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TwoSampleTest.HD: An R Package for the
Two-Sample Problem with
High-Dimensional Data
by Marta Cousido-Rocha and Jacobo de Uña-Álvarez

Abstract The two-sample problem refers to the comparison of two probability distributions via two
independent samples. With high-dimensional data, such comparison is performed along a large
number p of possibly correlated variables or outcomes. In genomics, for instance, the variables may
represent gene expression levels for p locations, recorded for two (usually small) groups of individuals.
In this paper we introduce TwoSampleTest.HD, a new R package to test for the equal distribution of
the p outcomes. Specifically, TwoSampleTest.HD implements the tests recently proposed by (Cousido-
Rocha, Uña-Álvarez, and Hart 2019) for the low sample size, large dimensional setting. These tests
take the possible dependence among the p variables into account, and work for sample sizes as small
as two. The tests are based on the distance between the empirical characteristic functions of the two
samples, when averaged along the p locations. Different options to estimate the variance of the test
statistic under dependence are allowed. The package TwoSampleTest.HD provides the user with
individual permutation p-values too, so feature discovery is possible when the null hypothesis of equal
distribution is rejected. We illustrate the usage of the package through the analysis of simulated and
real data, where results provided by alternative approaches are considered for comparison purposes.
In particular, benefits of the implemented tests relative to ordinary multiple comparison procedures
are highlighted. Practical recommendations are given.

1 Introduction

One of the most important questions in modern statistics is how to efficiently deal with the low sample
size, high dimensional setting, in which a large number p of variables are measured for a relatively
small number of individuals. This type of high-dimensional data arises in many different areas of
science, such as genetics, medicine, pharmacy and social sciences. In microarray data, for example, the
variables typically represent the expression levels of a large set of genes. In such a context, a usual
goal is to compare the distributions of the gene expression levels for individuals with two different
tumour types. Hence, a formal two-sample test in the low sample size and large dimension setting is
required. More precisely, the aim is to test for the equality of the p marginal distributions for the two
groups. In other words, one can regard the null hypothesis as the intersection of the p null hypotheses
corresponding to each of the p locations (genes).

In the majority of examples with high-dimensional data the large number of variables or outcomes
are not independent. In genetics, for example, dependency among expression levels of different
genes on the same individual is often observed. Several two-sample tests have been developed for
the high-dimensional setting under dependence; see for instance Biswas and Gosh (2014), Mondal
et al. (2015), Biswas et al. (2014), Liu et al. (2015) and Wei et al. (2016). Nevertheless, all of these
proposals have at least one of the following disadvantages: (1) the null hypothesis asserts that the
p-variate distribution is the same for the two groups being compared instead of testing the equality of
the univariate marginals; (2) the dependence structure is not considered or is too restrictive; (3) the
theoretical results are only suitable for normally distributed data. Besides, to the best of our knowledge
none of these methods are available in R. While gaps (2) and (3) are limiting in applications, issue (1) is
more fundamental; note that usually the focus is more on the marginal outcome distribution than on
the within-group correlation structure. Therefore, new ideas are needed.

Recently, Cousido-Rocha et al. (2019) overcame the aforementioned flaws by introducing a non-
parametric omnibus test that, with focus on the marginal distributions, included the dependent case
through mixing conditions (Doukhan, 1995). This type of dependence, being fairly general, has been
frequently used in the goodness-of-fit testing literature; see for example Neumann and Paparoditis
(2000) and Dehling et al. (2015). Mixing conditions imply that the dependence between the variables
softens at distant locations. In genetics, for instance, this means that the correlation among expression
levels of different genes lessens as the distance between the biological function of the genes increases,
which is a flexible, realistic assumption for such applications.

In this paper we introduce the TwoSampleTest.HD R package which implements the tests proposed
in Cousido-Rocha et al. (2019) for testing the (global, or intersection) null hypothesis of equality of the
p univariate marginals in the two populations. The basic test statistic is the L2-distance between the
empirical characteristic functions pertaining to the two groups, when averaged along the p locations.
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Several approaches to estimate the variance of the test statistic under dependence lead then to slightly
different procedures. At the same time, TwoSampleTest.HD provides the user with permutation
p-values for each location. When the null hypothesis is rejected, these p-values can be used to rank
the locations according to their contribution to the global significance, or for feature selection by
performing multiple testing (Dudoit and van der Laan, 2007). Finally, a different test statistic for
the global null hypothesis based on the average of the permutation p-values is implemented within
TwoSampleTest.HD. All of these procedures are fully illustrated in this piece of work.

Alternative nonparametric approaches for the two-sample problem include Kolmogorov-Smirnov
and Cramér-von Mises tests. These methods compare the empirical distribution functions, rather than
the empirical characteristic functions, of the two groups. Empirical characteristic functions are related
to smooth tests, which have been found preferable to distribution-based tests in many settings due to
their greater power (Martínez-Camblor and de Uña-Álvarez, 2009). More importantly, whenever a test
is performed locally and repeatedly, multiple comparison procedures (MCP) are needed in order to
keep the type I error under control. Unfortunately, such approach may not be optimal when testing for
different distributions in a global way. This relays the fact that feature discovery is more difficult than
testing for the intersection null, and explains why the test based on permutation p-values implemented
in TwoSampleTest.HD can exhibit a power lower than that of the averaged L2-type tests within the
package. Efforts to efficiently summarize local p-values for testing an intersection null hypothesis
include the so-called Higher Criticism (HC) approach, see Zhang et al. (2020) and references therein;
however, the performance of HC may be dramatically affected by dependence (Hall and Jin, 2008).
Further discussion of these issues is provided within this paper on the basis of empirical results.

The rest of the paper is organized as follows. In Section 2.2 the methodological background is
introduced, and the tests proposed by Cousido-Rocha et al. (2019) are presented in detail. In Section
2.3 the TwoSampleTest.HD package is described, and its usage is illustrated through the analysis of
simulated data and microarray data derived from a hereditary breast cancer study. Finally, Section 2.4
reports the main conclusions of this work.

2 Methodology

In this section we describe the four two-sample tests proposed by Cousido-Rocha et al. (2019), which
are implemented in the TwoSampleTest.HD package. Three of the methods are based on the average
of p individual L2-distances between the empirical characteristic functions computed from the two
samples. The three versions of this test differ in the way in which the variance is estimated; in all
the cases, the variance estimate takes the possible dependence among the p outcomes into account.
The fourth method is based on the average of the permutation p-values derived for the individual
L2-distances.

We consider two random matrices X =
[
X1, . . . , Xp

]T and Y =
[
Y1, . . . , Yp

]T of respective di-
mensions p × n and p × m, where Xk = (Xk1, . . . , Xkn) and Yk = (Yk1, . . . , Ykm), k = 1, . . . , p, are
the sample values for the p target variables; the sample sizes are n and m. The variables Xk and Yk
may be discrete or continuous; normality is not assumed in the continuous case. Given sequences
of characteristic functions {CX1 , CX2 , . . . , CXp} and {CY1 , CY2 , . . . , CYp}, it is assumed that Xk1, . . . , Xkn
and Yk1, . . . , Ykm are independent random samples from CXk and CYk , respectively. Observations Xij
and Xsl for s ̸= i can be dependent in our framework, and similar comments apply to the components
of Y.

The focus is in testing for the intersection null hypothesis

H0 =
p⋂

k=1

H0k,

where, for 1 ≤ k ≤ p, H0k states that CXk and CYk coincide. As indicated by Cousido-Rocha et al.
(2019), the L2-distance between the empirical characteristic functions of Xk and Yk is given by
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where b ∈ R+. The first term in Jk is an intra-sample parameter estimate for the sample Xk and
the second term is an intra-sample parameter estimate for the sample Yk, whereas the third term
is an inter-samples parameter estimate, since Xkj and Ykℓ come from different samples, Xk and Yk,
respectively.

We consider the test statistic Tp = ∑
p
k=1 Jk/

√
p in order to test for H0. Cousido-Rocha et al. (2019)

introduced two variance estimators for Tp when (Xk, Yk)k∈{1,...,p} comes from a strictly stationary
sequence (Xk, Yk)k∈N. The first variance estimator σ̂S is based on the spectral density estimate.
Indeed, the problem of estimating the variance of a sample mean based on dependent data is the
same as that of estimating the spectrum of the process at frequency zero. Hence, Var(Tp) can be
approximated through the classical estimator of the spectrum of the process at frequency zero. It holds

that Tp/σ̂S
D−→ N (0, 1) as p tends to ∞. Since the expectation of Tp is strictly positive under the

alternative hypothesis, the test is one-sided, and rejects H0 at nominal level α when Tp/σ̂S is larger
than the 1 − α quantile of the standard normal distribution. We refer to this test as spectral test.

The second variance estimator is derived from the block bootstrap procedure proposed by Carlstein
(1996) to estimate the variance of a general statistic computed from a strictly stationary α-mixing
sequence (see Bosq, 1998). More precisely, this resampling method defines no overlapping blocks
of length l on the sequence (Jk)k∈{1,...,p} and computes the statistic Tp in each of the blocks, with l
being the maximum lag of significant autocorrelation on the (Jk)k∈{1,...,p} sequence according to the
procedure in Politis and White (2004). Finally the block bootstrap variance estimator σ̂B is simply
defined as the sample variance of the values of Tp in each of the block. As before, the standardized
version of Tp based on σ̂B, is asymptotically distributed as a N (0, 1) random variate. Hence, the block
bootstrap test rejects the null hypothesis when Tp/σ̂B is larger than the 1 − α quantile of the standard
normal distribution.

Cousido-Rocha et al. (2019) also introduced an alternative variance estimator suitable for possibly
non-stationary sequences based on U-statistics theory. More precisely, the variance of Tp can be
written as the sum of two terms; the first one is the average of the variance of the statistics (Jk)k∈{1,...,p},
whereas the second one comprises the covariance terms arising from such sequence. The first term
can be estimated by replacing the unknown theoretical expectations by their corresponding sample
means; on the other hand, an unbiased estimator for the covariance term Cov(Jj, Jj+k) is given by
Jj Jj+k, j = 1, . . . , p − l, k = 1, . . . , l. The standardized version of Tp based on such variance estimator,
Tp/σ̂U , is asymptotically distributed as a N (0, 1) as p → ∞. Hence, the U-statistic test rejects the null
hypothesis when Tp/σ̂U is larger than the 1 − α quantile of the standard normal distribution.

Interestingly, the test statistics Jk can be used locally to test for the null hypotheses H0k that Xk1
and Yk1 have the same distribution, 1 ≤ k ≤ p. Since the common density under H0k is unknown, a
permutation test can be used to calibrate the null distribution of Jk. The application of the permutation
test to each of the H0k, k ∈ {1, . . . , p} yields a set of p-values {P1, . . . , Pp}. Cousido-Rocha et al. (2019)
proposed a test statistic based on the average of the permutation p-values, P̄ = ∑

p
k=1 Pk/p. The idea

of combining the individual p-values to obtain a global test statistic is old, dating to Fisher (1934);
Stouffer et al. (1949) and others. The statistic P is standardized taking into account that its expectation
is (N + 1)/2N, with N being the number of permutations that lead to a different value of the statistic
Jk, and using a variance estimator based on the spectral analysis. The standardized version of P̄, say
Tpv

p =
√

p (P̄ − (N + 1)/(2N))/σ̂P, is asymptotically distributed as a standard normal as p → ∞. It is
assumed that, under H0, (Xk, Yk)k∈{1,...,p} comes from a strictly stationary and strongly mixing process
(Xk, Yk)k∈N. The null hypothesis is rejected when Tpv

p is smaller than the α quantile of the standard
normal distribution. One advantage of the permutation p-values is that, when the intersection null
is rejected, they can be used to rank the null hypotheses H0k according to their contribution to the
significance. In genomics, for instance, this ranking may reveal the genes which express differently
between two tumors. Finally, a formal MCP can be applied to the set of permutation p-values to get
rigorous conclusions on the individual nulls H0k, k ∈ {1, . . . , p}. Note that the ranking provided by the
p-values is related, but not equal, to the ranking based on the Jk’s; this is because the target outcome
may be differently distributed along the p locations, and Jk is not distribution free. The situation for the
Hedenfalk data example in Section 2.3.1 is depicted in Figure 1; the shift of the p-values distribution
compared to uniform suggests that some genes are differently expressed in the two groups considered.

For the implementation of the aforementioned test statistics the parameter b in (1), which plays the
role of a smoothing parameter or bandwidth, is set to b̂ = 1.144spool ((n + m)/2)−1/5 , where s2

pool is

the average of
(
(n − 1)s2

Xk
+ (m − 1)s2

Yk
)
)

/(n + m − 2), k = 1, . . . , p, and s2
Xk

and s2
Yk

are the sample
variances of Xk and Yk, respectively, k = 1, . . . , p. When the permutation p-values of the statistics Jk
are to be computed, a local bandwidth can be used instead; specifically, the local bandwidth for Jk

is given by b̂k = 1.144spool ((n + m)/2)−1/5 , with s2
pool =

(
(n − 1)s2

Xk
+ (m − 1)s2

Yk
)
)

/(n + m − 2),

and s2
Xk

and s2
Yk

are the sample variances of Xk and Yk.
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Figure 1: Left: p-values vs test statistics Jk. Right: histogram of the p-values. Hedenfalk data.

Spectral Block bootstrap
p/n, m 2, 2 5, 5 10, 10 2, 2 5, 5 10, 10
100 0.01 0.02 0.01 0.01 0.02 0.03
500 0.03 0.03 0.06 0.03 0.05 0.10
1000 0.07 0.08 0.11 0.07 0.07 0.12

U-statistic Permutation
p/n, m 2, 2 5, 5 10, 10 2, 2 5, 5 10, 10
100 0.01 0.11 0.58 0.03 0.89 1182.40
500 0.11 0.57 2.51 0.015 3.55 5122.53
1000 0.24 1.04 4.87 0.27 8.13 8006.70

Table 1: Execution time (in seconds) for the several versions of the proposed two-sample test. Simu-
lated data with dimension p and sample sizes n and m.

3 Package TwoSampleTest.HD in practice

In this section the main features of TwoSampleTest.HD package are described. We also consider two
examples with high-dimensional data in order to explain how to use TwoSampleTest.HD in practice.
The first example refers a large number of gene expression levels measured on two groups of patients
with breast cancer, classified according to BRCA mutation type. The second example is a simulation
scenario in which the target outcome is differently distributed in the two groups for 10% of the p
locations. This second example serves in particular to illustrate the smaller power of ordinary MCP
when compared to the tests based on the averaged L2-distances between the empirical characteristic
functions of the two groups.

3.1 Hedenfalk data

In this subsection we consider the microarray data set of hereditary breast cancer in Hedenfalk et al.
(2001). The data set consists of p = 3226 logged gene expression levels measured on n = 7 patients
with breast tumors having BRCA1 mutations and on m = 8 patients with breast tumors having BRCA2
mutations. The goal is to test the null hypothesis that the distribution of the p genes is the same for
the two types of tumor, BRCA1 tumor and BRCA2 tumor. Since the example is merely illustrative,
we only consider the first 1000 genes in order to save computational time. With 1000 locations, the
execution time is reduced to < 1 second for the block bootstrap and spectral tests, to < 5 seconds for
the U-statistic test and to 9 minutes for the permutation p-values test, in a laptop provided with a
i5-1135G7 CPU. The waiting time of the permutation test is relatively long since n = 7 and m = 8
lead to 6435 permutations which must be carried out for each of the p = 1000 genes. For additional
inspection, in Table 1 execution times for simulated data with several dimensions p and sample sizes
n and m are reported.
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The main function of the package is TwoSampleTest.HD. This function computes, among other
things, the value of the selected test statistic and the corresponding p-value. The list of arguments of
TwoSampleTest.HD is given in Table 2. The required arguments are X and Y, matrices where each row
is one of the p-samples in the first group and second group, respectively; the other arguments have
a default value. When the user forgets to include the argument X or Y in the function, the following
message is returned:

Call:
TwoSampleTest.HD(X = X)
'us' method used by default
'global' bandwidth used by default
Error in ncol(Y) : argument "Y" is missing, with no default

Call:
TwoSampleTest.HD(Y= Y)
'us' method used by default
'global' bandwidth used by default
Error in ncol(X) : argument "X" is missing, with no default

With method="spect" the two-sample spectral test described in Section 2.2 is applied; the op-
tion "method=spect_ind" corresponds to a simplified version that pre-assumes the independence
among the outcomes. On the other hand, the options method="us" and method="us_ind" apply the
two-sample U-statistic test explained in Section 2.2 for dependent data and its simplification for
independent variables, respectively. The last option based on the average of the p individual statistics,
Jk, corresponding to each of the p variables is method="boot" which implements the two-sample
block bootstrap test (Section 2.2). Finally, the function also performs the alternative test based on the
average of the permutation p-values corresponding to the individual statistics Jk through the argument
method="perm". In our experience, the most powerful test for independent outcomes is the U-statistic
test, whereas under dependence the more powerful tests are the spectral and block bootstrap tests.
We also observed that the block bootstrap and spectral tests, which were developed assuming that
(Xk, Yk)k∈N is a strictly stationary process, performed well when stationarity is violated. The "us"
method has been defined as the default one.

When choosing method="perm", the sequence of permutation p-values is computed and reported.
On the other hand, the computation of the permutation p-values must be explicitly requested using
I.permutation.p.values=TRUE argument for the U-statistic, spectral or block bootstrap tests. As
mentioned, these individual p-values may be used to rank the outcomes according to their signifi-
cance. Argument b_I.permutation.p.values allows the user to select the bandwidth b. The option
b_I.permutation. p.values="global" computes a global bandwidth b̂ and uses it to evaluate the Jk’s,
whereas option b_I.permutation.p.values="individual" estimates the bandwidth for each variable
separately; see details in Section 2.2. The default option is b_I.permutation.p.values="global".
In Table 3 a summary of the results provided by the function TwoSampleTest.HD is given. The
I.statistics object contains the individual statistics Jk , k = 1, . . . , p described in the previous section,
while the I.permutation.p.values object reports the permutation p-values {P1, . . . , Pp}.

Hedenfalk data are available within Equalden.HD package (Cousido-Rocha and de Uña-Álvarez,
2022). In order to analyze this dataset, we load this package together with TwoSampleTest.HD
package. For the investigation of the possible dependence among the gene expression levels, we treat
the data of each patient as a time series, and we compute the sample autocorrelation function. For the
first lags the autocorrelation between genes was significantly different from zero, whereas it lessened
as the number of lags increased. The estimates of the autocorrelation were computed using the acf
function of the R package stats. On the basis of these results, the weak dependence assumption behind
the tests implemented in the TwoSampleTest.HD seems realistic. The four tests designed for weak
dependence (spectral test, U-statistic test, block bootstrap test and permutation test) can be performed
by using the following code lines:

> library(Equalden.HD)
> data("Hedenfalk")
> X=log(Hedenfalk[,1:7])
> Y=log(Hedenfalk[,8:15])
>
> X=X[1:1000,]
> Y=Y[1:1000,]
> library(TwoSampleTest.HD)
> res1 <- TwoSampleTest.HD(X, Y, method = "spect")
Call:

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=Equalden.HD
https://CRAN.R-project.org/package=stats


CONTRIBUTED RESEARCH ARTICLE 84

Usage of the function:
TwoSampleTest.HD(X, Y, method = c("spect",
"spect_ind", "boot", "us","us_ind", "perm"),
I.permutation.p.values = FALSE ,
b_I.permutation.p.values = c("global", "individual"))

X
A matrix where each row is one of the p-samples
in the first group.

Y
A matrix where each row is one of the p-samples
in the second group.

method
The two-sample test. By default the “us” method
is computed.

I.permutation.p.values

Logical. Default is FALSE. A variable indicating
whether to compute the permutation p-values or
not when the selected method is not “perm”.

b_I.permutation.p.values

The bandwidth method used to compute the
individual statistics on which are based the
permutation p-values.

Table 2: Usage and list of the arguments of the TwoSampleTest.HD function.

standardized statistic the value of the standardized statistic.

p.value the p-value for the test.

statistic the value of the statistic.

variance the value of the variance estimator.

p number of samples or populations.

n sample size in the first group.

m sample size in the second group.

method a character string indicating which two sample test is performed.

I.statistics the p individual statistics.

I.permutation.p.values the p individual permutation p-values.

data.name a character string giving the name of the data.

Table 3: Summary of the results reported by TwoSampleTest.HD function.

TwoSampleTest.HD(X = X, Y = Y, method = "spect")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 11.536, p-value < 2.2e-16

> res2 <- TwoSampleTest.HD(X, Y, method = "boot")
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "boot")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 11.515, p-value < 2.2e-16

> res3 <- TwoSampleTest.HD(X, Y, method = "us")
Call:
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TwoSampleTest.HD(X = X, Y = Y, method = "us")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 12.104, p-value < 2.2e-16

> res4 <- TwoSampleTest.HD(X, Y, method = "perm")
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "perm")
'global'bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = -10.955, p-value < 2.2e-16

The output of the function TwoSampleTest.HD shows that Tp/σ̂S = 11.536, Tp/σ̂B = 11.515,
Tp/σ̂U = 12.104 and Tpv

p = −10.955, whereas the corresponding p-values are almost zero. The
negative value of the Tpv

p statistic means that the average of the permutation p-values is lower than
the expected mean of their (uniform) null distribution. Hence, the null hypothesis is rejected; the
conclusion is that one or more genes are differently expressed depending on the tumor type. The
object derived from TwoSampleTest.HD function is a list which saves, as usual with R functions,
relevant information. Besides the standardized statistic and the p-value printed in the console when
running the function (as shown above), the list of saved objects comprises the value of the statistic
Tp (or

√
pP̄ if one runs the permutation test), the variance (σ̂S, σ̂B, σ̂U or σ̂P), the number of variables

(p), the sample sizes (n and m), the method used for the data analysis, and the values of the statistics
J1, . . . , Jp. Below, we display such information for the spectral test as an illustrative example. The
values of the statistics J1, . . . , Jp are plotted in Figure 2 instead of reporting them through the console.

> res1\$statistic
[1] 1.827471
> res1\$variance
[1] 0.02509699
> res1\$p
[1] 1000
> res1\$n
[1] 7
> res1\$m
[1] 8
> res1\$method
[1] "spect"
> library(ggplot2)
>
> data=data.frame(Jk=res1\$I.statistics,Genes=1:res1\$p)
> ggplot(data, aes(x=Genes, y=Jk)) +
+ geom_point(shape=21, col=8) + geom_rug()+ggtitle("Individual test statistics")

Since the null hypothesis is rejected for Hedenfalk data, the next natural aim is to identify which
genes are not equally distributed in both types of tumors. For this, we first rank the null hypothe-
ses H0i according to their contribution to the significance by using the sequence of permutation
p-values. This sequence has only been computed for the permutation test, since for the remaining
tests it is only computed when the argument I.permutation.p.values is equal to TRUE and, in our
previous applications of the tests such argument has not been specified hence the default option
I.permutation.p.values=FALSE has been used. Therefore, res4 is the unique object which has the
sequence of permutation p-values. Note that, since the argument b_I.permutation.p.values has not
been used, the default option b_I.permutation.p.values="global" has been considered, and then
the global b̂ has been employed to compute each one of the Jk, k = 1, . . . , p, for which the permutation
p-values are calculated. Below, the code used to determine which are the 10 genes of lowest p-values
is reported.

> pv=res4\$I.permutation.p.values
> order(pv)[1:10]
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Figure 2: The values of the statistics J1, . . . , Jp for the two-sample spectral test. Hedenfalk data.

[1] 556 733 952 955 445 555 914 963 118 157

Although the above list can be informative, any rigorous procedure should keep the type I error
under control. The p.adjust function, available within stats package, implements the well-known
Benjamini and Hochberg (1995) false discovery rate (FDR) controlling procedure. The application of
this method to the sequence of 1000 permutation p-values at 5% FDR level reports 13 discoveries (see
code lines below). Note that, although Benjamini and Hochberg (1995) has been initially studied for
independent p-values, subsequent research has shown that it remains valid under weaker assumptions.

> alpha=0.05
> sum(p.adjust(pv,method = "BH")<=alpha)
[1] 13

One interesting question is whether nonparametric two-sample test statistics alternative to Jk could
perform better in the multiple testing setting. As a by-product of their research, Cousido-Rocha et al.
(2021) proved through simulations that the Jk test statistic performs similarly or even better than other
well-known two-sample tests. For example, simulation results in the referred paper suggest that the
Kolmogorov–Smirnov test should not be used when the sample sizes are small and the differences
are other than location. For illustrative purposes, we have tested each one of the null hypothesis H0k,
k ∈ {1, . . . , p}, through Student’s t test, Wilcoxon test, Levene test and Kolmogorov- Smirnov test (see
Gibbons and Chakraborti, 1992 and Levene, 1960). Then, Benjamini and Hochberg (1995) has been
applied to the corresponding p-values sequence (code below).

> p=res1\$p;n=res1\$n; m=res1\$m
> pv_t.test=1:p
> pv_KS=1:p
> pv_Wilcoxon=1:p
> pv_Levene=1:p
>
> library(car)
> library(exactRankTests)
> library(coin)
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>
> for (i in 1:p){

+ pv_Wilcoxon[i]=wilcox.exact(X[i,],Y[i,])\$p.value
+ pv_t.test[i]=t.test(X[i,],Y[i,],var.equal = F)\$p.value
+ pv_KS[i]=ks.test(X[i,],Y[i,])\$p.value
+ pv_Levene[i]=leveneTest(c(X[i,],Y[i,]),
+ as.factor(c(rep(1,n),rep(2,m))))\$`Pr(>F)`[1]
+ }

> sum(p.adjust(pv_Wilcoxon,method = "BH")<=alpha)
[1] 13
> sum(p.adjust(pv_t.test,method = "BH")<=alpha)
[1] 1
> sum(p.adjust(pv_KS,method = "BH")<=alpha)
[1] 0
> sum(p.adjust(pv_Levene,method = "BH")<=alpha)
[1] 0

From results above it is seen that the Kolmogorov–Smirnov (KS) test is unable to provide any
discovery at 5% of FDR. However, these results should be taken with some caution since exact KS
p-values could not be computed by ks.test function due to the presence of ties in Hedenfalk data;
note that the asymptotic distribution of the KS test may be inaccurate for small sample sizes. The
lack of power of KS in the multiple testing setting has been pointed out in Cousido-Rocha et al. (2021)
too. Similarly as for KS, Levene test does not declare any gene as differently expressed in the two
tumor groups; this is not surprising, since differences between the two groups are mainly due to a
location shift (Hedenfalk et al., 2001). The number of discoveries of the t-test is very low (only one
rejection); on the contrary, Wilcoxon test provides as many discoveries as the Jk test statistic. In order
to better summarize the relative power of the several testing procedures, Figure 3 depicts the number
of rejections along a sequence of nominal levels for the FDR (α = 0.001, 0.002, . . . , 0.10). Interestingly,
Figure 3 supports previous comments on the poor performance of KS test.
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Figure 3: Number of rejections of Wilcoxon test, Kolmogorov-Smirnov test, t-test, Levene test and Jk
permutation test depending on the nominal FDR level. Hedenfalk data.
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3.2 Simulated data

We simulated p = 1000 independent variables with sample sizes n = m = 4 under the alternative
hypothesis. More precisely, the p samples in the first group (X) were generated in 4 blocks from the
following distributions, respectively: N(0, 1), N(0, 2), N(1, 1) and N(1, 2). In the second group (Y),
90% of the p samples were generated exactly as for X (true individual nulls), whereas for simulating
the remaining 10% of the samples the distributions were interchanged, with a location shift as result
(non-true individual nulls). To be specific, in the case X ∼ N(0, 1), the Y was generated from a N(1, 1),
and vice versa; when X ∼ N(0, 2), the Y was generated from a N(1, 2), and vice versa. The code for
the simulation is provided in Appendix .1.

Below, the two-sample tests implemented in TwoSampleTest.HD are applied to test the null
hypothesis that the distribution of each of the samples is the same in the groups. All of the tests reject
the null hypothesis. The results suggest that the simpler versions which make use of the indepen-
dence assumption, "spect_ind" and "us_ind", are slightly more powerful than their counterparts for
dependent data.

> TwoSampleTest.HD(X, Y, method = "spect")\$p.value
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "spect")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 2.2275, p-value = 0.01296

[1] 0.01295652
> TwoSampleTest.HD(X, Y, method = "spect_ind")\$p.value
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "spect_ind")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 2.2821, p-value = 0.01124

[1] 0.01124119
> TwoSampleTest.HD(X, Y, method = "boot")\$p.value
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "boot")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 2.2643, p-value = 0.01178

[1] 0.01177765
> TwoSampleTest.HD(X, Y, method = "us")\$p.value
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "us")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 2.3058, p-value = 0.01056

[1] 0.01056058
> TwoSampleTest.HD(X, Y, method = "us_ind")\$p.value
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "us_ind")
'global' bandwidth used by default
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A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 2.423, p-value = 0.007696

[1] 0.007695904
> res=TwoSampleTest.HD(X, Y, method = "perm")
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "perm")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = -2.2287, p-value = 0.01292

As done for Hedenfalk data, one can individually test for H0k, k ∈ {1, . . . , p}, at 5% level of
FDR by using the Jk statistic. In this case, the number of rejections is zero. The same occurs when
using the Wilcoxon test, the Kolmogorov-Smirnov test, the t-test, or the Levene test (see code lines
below). This highlights once again the need for global two-sample tests as those implemented in
TwoSampleTest.HD.

> pvalues=res$I.permutation.p.values
>
> alpha=0.05
>
> sum(p.adjust(pvalues,method = "BH")<=alpha)
[1] 0
>
>
>
> pv_t.test=1:p
> pv_KS=1:p
> pv_Wilcoxon=1:p
> pv_Levene=1:p
>
> library(car)
> library(exactRankTests)
> library(coin)
>
> for (i in 1:p){

+ pv_Wilcoxon[i]=wilcox.exact(X[i,],Y[i,])\$p.value
+ pv_t.test[i]=t.test(X[i,],Y[i,],var.equal = F)\$p.value
+ pv_KS[i]=ks.test(X[i,],Y[i,])\$p.value
+ pv_Levene[i]=leveneTest(c(X[i,],Y[i,]),
+ as.factor(c(rep(1,n),rep(2,m))))\$`Pr(>F)`[1]
+ }

>
> sum(p.adjust(pv_Wilcoxon,method = "BH")<=alpha)
[1] 0
> sum(p.adjust(pv_t.test,method = "BH")<=alpha)
[1] 0
> sum(p.adjust(pv_KS,method = "BH")<=alpha)
[1] 0
> sum(p.adjust(pv_Levene,method = "BH")<=alpha)
[1] 0

An interesting question is the necessary computation time for TwoSampleTest.HD. For the
simulated example, "spect" and "spect_ind" methods run in 0.16 and 0.15 seconds, respectively;
"boot" method in 0.15 seconds, "us" and "us_ind" methods in 2.91 and 2.86 seconds, respectively;
and, finally, the "perm" needed 4.55 seconds for running the analysis. The results shown in the current
example match the general performance of the main function within the package; the spectral and
block bootstrap tests are the most efficient from a computational point of view, followed by the
U-statistic test and finally by the permutation test. As we increased the number of variables or (more
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critically) the sample sizes, these differences in computational efficiency became more evident. On the
other hand, the simplified versions for independent data did not result in a visible reduction of the
run time.

4 Conclusions

Package TwoSampleTest.HD implements a two-sample test for the null hypothesis that all the
marginal distributions of the p-variate outcome of interest coincide on the two groups. The two-
sample test takes advantage of the large p, in the sense that it uses a null Gaussian distribution that
holds as p goes to infinity; interestingly however, in our experience the asymptotic approximation is
also correct for p as small as 20. On the other hand, the implemented test statistic is just an average of
the L2-type deviations between the empirical characteristic functions pertaining to the two samples
along the p margins. Each of these p deviations can be used to perform a local two-sample test through
the preliminary computation of permutation p-values. These permutation p-values can be used to
introduce an alternative testing procedure (also implemented in TwoSampleTest.HD), by using the
asymptotic null Gaussian distribution of their average as p grows. An interesting question here is if
this sequence of p-values can be used in another fashion to introduce a more powerful testing method.
In principle, standard multiple comparison procedures are not competitive, since they focus (not only
on the intersection null but also) on identifying the margins in which the two groups differ. However,
some multiple comparison procedures have been specifically designed to test for the intersection null,
and these methods could be competitive in our setting. This is an interesting open question at the time
of writing.

Summarizing, TwoSampleTest.HD package implements for the first time omnibus two-sample
tests for the high-dimensional setting under dependence. The package is user-friendly, and it is hoped
that it will serve the scientific community by providing a simple and powerful tool for the analysis of
high-dimensional data. Clear advice for a correct use of the package and fully illustrative examples
have been given.
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1 Appendix: Simulated data set code

The code employed for generating the described simulated data set in Section 2.3.2 can be found
below.

> n=m=4
> p=1000
>
> set.seed(123)
>
> p <- 1000
> n = m = 4
> inds <- sample(1:4, p, replace = TRUE)
> X <- matrix(rep(0, n * p), ncol = n)
> for (j in 1:p){

+ if (inds[j] == 1){
+ X[j, ] <- rnorm(n)
+ }

+ if (inds[j] == 2){
+ X[j, ] <- rnorm(n, sd = 2)
+ }

+ if (inds[j] == 3){
+ X[j, ] <- rnorm(n, mean = 1)
+ }

+ if (inds[j] == 4){
+ X[j, ] <- rnorm(n, mean = 1, sd = 2)
+ }

+ }
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> rho <- 0.1
> ind <- sample(1:p, rho * p)
> li <- length(ind)
> indsy <- inds
> for (l in 1:li){

+ if (indsy[ind[l]]==1){
+ indsy[ind[l]]=3
+ } else {
+ if (indsy[ind[l]]==2){

+ indsy[ind[l]]=4
+ } else {
+ if (indsy[ind[l]]==3){

+ indsy[ind[l]]=1
+ } else {
+ indsy[ind[l]] = 2
+ }

+ }
+ }

+ }
> Y <- matrix(rep(0, m * p), ncol = m)
> for (j in 1:p){

+ if (indsy[j] == 1){
+ Y[j,] <- rnorm(m)}

+ if (indsy[j] == 2){
+ Y[j, ] <- rnorm(m, sd = 2)
+ }

+ if (indsy[j]==3){
+ Y[j, ] <- rnorm(m, mean = 1)
+ }

+ if (indsy[j] == 4){
+ Y[j,] <- rnorm(m, mean = 1, sd = 2)
+ }

+ }
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