 0.2539683
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Figure 10: An example of a posterior predictive check for the Dawid–Skene model fitted via MCMC to
the anaesthesia dataset. Shown is a histogram of 1,000 simulated datasets from the posterior predictive
distribution, each summarised by the proportion of ratings that are class 2. The vertical black line
shows the proportion of ratings that are class 2 in the original dataset, for comparison against the
histogram.

We can then graphically compare the distribution of these statistics to the value of the same statistic
applied to the anaesthesia dataset. The following commands will create such a plot (shown in Figure
10):

ggplot(data.frame(prop_class_two = ppc_statistics), aes(prop_class_two)) +
geom_histogram(binwidth = 0.01, fill = "steelblue", colour = "black") +
geom_vline(xintercept = sum(anesthesia$rating == 2) / nrow(anesthesia),

colour = "black", linewidth = 2) +
theme_bw() +
coord_cartesian(xlim = c(0.1, 0.6)) +
labs(
x = "Proportion of class 2 ratings",
y = "Count"

)

The statistic calculated on the anaesthesia dataset lies towards the centre of the distribution of
statistics calculated from datasets drawn from the posterior predictive distribution. This is consistent
with the model fitting the data well. (This is an illustrative example only. A more comprehensive set
of such comparisons should be conducted before concluding that the model adequately describes the
data.)

Second, rater implements the functions loo() and waic() to provide model comparison metrics us-
ing the loo package. The function loo() calculates an approximation to leave-out-one cross-validation,
a measure of model performance using Pareto Smoothed Importance Sampling (Vehtari, Gelman, and
Gabry 2017). The function waic() calculates measures related to the Widely Applicable Information
Criterion (Watanabe 2013). Because rater fits models in a Bayesian framework, information criteria
such as the AIC and BIC are not implemented.

In the context of rater, model comparison is only possible between the different implemented
models, not between the same model with different parameter values or included covariates, as is
more commonly the case. For this reason, considerations of data size and what is known about the
characteristics of the raters should also be taken into account when making such choices, in addition
to the output of loo() and waic().
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To briefly illustrate some of this functionality, we compare the standard Dawid–Skene model to
the class-conditional one.

loo(fit_1)

#>
#> Computed from 4000 by 45 log-likelihood matrix
#>
#> Estimate SE
#> elpd_loo -233.7 16.9
#> p_loo 19.8 2.6
#> looic 467.5 33.9
#> ------
#> Monte Carlo SE of elpd_loo is 0.1.
#>
#> Pareto k diagnostic values:
#> Count Pct. Min. n_eff
#> (-Inf, 0.5] (good) 43 95.6% 734
#> (0.5, 0.7] (ok) 2 4.4% 497
#> (0.7, 1] (bad) 0 0.0% <NA>
#> (1, Inf) (very bad) 0 0.0% <NA>
#>
#> All Pareto k estimates are ok (k < 0.7).
#> See help('pareto-k-diagnostic') for details.

loo(diff_model_fit)

#>
#> Computed from 4000 by 45 log-likelihood matrix
#>
#> Estimate SE
#> elpd_loo -245.7 18.1
#> p_loo 10.3 1.2
#> looic 491.3 36.2
#> ------
#> Monte Carlo SE of elpd_loo is 0.1.
#>
#> All Pareto k estimates are good (k < 0.5).
#> See help('pareto-k-diagnostic') for details.

loo_compare(loo(fit_1), loo(diff_model_fit))

#> elpd_diff se_diff
#> model1 0.0 0.0
#> model2 -11.9 3.2

From these results, we see that both models fit the data well, with the class-conditional model
being slightly preferred.

8 Summary and discussion

Rating procedures, in which items are sorted into categories, are subject to both classification error
and uncertainty when the categories themselves are defined subjectively. Data that results from these
types of tasks require a proper statistical treatment if: (1) the population frequencies of the categories
are to be estimated with low bias, (2) items are to be assigned to these categories reliably, and (3) the
agreement of raters is to be assessed. To date there have been few options for practitioners seeking
software that implements the required range of statistical models. The R package described in this
paper, rater, provides the ability to fit Bayesian versions of a variety of statistical models to categorical
rating data, with a range of tools to extract and visualise parameter estimates.

The statistical models that we have presented are based on the Dawid–Skene model and recent
modifications of it including extensions, such as the hierarchical Dawid–Skene model where the rater-
specific parameters are assumed to be drawn from a population distribution, and simplifications that,
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for example, assume exchangeable raters with identical performance characteristics (homogeneous
Dawid–Skene), or homogeneity criteria where classification probabilities are identical regardless of
the true, underlying category of an item (class-conditional Dawid–Skene).

We provided: (1) an explanation of the type of data formats that categorical ratings are recorded
in, (2) a description of the construction and implementation of the package, (3) a comparison of our
package to other existing packages for fitting latent class models in R, (4) an introduction to the user
interface, and (5) worked examples of real-world data analysis using rater.

We devoted an entire section to motivating, deriving and explaining the use of a marginalised
version of the joint posterior probability distribution to remove dependence on the unknown value of
the true, underlying rating category of an item. This is necessary because the No-U-Turn Sampler, the
main MCMC algorithm used in Stan, relies on computing derivatives with respect to all parameters
that must, therefore, be continuously-valued. The technique involves the use of conditional expectation
and is a special case of a more general technique of conditioning or ‘Rao–Blackwellization’, the process
of transforming an estimator using the Rao–Blackwell theorem to improve its efficiency.

Our package was developed with the classification of medical images in mind, where there may
be a large number of images but typically only a small number of possible categories and a limited
number of expert raters. The techniques proposed based on extensions of the Dawid–Skene model
readily extend to scenarios where the datasets are much larger, or where the raters behave erratically
(cannot be relied on to rate correctly more frequently than they rate incorrectly) or are antagonistic
(deliberately attempt to allocate items to a category not favoured by the majority of raters).

One possible extension of the Dawid–Skene model is to add item- and rater-specific covariates.
These covariates would encode the difficulty of items and the expertise (or lack thereof) of the
raters. This extension is particularly attractive as it would partially alleviate the strong assumption of
independence conditional on the latent class, replacing it with the weaker assumption of independence
conditional on the latent class and the covariates. Unfortunately, these types of models would contain
many more parameters than the original Dawid–Skene model making them difficult to fit, especially
when used with relatively small datasets common in the context of rating data in medical research.
Therefore, future methodological research is needed before these models can be included in the rater
package. Latent class models with covariates can be fitted, although only in a frequentist framework,
using the R package poLCA.

9 Computational details

The results in this paper were obtained using R 4.2.2 (R Core Team 2021) and the following packages:
coda 0.19.4 (Plummer et al. 2006), ggplot2 3.4.3 (Wickham 2016), knitr 1.45 (Xie 2014, 2015, 2023), loo
2.6.0 (Vehtari et al. 2023), rater 1.3.1 (Pullin and Vukcevic 2023), rjtools 1.0.12 (O’Hara-Wild et al. 2023),
rmarkdown 1.0.12 (Xie, Allaire, and Grolemund 2018; Xie, Dervieux, and Riederer 2020; Allaire et al.
2023), rstan 2.26.23 (Stan Development Team 2023). R itself and all packages used are available from
the Comprehensive R Archive Network (CRAN).
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