
CONTRIBUTED RESEARCH ARTICLE 26

SSNbayes: An R Package for Bayesian
Spatio-Temporal Modelling on Stream
Networks
by Edgar Santos-Fernandez, Jay M. Ver Hoef, James McGree, Daniel J. Isaak, Kerrie Mengersen, and
Erin E. Peterson

Abstract Spatio-temporal models are widely used in many research areas from ecology to epidemiology.
However, a limited number of computational tools are available for modeling river network datasets in
space and time. In this paper, we introduce the R package SSNbayes for fitting Bayesian spatio-temporal
models and making predictions on branching stream networks. SSNbayes provides a linear regression
framework with multiple options for incorporating spatial and temporal autocorrelation. Spatial
dependence is captured using stream distance and flow connectivity while temporal autocorrelation
is modelled using vector autoregression approaches. SSNbayes provides the functionality to make
predictions across the whole network, compute exceedance probabilities, and other probabilistic
estimates, such as the proportion of suitable habitat. We illustrate the functionality of the package
using a stream temperature dataset collected in the Clearwater River Basin, USA.

1 Introduction

Rivers and streams are of vital ecological and economic importance (Vörösmarty et al., 2010) but are
under pressure from anthropogenic impacts such as climate change, pollution, water extractions, and
overfishing. In the past, data describing critical characteristics such as nutrients, sediments, pollutants
and stream flow tended to be sparse in space and/or time. However, recent developments in in-situ
sensor technology have revolutionized ecological research and natural resource monitoring. These
new data sets create exciting opportunities to measure, learn about, and manage the spatio-temporal
dynamics of abiotic (e.g. temperature, water chemistry, habitat characteristics) and biotic processes (e.g.
migration, predation, and competition). However, the unique spatial relationships found in stream
data (e.g. branching network structure, longitudinal (upstream/downstream) connectivity, water
flow volume and direction) and high-frequency of sampling create analytical challenges that make it
difficult to gain meaningful insights from these datasets. We attempt to overcome these challenges
through the SSNbayes package which provides convenient and practical tools to undertake Bayesian
inference in complex spatial and temporal stream network settings.

1.1 Motivating dataset: repeated measures from in-situ sensor locations in a river

Consider the river network in the Clearwater River Basin, USA shown in Fig 1. Water temperature data
were collected at fixed time intervals using in-situ sensors placed at 18 unique locations throughout
the network (Isaak et al., 2018). We want to use these data to address several research questions and
goals. Firstly, we would like to analyse water temperature to assess the impact of covariates such as air
temperature. Secondly, we aim to make predictions with uncertainty at other locations throughout the
network (approximately every 1 km). Also, we want to impute missing data e.g. the most downstream
point in Fig 1 (location 12), and determine regions of the network which remain suitable habitats over
time to sustain fish species such as bull trout which typically preferred water temperatures of < 13 °C.
Throughout this paper, we show how the SSNbayes package can be used to analyse these spatial and
temporal data, and address these motivating research questions.

1.2 A brief review

A number of R software packages for spatial stream-network modelling have been developed over the
last few decades (Ver Hoef et al., 2014; Skoien et al., 2014; Rushworth, 2017). These packages account
for unique spatial relationship found in stream data. For example, the R packages SSN and SSN2
(Ver Hoef et al., 2014; Dumelle et al., 2023) fits spatial regression models for stream networks, with
autocorrelation in time only possible by using random effects as repeated measures, which induces
equal correlation for all times at a location. Similarly, spatial additive models can be fitted using the
package smnet (Rushworth, 2017). However, these models are not designed to simultaneously account
for the temporal variability that often accompanies spatial variation in new data sets derived from
modern sensor arrays.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSN
https://CRAN.R-project.org/package=SSN2
https://CRAN.R-project.org/package=smnet

CONTRIBUTED RESEARCH ARTICLE 27

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17
181830000

1840000

1850000

13
80

00
0

13
90

00
0

14
00

00
0

14
10

00
0

Easting

N
or

th
in

g

12

14

16

Temperature(°C)

Figure 1: Mean daily water temperature in degrees Celsius on August 1, 2012, at 18 different spatial
locations in the Clearwater stream network in the US. The temperature values are represented by a
color scale, with cooler temperatures shown in blue and warmer temperatures shown in yellow. Each
spatial location is labeled with a unique identifier (locID). The plot highlights the variation in water
temperature across the different locations in the network.

There are several R packages for spatio-temporal modelling that are described in the Space-time
CRAN Task View (Pebesma, 2021). For example, spatial/temporal dependence can be incorporated
via the nlme package package (Pinheiro and Bates, 2000; Pinheiro et al., 2020). Other packages such as
spBayes (Finley et al., 2015) allow random effects modelling for point-referenced data. CARBayes
(Lee, 2013) contains useful tools for implementing Bayesian spatial models using random effects via
conditional autoregressive (CAR) priors. Similarly, spatial process data can be represented using
kernels e.g. using the package RandomFields (Schlather et al., 2015). Interpolation of spatial data and
Kriging can be done via tools from the package geoR (Ribeiro Jr et al., 2020). One of the most popular
implementations among practitioners is the R-INLA package (Lindgren and Rue, 2015), which uses
approximate Bayesian inference via integrated nested Laplace approximations. Multiple latent Gaus-
sian spatio-temporal models can be fit in R-INLA. FRK (Zammit-Mangion and Cressie, 2021) makes
use of spatial basis functions and discrete areal units with a focus on large datasets. In the same line,
new packages harnessing the power of rstan (Carpenter et al., 2017) are also emerging. For instance,
bmstdr (Sahu et al., 2022) implements several spatio-temporal approaches for point referenced and
areal unit datasets, and geostan (Donegan, 2022) fits spatial models for areal data. However, none of
these packages are specifically designed to account for the unique spatial relationships found in data
collected on streams.

Here, we describe the SSNbayes package which has been designed to address many of the
limitations of the current software tools for spatio-temporal modelling on stream networks. More
specifically, SSNbayes can fit spatio-temporal stream-network models and produce predictions in
space and time, with associated estimates of uncertainty. It uses the Bayesian inference machinery
implemented using the probabilistic programming language Stan.

The rest of the paper is organised as follows: we introduce the relevant statistical models in
the Methods section, followed by an overview of the package structure and functions. We then
demonstrate how the SSNbayes package can be used to explore, analyse and draw conclusions from
a stream temperature data set collected in the western United States (USA). A second reproducible
example is provided in the Appendix to help users adapt the R code for their own data. Finally,
we conclude with a discussion of the benefits and challenges in using the SSNbayes package and
Bayesian spatio-temporal models on stream networks, as well as potential extensions to the methods
and improvements to the package.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=spBayes
https://CRAN.R-project.org/package=CARBayes
https://CRAN.R-project.org/package=geoR
https://CRAN.R-project.org/package=FRK
https://CRAN.R-project.org/package=rstan
https://CRAN.R-project.org/package=bmstdr
https://CRAN.R-project.org/package=geostan
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes

CONTRIBUTED RESEARCH ARTICLE 28

2 Methods

Data collected on stream networks often exhibit complex patterns of spatial autocorrelation resulting
from ecosystem processes occurring within branching stream networks, as well as between the aquatic
and terrestrial environments (Peterson et al., 2013). It is therefore common for streams data to exhibit
both Euclidean and in-stream patterns of spatial autocorrelation at multiple scales (Peterson et al.,
2006; Peterson and Ver Hoef, 2010). Thus, we start this section with a description of spatial models
based on Euclidean distance and then describe methodological extensions to stream networks. These
models provide the foundation to describe the Bayesian hierarchical spatio-temporal model variations
implemented in the SSNbayes package.

General space-time model

Consider the general spatio-temporal linear model:

yyy = XXXβββ + vvv + ϵϵϵ, (1)

where the response variable yyy = [yyy
′
1, yyy

′
2, · · · , yyy

′
T]

′
is a stacked vector of length n = S × T for S spatial

locations and T time points. We order data such that vector yyyt contains the observations at the S spatial
locations at time t for t = 1, . . . , T. Let XtXtXt be an S × p design matrix of p covariates for the tth time. We
construct a stacked matrix of covariates XXX = [XXX

′
1, XXX

′
2, · · · , XXX

′
T]

′
with dimensions n × p. We then define

βββ as a p × 1 vector of regression coefficients. We let vvv = [vvv
′
1, vvv

′
2, · · · , vvv

′
T]

′
be a stacked vector of n spatial

random effects, where vvvt is a vector of length S for each t, and all vvvt have the same spatial dependence
model (shared locations and parameters across all times t). For example, vvvt can be modelled using
a Gaussian process (Banerjee et al., 2014), but we also use spatial stream-network models that we
describe below for each vvvt. The final step in our construction is to use vector autoregressive models to
add the temporal components which we develop below. The vector ϵϵϵ is the independent unstructured
random error term, where var(ϵϵϵ) = σ2

0 III. The parameter σ2
0 is called the nugget effect and III is an n × n

identity matrix.

Euclidean distance models

A typical modelling approach to capture spatial dependence is via the second moment of vvv from Eq 1
where the amount of autocorrelation decays with the Euclidean distance. Some of the most common
covariance functions are the exponential, Gaussian and spherical (Cressie and Wikle, 2015; Banerjee
et al., 2014):

exponential model, CED(d | θθθ) = σ2
e e−3d/αe , (2)

Gaussian model, CED(d | θθθ) = σ2
e e−3(d/αe)2

, (3)

and

spherical model, CED(d | θθθ) = σ2
e

(
1 − 3d

2αe
+

d3

2α3
e

)
1(d/αe ⩽ 1), (4)

where αe ∈ (0, ∞), σ2
e > 0, and d is the Euclidean distance between two locations si and sj. The vector

θθθ represents the spatial parameters (αe, σ2
e), where σ2

e is the partial sill, αe is the spatial range parameter
and 1(·) is the indicator function. The partial sill is the resulting variance after accounting for the
nugget effect (sill minus nugget effect). Negligible spatial correlation is assumed between points
located at a distance greater than the spatial range parameter.

2.1 Spatial models for stream networks

The stream network data shown in Fig.2 represents repeated measures at several time points t from
four spatial locations (s1 to s4). Stream distance is defined as the separation distance between two
locations when movement is restricted to the network. The direction of the water flow is also shown
in the figure (from north to south) and the stream outlet (i.e. most downstream point on the stream
network) is below location s4. The watershed (i.e. drainage basin) includes the land that contributes
water flow to a discrete downstream location in the stream network. Thus, the watershed for the
stream outlet in Fig. 2 includes all of the upstream regions (r1-r4). Spatial locations s1 and s3 are
considered flow-connected because the water flows from the upstream location s1 to the downstream

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSNbayes

CONTRIBUTED RESEARCH ARTICLE 29

location s3. In contrast, s1 and s2 are considered flow-unconnected because they reside on the same
stream network, but do not share flow.

●

●

●

●

s1

s2

s3

s4

r1

r2

r3

r4

flo
w

b a

●

●

●

●

s1

s2

s3

s4

r1

r2

r3

r4

flo
w

b a

●

●

●

●

s1

s2

s3

s4

r1

r2

r3

r4

flo
w

b a

t=1 t=2 t=T

2 4 6 8 2 4 6 8 2 4 6 8
0

2

4

6

8

10

Longitude

La
tit

ud
e

Figure 2: Visualization of a stream network at multiple time points, with water flowing from top to
bottom. The plot displays four spatial locations (s1 − s4) and four regions (r1 − r4), with the colors
indicating the regions. This visualization allows for an understanding of the spatial and temporal
dynamics of the stream network.

Multiple covariance models have been proposed for stream networks that describe the unique
spatial dependence related to network structure and stream flow. These models are based on moving
average constructions that use stream distance, and were introduced by Ver Hoef et al. (2006) and
Cressie et al. (2006) (tail-up models) and Ver Hoef and Peterson (2010) and Garreta et al. (2010)
(tail-down models); several models of each class are given below. These spatial covariance matrices
have been extensively employed in numerous water quality modelling frameworks and applications
(Money et al., 2009a,b; Isaak et al., 2014; McManus et al., 2020; Jackson et al., 2018; Rodríguez-González
et al., 2019) and are described in more detail below.

Tail-up models

Tail-up covariance models were developed by convolving a moving average function with white noise
(Ver Hoef et al., 2006). As the name suggests, the moving average function points in the upstream
direction from a stream location in a tail-up model, which restricts correlation to flow-connected
locations only. In addition, the function must be split at upstream junctions using spatial weights,
which maintain stationary variances by controlling the proportion allocated to each upstream segment.

Given a pair of sites si and sj, the tail-up covariance matrix is defined as:

CTU(si, sj|θθθ) =
{

0 if si, sj are flow-unconnected,
Cu(h | θθθ)Wij if si, sj are flow-connected,

where Cu(h | θθθ) is an unweighted tail-up covariance between two locations based on the total stream
distance between them, h. Wij represents the spatial weights between sites i and j. Cu can take a
variety of forms including:

Tail-up exponential model, Cu(h | θθθ) = σ2
ue−3h/αu , (5)

Tail-up linear-with-sill model, Cu(h | θθθ) = σ2
u(1 − h/αu)1(h/αu ⩽ 1), (6)

Tail-up spherical model, Cu(h | θθθ) = σ2
u

(
1 − 3h

2αu
+

h3

2α3
u

)
1(h/αu ⩽ 1) (7)

where σ2
u is the partial sill and αu is the range parameter.

The spatial weights used in the tail-up model are generated for flow-connected locations

Wij =

√
Ω(sj)

Ω(si)
,

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 30

where Ω(si) and Ω(sj) are the additive function values for the upstream and downstream site,
respectively. Additive function values can be derived from any variable available for every line
segment in a stream network, but are often based on an ecologically meaningful variable (e.g. stream
flow) or a surrogate (e.g. watershed area), which is thought to represent relative influence in a
stream network (Frieden et al., 2014). Additive function values can be generated in SSN using
the additive.function() or in the STARS ArcGIS custom toolset using the SegmentPI, Additive
Function - Edges, and Additive Function - Sites tools (Peterson and Ver Hoef, 2014). For
additional information about how the additive function values are constructed, please see Ver Hoef
et al. (2006) or Appendices A in Santos-Fernandez et al. (2022) or Peterson and Ver Hoef (2010).

Tail-down models

Tail-down models are also based on a moving average contruction (Ver Hoef and Peterson, 2010), but
in this case the function points in the downstream direction. This allows the models to describe spatial
correlation between both flow-connected and flow-unconnected locations. In addition, the moving
average functions converge downstream and do not need to be split at junctions using spatial weights.

There is a distinction between flow-connected and flow-unconnected relationships in a tail-down
model. When pairs of sites are flow-connected, distance is based on the total stream distance between
them, h. When sites are flow-unconnected (e.g. s1 and s2 in Fig.2), we define a and b as the stream
distance from s1 and s2 to their first common downstream junction, so that a ⩽ b.

Tail-down exponential model,

CTD(a, b, h|θθθ) =
{

σ2
d e−3h/αd if flow-connected,

σ2
d e−3(a+b)/αd if flow-unconnected,

Tail-down linear-with-sill model,

CTD(a, b, h|θθθ) =
{

σ2
d (1 −

h
αd
)1(h

αd
⩽ 1) if flow-connected,

σ2
d (1 −

b
αd
)1(b

αd
⩽ 1) if flow-unconnected,

Tail-down spherical model,

CTD(a, b, h|θθθ) =
{

σ2
d (1 −

3h
2αd

+ h3

2α3
d
)1(h

αd
⩽ 1) if flow-connected,

σ2
d (1 −

3a
2αd

+ b
2αd

)(1 − b
αd
)1(b

αd
⩽ 1) if flow-unconnected,

where σ2
d is the partial sill, αd is the range parameter, and 1(·) is the indicator function, equal to 1 if its

argument is true, otherwise it is zero.

2.2 Mixed models

A mixture of Euclidean, tail-up and tail-down covariance matrices is often used to capture the complex
patterns of spatial dependency found in stream data. In Eq 1, vvvt for a purely spatial case is a vector of
dimension S corresponding to the spatial locations, with covariance matrix ΣΣΣ.

ΣΣΣ = COV(vvv) = CCCED +CCCTU +CCCTD = σ2
e RRRe(αe) + σ2

uRRRu(αu) + σ2
d RRRd(αd), (8)

where σ2
e , σ2

u , and σ2
d are the partial sills for Euclidean, tail-up and tail-down functions, respectively.

The correlation matrices RRRu(αu), RRRd(αd) and RRRe(αe) are obtained as a function of the range parameters
αu, αd and αe (Ver Hoef et al., 2014).

For space-time applications, we can use the same spatial covariance matrix or we can build a
dynamic model with spatial parameters that are time-specific. We opted for the first approach in the
SSNbayes, since this reduces the number of parameters to be estimated from the model and is less
computationally demanding. We return to this point in the Discussion.

2.3 Spatio-temporal stream network models

Following the above discussion, consider the stream network in Fig.2, that evolves across discrete
time points t = 1, 2, . . . , T. Let a response variable yyyt be an S × 1 vector of random variables at unique
and fixed spatial locations of s = 1, 2, . . . , S. We start with the following conditional spatio-temporal
model:

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSN
https://CRAN.R-project.org/package=SSNbayes

CONTRIBUTED RESEARCH ARTICLE 31

[yyy1, yyy2, · · · , yyyT] =
T

∏
t=2

[yyyt | yyyt−1, θθθ, XXXt, XXXt−1, βββ, ΦΦΦ, ΣΣΣ] (9)

where yyy1 is the process at t = 1, and

[yyyt | yyyt−1, θθθ, XXXt, XXXt−1, βββ, ΦΦΦ, ΣΣΣ] ∼ N (µµµt, ΣΣΣ + σ2
0 III), (10)

Here, ΣΣΣ = COV(vvvt) is an S × S spatial covariance matrix of the form given in Eq 8. The mean µµµt can
be expressed as a vector autoregressive process of order one VAR(1) (Hamilton, 1994):

µµµt = XXXtβββ +ΦΦΦ(yyyt−1 −XXXt−1βββ), (11)

The square transition matrix, ΦΦΦ of dimension S × S, has elements ϕij, which describe the conditional
temporal cross-correlation between two spatial locations i and j.

2.4 Vector autoregressive model variations

We use a vector autoregressive (VAR) approach to simultaneously model time series from multiple
spatial locations in the network. This stochastic approach allows capturing and incorporating temporal
dependence across multiple time series. Two variations of the vector autoregressive spatial process
have been implemented in the SSNbayes package.

Case 1 (AR)

The simplest case considers the same temporal autocorrelation for all spatial locations. Therefore all
the diagonal elements of ΦΦΦ are equal to ϕ and all the off-diagonal elements are set to zero, which
assumes negligible cross-correlation between time series. That is:

ΦΦΦ =

ϕ 0 · · · 0
0 ϕ · · · 0
...

...
. . .

...
0 0 · · · ϕ

 . (12)

Under this model, the temporal autocorrelation for a fixed spatial location is an AR1 model with
autocorrelation parameter ϕ, and the joint spatio-temporal autocovariance matrix is the separable
model,

var(y) = CCCOO =
1

1 − ϕ2

1 ϕ · · · ϕT−1

ϕ 1 · · · ϕT−2

...
...

. . .
...

ϕT−1 ϕT−2 · · · 1

⊗ (ΣΣΣ + σ2
0 III), (13)

where ⊗ is the Kronecker product.

Spatial locations in large river networks often have different elevations, climatic conditions, or
local flow regimes and this can affect the amount of temporal autocorrelation in observations. Hence,
the assumption that there is a common ϕ for all locations may not always be appropriate and this
motivates Case 2.

Case 2 (VAR)

In the second method, rather than a shared ϕ across all locations, each location gets its own temporal
autocorrelation parameter ϕs for s ∈ 1, · · · , S. This is known as the autoregressive shock model (Wikle
et al., 1998), which can be defined through ΦΦΦ as follows:

ΦΦΦ =

ϕ1 0 · · · 0
0 ϕ2 · · · 0
...

...
. . .

...
0 0 · · · ϕS

 . (14)

Other VAR structures consider ϕ as a linear combination of spatial covariates and cross-correlation
between time series (Santos-Fernandez et al., 2022). These variations are not currently implemented in
SSNbayes but are under development.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes

CONTRIBUTED RESEARCH ARTICLE 32

2.5 Bayesian inference and specification of prior distributions

Formulating this model in a Bayesian framework requires sampling from the following posterior
distribution:

[βββ, ΦΦΦ, σ2
0 , σ2

u , αu, σ2
d , αd, σ2

e , αe | y, X]. (15)

SSNbayes uses Stan (Carpenter et al., 2017) to efficiently produce samples from this distribution via
Hamiltonian Monte Carlo (HMC) methods.

We also need to define prior distributions for the parameters of interest. Currently, diffuse
prior distributions are the only option in ssnbayes(), but the functionality to include other prior
distributions may be included in future package versions. The implemented prior distributions are
the following:

ϕ ∼ Uniform (−1, 1) # uniform prior on the autoregressive parameter

α. ∼ Uniform (0, 4 × max(h)) # diffuse prior on the spatial range

σ. ∼ Uniform (0, 100) # diffuse prior on the square root of the partial sill

σ0 ∼ Uniform (0, 100) # diffuse prior on the square root of the nugget effect

β ∼ N (0, 1000) # prior on the regression coefficients (intercept and slope)

For the autoregressive parameter (ϕ), a uniform prior defined from -1 to 1 is used to ensure the
process is stationary. The upper limit for the spatial range parameter is set to four times the maximum
stream distance between observation locations on the network.

2.6 Prediction

There are two ways of making predictions in SSNbayes. By default, predictions are produced for
missing values (NA) in the response variable in the observation dataset used to fit the model via the
posterior predictive distribution:

p(ŷ | y, X, X̂) =
∫

p(ŷ | η, X̂)p(η | y, X)dη, (16)

where X̂ are the covariates for ŷ. This Eq 16 gives the probability distribution of a new observation, ŷ,
given the observed data y and covariates/predicted covariates.

However, this approach is not recommended when making predictions at a large number of
spatial locations (e.g. predicting over an extensive branching stream network) since it would involve
operations with large matrices which can be very inefficient.

The second approach uses the fitted model produced using ssnbayes() to generate predictions
using the Kriging predictor in a prediction dataset (Banerjee et al., 2014; Gelfand et al., 2019). This
produces estimates as a weighted average of observations.

ŷyyP = XXXPβββ +CCCOP
′CCC−1

OO(yyyO −XXXOβββ), (17)

where subscripts O and P indicate the observation and prediction locations, respectively. The stacked
vector ŷyyP contains the predictions at the P spatial locations across all the time points T. The observa-
tions are represented in the stacked vector yyyO, which contains all of the observations across the T time
points. XXXP and XXXO are space-time design matrices of covariates for the observations and predictions,
respectively, while βββ is a vector of regression coefficients.

The separable square matrix CCCOO of dimension n = S × T (defined in Eq 1), contains the covari-
ances between observations at all time points, where O and T are the number of observations and time
points respectively. Similarly, CCCOP is a O × T by P × T rectangular separable matrix of covariances
between observation and prediction locations at all time points with the same structure as CCCOO. That
is, if CCCOO was obtained from an AR exponential tail-down model with parameters ϕ, σtd and αtd, these
same parameters are used to construct CCCOP.

The covariance matrix of observations (CCCOO) must be inverted at each MCMC iteration when
making predictions (Eq. 17) and this quickly becomes computationally challenging for large datasets.
However, the separability of (13) significantly reduces the computational burden in these cases (Wikle
et al., 2019)

C−1
OO = ΣΣΣ−1

ar1 ⊗ΣΣΣ−1
OO,

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes

CONTRIBUTED RESEARCH ARTICLE 33

where ΣΣΣOO is the spatial covariance matrix defined in Eq 8, and ΣΣΣar1 is the temporal covariance matrix
of an AR(1) process (13) which has an analytical inverse that is tridiagonal.

3 The SSNbayes package

3.1 Data pre-processing

Detailed spatial, topological, and attribute data are needed to fit spatial stream network models,
including those implemented in SSNbayes. There are currently two software packages that can be
used to generate this information: 1) the Spatial Tools for the Analysis of River Systems (STARS)
custom toolset (Peterson and Ver Hoef, 2014) for ArcGIS version ≥ 10.1 (ESRI, 2019) or 2) the R
package openSTARS (Kattwinkel et al., 2020). When the pre-processing is complete, both tools
create a new directory with the extension .ssn (i.e. a .ssn object), which contains shapefiles of the
stream network, observed locations, and prediction locations (optional). It also contains the response,
covariates (optional), and the information needed to generate stream distances and spatial weights
between observed and prediction locations. Several unique identifiers are also assigned to observed
and prediction locations to denote unique locations (locID) and unique measurements in space and
time (pid). If real data are not being used, the createSSN() and SimulateOnSSN() functions found in
SSN can be used to generate artificial .ssn objects that meet these requirements. It is important to note,
however, that the SSN package has been archived on CRAN. In the absence of a .ssn object, SSNbayes
can still be used to fit models based solely on Euclidean covariance models.

3.2 Installation

The SSNbayes package for R statistical software (≥ 3.3.0) extends the models implemented in the
SSN2 package. SSNbayes is based on the R package rstan and the C++ toolchain is required. See
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started.

The SSNbayes package can be found at CRAN and Github (https://github.com/EdgarSantos-
Fernandez/SSNbayes) and installed using:

if(!require('SSNbayes')) install.packages("SSNbayes", dependencies = T)

Or:

remotes::install_github("EdgarSantos-Fernandez/SSNbayes", dependencies = T)

For this demonstration we will need the companion R package SSNdata (Santos-Fernandez, 2022).

remotes::install_github("EdgarSantos-Fernandez/SSNdata",
ref = "HEAD", upgrade_dependencies = F, dependencies = F)

SSNbayes describes both spatial and temporal autocorrelation using Bayesian inference. Table 1
shows a summary of the main functions included in the package and a description of the most
important arguments. The function collapse() is used to extract line features from an spatial stream
network (ssn) object in a format suitable for visualisation using packages such as ggplot2. The
function ssnbayes() is the core function in SSNbayes, providing the functionality to fit linear spatio-
temporal regression models (Santos-Fernandez et al., 2022), while the predict() function is used
to perform spatio-temporal prediction from a stanfit object generated from ssnbayes(). Generic
functions such as summary() and plot can be used to generate summary statistics and visualize
model outcomes. In addition, the helper functions dist_weight_mat() and dist_weight_mat_preds()
provide the functionality to extract a list of Euclidean and stream distance matrices, a spatial weight
matrix, and an indicator matrix for flow connectivity between sites.

3.3 Modelling stream temperatures

We use the dataset described in the Introduction to illustrate how the SSNbayes package can be used
to explore, analyse and draw conclusions from a Bayesian spatio-temporal model. The .ssn object for
these data is part of the SSNdata package.

if(!require('SSNdata')) remotes::install_github("EdgarSantos-Fernandez/SSNdata")

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=openSTARS
https://CRAN.R-project.org/package=SSN
https://CRAN.R-project.org/package=SSN
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSN2
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=rstan
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://CRAN.R-project.org/package=SSNbayes
https://github.com/EdgarSantos-Fernandez/SSNbayes
https://github.com/EdgarSantos-Fernandez/SSNbayes
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes

CONTRIBUTED RESEARCH ARTICLE 34

Table 1: A description of functions in the SSNbayes package and the most important arguments.

function arguments description
collapse() t Path to a .ssn object
ssnbayes() formula A formula object, as used in lm()

data A long data.frame containing the locations, dates, covariates and response
path Path with the name of the .ssn object
space_method A list defining whether a spatial stream network (ssn)

object is used and the spatial corr
time_method A list specifying the temporal structure
iter Number of iterations
warmup Number of warm up samples
chains Number of chains
addfunccol (optional) Column name for site additive function

predict() formula A formula object, as used in lm()
obs_data A long data.frame containing the locations, dates, covariates and response
stanfit A stanfit object returned from ssnbayes()
pred_data A long df of predictions with the locations, dates, covariates and the response
nsamples The number of samples to draw from the posterior distributions
addfunccol (optional) Column name for site additive function
locID_pred (optional) the location id for the predictions
chunk_size (optional) the number of locID to make prediction from

dist_weight_mat() t Path to a .ssn object
dist_weight_mat_preds() t Path to a .ssn object

For reproducibility, we also created a Kaggle notebook containing the example from this section
(https://www.kaggle.com/edsans/ssnbayes). For completeness, similar analyses were performed on
simulated data and the results are presented in the Appendix.

The .ssn object was generated using the STARS custom toolset (Peterson and Ver Hoef, 2014)
and contains 18 observation and 60 prediction locations spaced at 1km intervals along the stream
network. Hourly temperature recordings were taken at the observation sites but these were averaged
to mean daily values for the two-year period of the data set. The data residing within the .ssn object
are imported into R, converted to an ssn object and pair-wise distances are calculated for all observed
sites, observed and prediction sites, and prediction sites using the following SSN2 package functions:

path <- system.file("extdata/clearwater.ssn", package = "SSNdata")
n <- SSN2::ssn_import(path, predpts = "preds", overwrite = TRUE)
SSN2::ssn_create_distmat(n,

predpts = "preds" ,
overwrite = TRUE,
among_predpts = TRUE)

We also read in a data frame containing the response and covariate data:

clear <- readRDS(system.file("extdata/clear_obs.RDS", package = "SSNdata"))

In the data.frame clear, the response variable (temp) is the mean daily stream temperature
measured at 18 observation sites. Here we focus on a subsample of longitudinal response data
consisting of 24 time points at those sites over two years (Figure 3). We randomly split the dataset,
with 2/3 used for training the model and 1/3 for testing the out-of-sample prediction accuracy. This
training/testing split was performed once for illustration purposes but for complex datasets we
recommend using leave-one-out cross-validation.

Stream temperature is strongly influenced by topography and climate variables (Isaak et al., 2017).
The following covariates were available for the observation and prediction locations across all the
time points: stream slope, elevation, watershed area (Isaak et al., 2017), and air temperature (e.g. Bal
et al., 2014). In addition, we included the first pair of harmonic covariates (Fourier terms) for the time
periods (sint and cost) (Hyndman and Khandakar, 2008).

3.4 Visualizing stream network data in space and time

We begin by extracting the streams from the ssn object so that we can visualise the data in ggplot2.

n.df <- SSNbayes::collapse(n)

The data.frame n.df contains data describing the spatial location of individual stream segments, along
with the additive function column. The spatial and space-time data can then be visualised using
ggplot2 (Fig 1).

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSNbayes
https://www.kaggle.com/edsans/ssnbayes
https://CRAN.R-project.org/package=SSN2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 35

●●
●
●●●●●●
●●
●
●
●●●
●

●

●

●●●●●●●
●●●●
●●
●
● ●

●

●
●●●●●●
●●●
●
●●●
●

●
●●
●●
●●
●
●●●●
●●●

●
●

●
●●

●●
●
●●

●
●●●●
●●
●●

●●

●

●

●

●

●

●

●

●

●
●

●●
●
●
●

●

●●

●●
●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●●
●
●

●

●

●
●
●

●

●
●

●

●

●

●●●
●
●

●

●
●
●

●

● ●
●●
●

●
●
●●●●●●●●
●●
●●●
●

●●●●●●●●●●
●
●●●●
●
●

●

●

●●●●●
●
●●
●●●

●●●
● ●●●

●●●●
●●●
●
●●●●
●
●

●

●
●
●●●●
●
●●

●

●●
●●

●●
●
●
●
●
●●●
●
●
●
●
●●
●●

●●

●
●●

●
●●●

●

●
●

●

●
●●
●●●

●

●

●

●●
●
●

●

●●

●
●

●

●●

●
●

●

●
●●
●
●

●

●●

●
●

●

●
●

●
●
●●●
●
●

●

●
●
●
●●

●

●
●
●●
●●
●
●●

●●●
●

●●
●
●●●●●●
●
●●
●

●

●

●●
●●●
●
●
●●
●
●
●●
●

0

5

10

15

20
12

−0
1−

01

20
12

−0
2−

01

20
12

−0
3−

01

20
12

−0
4−

01

20
12

−0
5−

01

20
12

−0
6−

01

20
12

−0
7−

01

20
12

−0
8−

01

20
12

−0
9−

01

20
12

−1
0−

01

20
12

−1
1−

01

20
12

−1
2−

01

20
13

−0
1−

01

20
13

−0
2−

01

20
13

−0
3−

01

20
13

−0
4−

01

20
13

−0
5−

01

20
13

−0
6−

01

20
13

−0
7−

01

20
13

−0
8−

01

20
13

−0
9−

01

20
13

−1
0−

01

20
13

−1
1−

01

20
13

−1
2−

01

Te
m

pe
ra

tu
re

(°
C

)

Dataset

●

●

test
train

Figure 3: Time series of stream temperatures at multiple locations. Each line represents the time series
for a unique observation location. The x-axis represents date, while the y-axis represents the water
temperature in C◦. Observations (training dataset) are displayed as blue points and the predictions
(testing set) are displayed in red. The plot reveals the periodic changes in water temperatures over
time at different locations in the stream network.

3.5 Fitting spatio-temporal linear models

The next step is to fit a linear spatio-temporal regression model using the function ssnbayes(). We
specify the following linear regression model using the covariates in the observed dataset:

X
′

(t)β = β0 + β1 ∗SLOPE+ β2 ∗ elev+ β3 ∗h2o_area+ β4 ∗ air_temp(t)+ β5 ∗ sin(t)+ β6 ∗ cos(t), (18)

and fit the model to the observed temperature data using the ssnbayes() function.

fit_ar <- ssnbayes(formula = temp ~ SLOPE + elev + h2o_area + air_temp + sin + cos,
data = clear,
path = path,
space_method = list("use_ssn", "Exponential.taildown"),
time_method = list("ar", "date"),
iter = 3000,
warmup = 1500,
chains = 3,
net = 2,
addfunccol='afvArea',
refresh = max(iter/100,1))

Running this function takes several minutes and the progress of the sampler is shown during the
execution. We stored the fitted model within SSNdata, which can be accessed using the code below if
the reader wants to skip fitting the model.

fit_ar <- readRDS(system.file("extdata//fit_ar.rds", package = "SSNdata"))

The reader is referred to the Appendix for a second reproducible example using simulated data.

In the ssnbayes() function call shown above, the argument formula describes the regression
model and is defined in the same way as in other model-fitting functions such as lm. We also pass a
data.frame using the data argument, which must contain all of the variables specified in the formula
argument. This data.frame should be in long format, with one row for each unique observation in space
and time, which are also defined using locID and pid. In addition, the data set needs to be structured
such that each spatial location has the same number of temporal observations. Such observations can
be missing but should be denoted as such via “NA”. In such cases, Bayesian imputation is used to
obtain a complete data set. In other words, the data.frame has to contain all the combinations S and T.
This can be done e.g. using the tidyr::complete() function.

The space_method argument is a list containing information about the spatial modelling com-
ponent. The first element specifies whether the topological information is stored in a ssn object
or not (“use_ssn” or “no_ssn”), while the second list element specifies which spatial correlation
model(s) to use. Options include tail-up ("Exponential.tailup", "LinearSill.tailup", "Spherical.tailup"),

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 36

tail-down ("Exponential.taildown", "LinearSill.taildown", "Spherical.taildown") and Euclidean ("Ex-
ponential.Euclid") models. It is possible to have more than one spatial covariance function per
family (tail-up, tail-down and Euclidean distance). For instance: space_method = list(’use_ssn’,
c("Exponential.tailup", "Spherical.taildown")). However, care should be taken in this case to
ensure identifiability of the model. If the user specifies use_ssn as the first element and the second
element in the list is missing, then an "Exponential.tailup" model will be used by default. When a
tail-up covariance function is specified, an additional column containing the additive function values
used to compute the spatial weights must also be specified (e.g. addfunccol =’afvArea’).

The argument net specifies the network identifier when multiple networks are found within the
same ssn object. Much less information is needed to fit traditional Euclidean covariance models
and so a ssn object is not needed. Instead, the columns containing the spatial coordinates (e.g.
longitude and latitude) must be included as a third element in the list: space_method = list("no_ssn",
"Exponential.Euclid", c("lon", "lat")).

The temporal part of the model is defined in a similar fashion using a list time_method =
list("method", "date"). The first element defines the temporal model and options include an
autoregressive model, “ar”, defined in Eq 12 or a vector autoregression model, “var”, defined in Eq 14).
The second element is the variable defining the time points in the observation data.frame, which must
be a discrete numeric variable. They should also be spaced at regular intervals, as expected in many
time series models.

In SSNbayes the number of chains (chains), iterations (iter), and burn-in samples (warmup) can
be specified. By default, chains = 3, iter = 3000, warmup = 1500. Thinning is also possible using the
argument thin. Optionally, the seed parameter can be set to ensure reproducibility.

The SSNbayes package depends on rstan, which does not allow missing values in the data.
Missing values in the response variable (left hand side element in the formula argument) will be
automatically imputed in the ssnbayes() function. However, missing values in the covariates (right
hand side elements in the formula argument) are not allowed. Instead, they must be imputed by
the user before fitting the model. Many options for imputation can be found in https://cran.r-
project.org/web/views/MissingData.html.

The ssnbayes() function shows the progress of the model fit and will be updated based on the
number of samples specified using the refresh argument. At every iteration, the inverse of the
spatial covariance matrix has to be computed, which takes a substantial amount of time for a large
number of spatial locations and time points. Fitting this dataset using the ssnbayes() function took
approximately 10 minutes on a laptop with an Intel Core i7-8650U CPU @ 1.90GHz and 16 Gb of
memory.

3.6 Exploring results

The output from ssnbayes() is a stanfit object, which contains information about the fitted model
and the MCMC chains for the parameters of interest. It can be summarized and visualized using
generic functions such as summary() and plot(), or functions in the ggplot2 package. We can also
visualize the posterior distributions in the parameters of interest using the mcmc_dens_overlay()
function from the R package bayesplot (Gabry and Mahr, 2018). The regression coefficients across
three chains are shown in Figure 4).

library('bayesplot')
mcmc_dens_overlay(
fit_ar,
pars = paste0("beta[",1:7,"]"),
facet_args = list(nrow = 1))

Apart from h2o_area (β3), all of the estimated regression coefficients for covariates are substantially
different from zero. The bulk of the posterior distribution of the autoregressive parameter (ϕ) was also
far away from zero, suggesting a strong temporal dependence (Figure 5).

The mcmc_dens_overlay() function can also be used to visualise the posterior distributions of the
spatial model parameters (σ2

TD and αTD) and the nugget effect (σ2
0) (Figure 6).

mcmc_dens_overlay(
fit_ar,
pars = c("var_td", "alpha_td", "var_nug"),
facet_args = list(nrow = 1))

Notice that the median of the spatial range αTU is approximately 200,000 m, indicating that spatial
autocorrelation exists between locations that are less than 200 km apart.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=rstan
https://cran.r-project.org/web/views/MissingData.html
https://cran.r-project.org/web/views/MissingData.html
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=bayesplot

CONTRIBUTED RESEARCH ARTICLE 37

β0 β1 β2 β3 β4 β5 β6

2.
5

5.
0

7.
5
10

.0
−1

2 −8 −4 0

−0
.0

05
0

−0
.0

02
5

0.
00

00

0.
00

25

−4
e−

04

0e
+0

0

4e
−0

4

8e
−0

4
0.

15
0.

20
0.

25
0.

30 −4 −3 −2 −2
.5
−2

.0
−1

.5
−1

.0
−0

.5

Chain

1
2
3

Figure 4: Posterior distributions of the regression coefficients for the linear model with seven covariates,
including intercept (β0), stream slope (β1), elevation (β2), watershed area (β3), air temperature (β4),
sin of day of year (β5), and cos of day of year (β6). The distributions are shown for chains 1, 2, and 3,
providing insights into the uncertainty and variability of the model coefficients.

●φ
0.45 0.50 0.55 0.60 0.65 0.70

Figure 5: Boxplot of the posterior distribution for the autoregression parameter, ϕ, estimated from the
stream temperature time series data. The box represents the interquartile range (IQR). The distribution
shows moderate uncertainty in estimating the value of ϕ.

3.7 Predictions

Ecological and environmental monitoring on stream networks generally produces data at discrete
locations, which represent only a small section of the stream network. However, it is often desirable
to make predictions in areas where data have not been collected to create spatially continuous maps
(Isaak et al., 2017). In this section, we illustrate (1) how the model imputes missing values producing
predictions, and (2) how to use the fitted model to predict in unsampled locations using a Kriging
approach.

As mentioned previously, the ssnbayes() function imputes missing values in the response variable.
The time series corresponding to the 18 spatial locations are shown in Fig 7. The model captures the
periodic patterns in stream temperatures well, even in locations where most of the observations were
missing (e.g. 8 and 12, Fig 7). We also compared the predictions produced by the model with the
true latent hold-out data (Fig 8). If the model predictions were perfect we would expect points to
fall on the diagonal line. The results suggest that the Bayesian model produces predictions that are
similar to the true latent values. Most of the predictions (96%) were included within the 95% highest
density interval, showing appropriate coverage of the predictions. The root mean square prediction
error (RMSPE) between the true temperature values and the predictions was 0.510 °C, which is small
considering the magnitude of variation in temperature values.

Additionally, in our case study, we want to produce temperature predictions at 60 locations
generated using a systematic design (≈1km apart). The function predict() produces predictions
using information contained in the stanfit object obtained from ssnbayes(). The argument nsamples
specifies the number of random samples to select from the posterior distributions and it must be
smaller than or equal to the number of iterations iter specified in ssnbayes().

reading the prediction data
clear_preds <- readRDS(system.file("extdata/clear_preds.RDS", package = "SSNdata"))
pred <- predict(path = path,

obs_data = clear,
stanfit = fit_ar,

σ2d αd σ20

0.
25

0.
50

0.
75

1.
00

75
00

0
10

00
00

12
50

00
15

00
00

17
50

00 0.
4

0.
5

0.
6

0.
7

0.
8

Chain

1
2
3

Figure 6: Posterior distributions of the spatial parameters, including the nugget effect (σ2
0) and the

spatial dependence (σ2
d) in C◦, and the range parameter (αd) in meters.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 38

●
●●

●
●

●

●
●●

●
●

●

●
●●

●●

●

●

●●

●

●

●

●●●
●

●

●

●
●

●

●
●

●

●

●●
●●

●

●
●●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●●
●●

●

●
●●

●

●

●

●●●

●
●

●

●

●●

●

●

●

●●
●

●●

●

●●
●

●

●

●

●●●
●●

●

●

●
●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●●●
●●

●

●

●
●

●
●

●

●

●●
●●

●

●●●

●

●

●

●●●

●●

●

●
●

●

●
●

●

●
●●

●●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●
●●

●●

●

●
●

●

●
●

●

●

●●
●●

●

●
●

●

●

●

●

●●●

●
●

●

●
●

●

●
●

●

●
●●

●●

●

●
●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●●●
●

●

●

●
●

●

●
●

●

●

●●
●●

●

●
●●

●

●

●

●●●
●●

●

●

●
●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●●●

●
●

●

●
●

●

●
●

●

●
●●

●●

●

●
●●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●●●

●
●

●

●
●

●

●
●

●

●
●●

●●

●

●
●●

●

●

●

13 14 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6

20
12

−0
1

20
12

−0
7

20
13

−0
1

20
13

−0
7

20
14

−0
1

20
12

−0
1

20
12

−0
7

20
13

−0
1

20
13

−0
7

20
14

−0
1

20
12

−0
1

20
12

−0
7

20
13

−0
1

20
13

−0
7

20
14

−0
1

20
12

−0
1

20
12

−0
7

20
13

−0
1

20
13

−0
7

20
14

−0
1

20
12

−0
1

20
12

−0
7

20
13

−0
1

20
13

−0
7

20
14

−0
1

20
12

−0
1

20
12

−0
7

20
13

−0
1

20
13

−0
7

20
14

−0
1

0

5

10

15

0

5

10

15

0

5

10

15

Date

Te
m

pe
ra

tu
re

 (
°C

)

●

●

obs
pred

Figure 7: Time series of stream temperatures at 18 spatial locations. The observed points are repre-
sented in red, and the imputed or predicted values are shown in blue. The gray areas represent the
95% posterior credible intervals, providing an indication of the model’s uncertainty.

pred_data = clear_preds,
net = 2,
nsamples = 100, # number of samples to use from the posterior
addfunccol = 'afvArea', # additive function values
locID_pred = locID_pred,
chunk_size = 60)

The observation and prediction data frames (data_obs, data_pred, respectively) must be specified and
must contain all of the covariates and the response variable specified in the “formula” argument in
ssnbayes().

Generally, producing subsets of predictions on the stream network is more efficient for big datasets,
and can be parallelized. The argument chunk_size is used to define the size of the subsets. For
instance, predictions in the case study in Santos-Fernandez et al. (2022) consist of more than 6000
locations. Performing matrix operations with a such large number of sites is not feasible. Instead,
predictions were run in parallel using chunk_size = 100. locID_pred also allows the user to define a
subset of prediction locations where predictions should be generated, as demonstrated in the example
below. Similarly, the argument seed allows the user to set a seed so that the results are reproducible.

Figure 9 shows the predicted time series for the observation and prediction locations. The patterns
in the prediction time series captured the seasonality in the observed data well. Figure 10 visualizes
the predictions’ posterior mean temperature on the stream network. As expected, higher temperature
values are obtained in the main stream channel, compared to predictions in small streams which
generally are found at higher elevations.

Network exceedance probability

One advantage of using Bayesian inference is the ability to easily obtain various probabilistic estimates
based on the model posterior predictive samples. In this example, we use the function melt from the
R package reshape2 (Wickham, 2007) to generate exceedance probabilities based on a critical thermal
threshold of 13 °C for bull trout, a cold-water fish species that is sensitive to increased temperatures.

ys <- reshape2::melt(pred, id.vars = c('locID0', 'locID', 'date'), value.name ='y')
ys$iter <- gsub("[^0-9.-]", "", ys$variable)
ys$variable <- NULL
network exceedance probability
limit <- 13
ys$exc <- ifelse(ys$y > limit , 1, 0)
ys <- data.frame(ys) %>% dplyr::group_by(date, locID, locID0) %>%

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=reshape2

CONTRIBUTED RESEARCH ARTICLE 39

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●●

●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

13 14 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

0
5

10
15

0
5

10
15

0
5

10
15

True temperature (°C)

E
st

im
at

ed
 te

m
pe

ra
tu

re
 (

°C
)

Figure 8: Scatterplot of predicted temperature versus the true latent values at the 18 spatial locations
in the test dataset. The x and y axes represent the predicted and true temperature values, respectively.
The vertical bars represent the 95% posterior credible intervals.

dplyr::summarise(sd = sd(y, na.rm=T),
y_pred = mean(y, na.rm=T),
prop = mean(exc, na.rm=T)) %>%

dplyr::arrange(ys, locID)
clear_preds <- clear_preds %>% left_join(ys, by = c('locID', 'date'))

Figure 11 shows the exceedance probabilities for all 60 prediction locations on two dates, obtained
from the posterior predictive distributions. Knowledge about when and where biologically relevant
thermal thresholds are likely to be exceeded provides critical information for the management of
threatened and endangered freshwater species (Isaak et al., 2016).

Other useful functions

Users often want to extract distance matrices and spatial weights so that they can be analysed and/or
visualised in other R packages or external software e.g. McGuire et al. (2014). The dist_weight_mat()
and dist_weight_mat_preds() produce a list of distance and weight matrices with the following
elements:

1. e: Euclidean distance matrix containing the distances between locations

2. D: Downstream distance.

3. H: Total stream distance.

4. w.matrix: spatial weights for flow connected locations. This matrix is used in the tail-up models.

5. flow.con.mat: flow connected matrix. Indicates whether two locations in the network are
connected by flow.

The dist_weight_mat() function produces matrices of the distances and weights between ob-
servation locations, with dimensions equal to the number of observation locations (no × no). The
dist_weight_mat_preds() function produces the same information for observed and prediction lo-
cations, with nonp × nonp dimensions. Details and detailed descriptions of the computation of these
matrices can be found in Peterson and Ver Hoef (2010), Ver Hoef et al. (2014), and Santos-Fernandez
et al. (2022).

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 40

0

5

10

15

20
12

−
01

−
01

20
12

−
02

−
01

20
12

−
03

−
01

20
12

−
04

−
01

20
12

−
05

−
01

20
12

−
06

−
01

20
12

−
07

−
01

20
12

−
08

−
01

20
12

−
09

−
01

20
12

−
10

−
01

20
12

−
11

−
01

20
12

−
12

−
01

20
13

−
01

−
01

20
13

−
02

−
01

20
13

−
03

−
01

20
13

−
04

−
01

20
13

−
05

−
01

20
13

−
06

−
01

20
13

−
07

−
01

20
13

−
08

−
01

20
13

−
09

−
01

20
13

−
10

−
01

20
13

−
11

−
01

20
13

−
12

−
01

Te
m

pe
ra

tu
re

(°
C

)

Figure 9: Time series plot comparing predicted (blue lines) and observed (red lines) temperature
values over time.

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

1830000

1840000

1850000

13
80

00
0

13
90

00
0

14
00

00
0

14
10

00
0

Easting

N
or
th
in
g

12

14

16

Temperature(°C)

Figure 10: Mean daily stream temperature predictions (diamonds) for each of the 60 spatial locations
and observations (circles) in the Clearwater network on August 1st, 2012.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 41

●

●
●

●

●

●

●
●

●
●

●●

● ●
●

●
●

●● ●
●

● ●

●
●

●●

●●

●

●
●

● ● ●●

●●

●●● ●
● ●●

● ● ●

● ● ●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

● ●
●

●
●

●● ●
●

● ●

●
●

●●

●●

●

●
●

● ● ●●

●●

●●● ●
● ●●

● ● ●

● ● ●●
●

●

●
●

●

●

●

●

2012−08−01 2013−08−01

13
80

00
0

13
90

00
0

14
00

00
0

14
10

00
0

13
80

00
0

13
90

00
0

14
00

00
0

14
10

00
0

1830000

1840000

1850000

Easting

N
or
th
in
g

0.00

0.25

0.50

0.75

1.00
exceedance

Figure 11: Probabilities that the mean stream temperature will exceed the 13 °C threshold on August
1, 2012, and August 1, 2013, respectively across the 60 prediction locations in the Clearwater network.

4 Discussion and conclusions

The growing popularity of stream sensor arrays, in which repeated observations are taken at multiple
sites, requires models capable of accounting for spatial and temporal autocorrelation in stream network
data. However, there are only a limited number of computational methods and software packages
designed to account for the unique spatial dependence found in stream data (e.g. the R packages SSN,
SSN2 and smnet). The package described in the present paper extends the models implemented in
SSN by accounting for temporal dependence using Bayesian inference, which offers several benefits.
Enhanced features from this package and other benefits from the use of a Bayesian framework
include the computation of probabilistic estimates and network exceedance probabilities, the ability to
incorporate prior information, and the estimation of the proportion of degraded habitat.

We tested the performance of SSNbayes in multiple scenarios with simulated and real data and
found that the parameters are well estimated and the predictions are accurate in terms of RMSPE.
We also validated the results from a wide range of spatial model combinations to those obtained
using SSN based on simulated data. Spatial and spatio-temporal models tend to be slow to fit and
computationally intensive, which becomes more challenging within a Bayesian modelling framework.
This can become computationally prohibitive when the number of spatial locations is large because the
spatial covariance matrix must be iteratively inverted. We are currently exploring alternative methods
(such as variational Bayes) to be implemented within SSNbayes.

Future implementations will incorporate other modelling variations. Two of them are: (I) ex-
pressing ϕs as a linear combination of covariates such as elevation and watershed (an extension of
Case 2), and (II) using a 2-Nearest Neighbours (2-NN) method, where the off-diagonal elements of ΦΦΦ
are different from zero in the two closest, allowing temporal dependence to be established between
neighbouring spatial locations connected by flow (Santos-Fernandez et al., 2022). However, other
space-time covariance structures could also be implemented for stream network data, which allow
more modelling flexibility. For example, this implementation is based on a vector autoregression struc-
ture, but other models such as moving averages and ARIMA could also be considered. In addition,
we currently assume that the response variable is normally distributed, but other regression models
could be implemented by modifying the likelihood function in ssnbayes(). We are also actively
working on the development and implementation of models for anomaly detection in stream data
(Santos-Fernandez et al., 2023). The SSNbayes package is under constant development and new
features and model implementations are on their way.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSN
https://CRAN.R-project.org/package=SSN2
https://CRAN.R-project.org/package=smnet
https://CRAN.R-project.org/package=SSN
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSN
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=SSNbayes

CONTRIBUTED RESEARCH ARTICLE 42

Acknowledgement

This research was supported by the Australian Research Council (ARC) Linkage Project “Revolutionis-
ing water-quality monitoring in the information age” (ID: LP180101151) and the Centre of Excellence
for Mathematical and Statistical Frontiers (ACEMS). JMM was supported by an Australian Research
Council Discovery Project (DP200101263). We thank Dona Horan for the creation of the spatial stream
network (.ssn) object. Data analysis and computations were undertaken using the packages rstan
(Stan Development Team, 2018). Data visualizations were made with the packages ggplot2 (Wickham,
2016) and bayesplot (Gabry and Mahr, 2018).

Appendix

In this appendix, we illustrate the fit of a spatio-temporal stream network model within the Bayesian
framework with SSNbayes using a simulated example. These results can be reproduced using the
Kaggle notebook https://www.kaggle.com/code/edsans/ssnbayes-simulated. Several R packages
must be installed to successfully reproduce the simulation described in this section. Installing the
rstan can be tricky because you need to configure your R installation to be able to compile C++ code.
If you have not used the rstan before, please see https://github.com/stan-dev/rstan/wiki/RStan-
Getting-Started for easy-to-follow instructions about how to install the package.

Using simulated data

We generated some spatial data with the SSN package using a systematic design for the locations of
the observations and predictions. Note that the SSN package has been archived on CRAN.

Load the packages. Note that these packages can be installed
using the install.packages() function
library('tidyverse')
library('Rcpp')
library('StanHeaders')
library('rstan')
library('abind')
library('SSN')
library('SSN2')
library('bayesplot')
library('lubridate')
library('viridis')
library('ggrepel')
library('devtools')
library('RColorBrewer')
if(!require('SSNbayes')) install.packages("SSNbayes", dependencies = T)
library('SSNbayes')

Set some useful options for modelling
rstan_options(auto_write = TRUE) # avoid recompilation
options(mc.cores = parallel::detectCores())
RNGkind(sample.kind = "Rounding")

Set the seed for reproducibility
seed <- 202008
set.seed(seed)

Set the path for the SpatialStreamNetwork object created in the next step
path <- "./sim.ssn"

If it does not already exist, create a SpatialStreamNetworkObject
with 150 stream segments (edges). Use a systematic design to generate
observed and prediction locations on the network spaced
approximately 3 and 0.3 units apart, respectively.
if(file.exists(path)){

ssn <- importSSN(path, "preds")
} else{ssn <- createSSN(n = c(150), # 150 edges

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=rstan
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=bayesplot
https://CRAN.R-project.org/package=SSNbayes
https://www.kaggle.com/code/edsans/ssnbayes-simulated
https://CRAN.R-project.org/package=rstan
https://CRAN.R-project.org/package=rstan
https://CRAN.R-project.org/package=SSN
https://CRAN.R-project.org/package=SSN

CONTRIBUTED RESEARCH ARTICLE 43

obsDesign = systematicDesign(spacing=3),
predDesign = systematicDesign(spacing=0.3),
importToR = TRUE,
path = path, # path where the sns object is saved
treeFunction = iterativeTreeLayout)}

This produces a SpatialStreamNetwork object with 50 observation locations, which is our training
dataset. We also generated 499 prediction locations for testing.

Plot the edges and observed locations in the SpatialStreamNetwork object
plot(ssn, lwdLineCol = "addfunccol", lwdLineEx = 8,

lineCol = 4, col = 1, pch = 16, xlab = "x-coordinate", ylab = "y-coordinate")

Add the prediction locations
plot(ssn, PredPointsID = "preds", add = T, pch = 16, col = "#E41A1C")

Consider a response variable such as stream temperature. The aim is to predict this response
variable in the testing dataset borrowing information from other measurements across space and time
and using covariates such as air temperature. Predictions can be made at a subset of locations or across
all prediction locations on the whole network.

Distances within and between observation and prediction locations must be generated before
model fitting.

Create stream distance matrices
createDistMat(ssn, predpts = 'preds',o.write=TRUE, amongpreds = T)

We then need to simulate some data using some covariates, regression coefficients and a covariance
structure.

Extract the data.frames for the observed and prediction location data
rawDFobs <- getSSNdata.frame(ssn, Name = "Obs")
rawDFpred <- getSSNdata.frame(ssn, Name = "preds")

Extract the geographic coordinates from the SpatialStreamNetwork
object and add to data.frames
obs_data_coord <- data.frame(ssn@obspoints@SSNPoints[[1]]@point.coords)
obs_data_coord$pid<- as.numeric(rownames(obs_data_coord))
rawDFobs<- rawDFobs %>% left_join(obs_data_coord, by = c("pid"),

keep = FALSE)
rawDFobs$point <- "Obs" ## Create label for observed points

pred_data_coord <- data.frame(ssn@predpoints@SSNPoints[[1]]@point.coords)
pred_data_coord$pid<- as.numeric(rownames(pred_data_coord))
rawDFpred<- rawDFpred %>% left_join(pred_data_coord, by = "pid",

keep = FALSE)
rawDFpred$point <- "pred" ## Create label for prediction points

Generate 3 continuous covariates at observed and prediction locations
set.seed(seed)
rawDFpred[,"X1"] <- rnorm(length(rawDFpred[,1]))
rawDFpred[,"X2"] <- rnorm(length(rawDFpred[,1]))
rawDFpred[,"X3"] <- rnorm(length(rawDFpred[,1]))

rawDFobs[,"X1"] <- rnorm(length(rawDFobs[,1]))
rawDFobs[,"X2"] <- rnorm(length(rawDFobs[,1]))
rawDFobs[,"X3"] <- rnorm(length(rawDFobs[,1]))

Ensure the rownames still match the pid values used in the
SpatialStreamNetwork object
rownames(rawDFobs)<- as.character(rawDFobs$pid)
rownames(rawDFpred)<- as.character(rawDFpred$pid)

Put the new covariates back in the SpatialStreamNetwork object
ssn <- putSSNdata.frame(rawDFobs,ssn, Name = 'Obs')
ssn <- putSSNdata.frame(rawDFpred, ssn , Name = 'preds')

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 44

Simulate the response variable at observed and prediction locations
set.seed(seed)
sim.out <- SimulateOnSSN(ssn.object = ssn,

ObsSimDF = rawDFobs, ## observed data.frame
PredSimDF = rawDFpred, ## prediction data.frame
PredID = "preds", ## name of prediction dataset
formula = ~ X1 + X2 + X3,
coefficients = c(10, 1, 0, -1), ## regression coefficients
CorModels = c("Exponential.taildown"), ## covariance model
use.nugget = TRUE, ## include nugget effect
CorParms = c(3, 10, .1)) ## covariance parameters

Extract the SpatialStreamNetwork object from the list returned by
SimulateOnSSN and extract the observed and prediction site
data.frames. Notice the new column Sim_Values in the data.frames
sim.ssn <- sim.out$ssn.object
simDFobs <- getSSNdata.frame(sim.ssn,"Obs")
simDFpreds <- getSSNdata.frame(sim.ssn, "preds")
summary(simDFobs)

The SpatialStreamNetwork object we created only contains one simulated response for each
observation and prediction location and we can fit a spatial statistical model to the simulated data
using the glmssn function in the SSN package.

Fit a spatial stream network model using the Exponential tail-down function
glmssn.out <- glmssn(Sim_Values ~ X1 + X2 + X3, sim.ssn,

CorModels = "Exponential.taildown")
summary(glmssn.out)

In order to fit a space-time model using the SSNbayes package, we need repeated measurements
at each location. We now need to generate some time series with AR(1) error structure:

Create a data.frame containing training and test data.
df_obs <- getSSNdata.frame(sim.ssn, "Obs") ## Extract observed dataset
df_obs$dataset <- 'train' ## Create new column 'dataset' and set to 'train'
df_pred <- getSSNdata.frame(sim.ssn, "preds") ## Extract prediction dataset
df_pred$dataset <- 'test' ## Create new column 'dataset' and set to 'test'

Expand data.frames to include 10 days per location
t <- 10 # days
df_obs <- do.call("rbind", replicate(t, df_obs, simplify = FALSE))# replicating the df
df_obs$date <- rep(1:t, each = (nrow(df_obs)/t)) # Set date variable

df_pred <- do.call("rbind", replicate(t, df_pred, simplify = FALSE))# replicating the df
df_pred$date <- rep(1:t, each = (nrow(df_pred)/t)) # Set date variable

Create a copy of the pid value used in the SpatialStreamNetwork
object and create a new pid value for use in SSNbayes
package. Values must be consequtively ordered from 1 to the number
of rows in the data.frame
df_obs <- df_obs %>% mutate(pid.ssn = pid,

pid = rep(1:nrow(.)))
df_pred <- df_pred %>% mutate(pid.ssn = pid,

pid = rep(1:nrow(.)))

Combine the training and testing datasets
df <- rbind(df_obs, df_pred)
df$dataset <- factor(df$dataset, levels = c('train', 'test'))

Construct and initialize an autocorrelation structure of order 1
set.seed(seed)
phi <- 0.8 ## lag 1 autocorrelation value
ar1 <- corAR1(form = ~ unique(df$date), value = phi) # can also use corExp function
AR1 <- Initialize(ar1, data = data.frame(unique(df$date)))

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSN
https://CRAN.R-project.org/package=SSNbayes

CONTRIBUTED RESEARCH ARTICLE 45

Create a vector of AR1 errors for each date and expand to all all locations
epsilon <- t(chol(corMatrix(AR1))) %*% rnorm(length(unique(df$date)), 0, 3) #NB AR1 error
epsilon <- rep(epsilon, each = length(unique(df$locID))) +
rnorm(length(epsilon)*length(unique(df$locID)), 0, 0.25) # for all the locations

epsilon_df <- data.frame(date = rep(unique(df$date), each = length(unique(df$locID))),
locID = rep(unique(df$locID), times = length(unique(df$date))),
epsilon = epsilon)

df <- df %>% left_join(epsilon_df, by = c('date' = 'date', 'locID' = 'locID'))

Create a new simulated response variable, y, with errors added
df$y <- df$Sim_Values + df$epsilon

We can visualize the time series of the new simulated response at the observed and predicted
locations over time:

Create line plots of response over time for training and test datasets
ggplot(df) +
geom_line(aes(x = date, y = y, group = locID, col = dataset), alpha = 0.4) +
ylab("Simulated Temperature (\u00B0C)")+
facet_wrap(~dataset)+
theme_bw()

Figure 12 shows the stream temperature time series in the observations and predictions datasets.

train test

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

0

5

10

15

date

Te
m

pe
ra

tu
re

 (
°C

)

dataset

train

test

Figure 12: Evolution of the stream temperature time series in the observations and predictions datasets.
Each time series represent a spatial location.

Split the training and testing datasets. Ensure that date is numeric.
df <- df %>% dplyr::select(locID, pid, date, y, everything())
obs_data <- df[df$dataset == 'train',]
pred_data <- df[df$dataset == 'test',]
NB: the order in this data.fame MUST be: spatial locations (1 to S) at time t=1,
then locations (1 to S) at t=2 and so on.

The first prediction option in SSNbayes is to generate predictions for locations in the observed
dataset with missing data. To demonstrate, let us set approximately 30% of the observations per date
to missing, make predictions, and assess how well we retrieve the actual temperature values.

Randomly select observations by date
set.seed(seed)
points <- length(unique(obs_data$pid))
locs <- obs_data %>% dplyr::group_by(date) %>%

pull(pid) %>%
sample(., round(points * 0.3), replace = F) %>% sort()

Create a backup for the response before setting randomly selected

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSNbayes

CONTRIBUTED RESEARCH ARTICLE 46

measurements to NA
obs_data$y_backup <- obs_data$y
obs_data[obs_data$pid %in% locs,]$y <- NA

Let us visualize the network with the time series of observed temperature values. First we use the
collapse() function to extract the network structure from the the SpatialStreamNetwork object. The
facets (1-10) represent the date and there are a total of 150 missing observations (gray dots) which are
observations that we set to missing to assess the model predictive accuracy.

Extract stream (edge) network structure, including the additive function value
nets <- SSNbayes::collapse(ssn, par = 'addfunccol')

Create additive function value categories for plotting
Create additive function value categories for plotting
nets$afv_cat <- cut(nets$addfunccol,

breaks = seq(min(nets$addfunccol),
max(nets$addfunccol),
length.out=6),

labels = 1:5,
include.lowest = T)

Plot simulated temperature, by date, with line width proportional to afv_cat
ggplot(nets) +

geom_path(aes(X1, X2, group = slot, size = afv_cat), lineend = 'round',
linejoin = 'round', col = 'lightblue')+

geom_point(data = dplyr::filter(obs_data, date %in% 1:10),
aes(x = coords.x1, y = coords.x2, col = y, shape = point),
size = 1)+

scale_size_manual(values = seq(0.2,2,length.out = 5))+
facet_wrap(~date, nrow = 2)+
scale_color_viridis(option = 'C')+
scale_shape_manual(values = c(16,15))+
xlab("x-coordinate") +
ylab("y-coordinate")+
theme_bw()

●

●●

● ●

●●
●●

●●
●●

● ●

●
●

●

●●

●
●●

●●
●

●●
●

●●

●●

●●●●

●● ●●

●

●

●●

●● ●

●●

●

●●

● ●

●●
●●

●●
●●

● ●

●
●

●

●●

●
●●

●●
●

●●
●

●●

●●

●●●●

●● ●●

●

●

●●

●● ●

●●

●

●●

● ●

●●
●●

●●
●●

● ●

●
●

●

●●

●
●●

●●
●

●●
●

●●

●●

●●●●

●● ●●

●

●

●●

●● ●

●●

●

●●

● ●

●●
●●

●●
●●

● ●

●
●

●

●●

●
●●

●●
●

●●
●

●●

●●

●●●●

●● ●●

●

●

●●

●● ●

●●

●

●●

● ●

●●
●●

●●
●●

● ●

●
●

●

●●

●
●●

●●
●

●●
●

●●

●●

●●●●

●● ●●

●

●

●●

●● ●

●●

●

●●

● ●

●●
●●

●●
●●

● ●

●
●

●

●●

●
●●

●●
●

●●
●

●●

●●

●●●●

●● ●●

●

●

●●

●● ●

●●

●

●●

● ●

●●
●●

●●
●●

● ●

●
●

●

●●

●
●●

●●
●

●●
●

●●

●●

●●●●

●● ●●

●

●

●●

●● ●

●●

●

●●

● ●

●●
●●

●●
●●

● ●

●
●

●

●●

●
●●

●●
●

●●
●

●●

●●

●●●●

●● ●●

●

●

●●

●● ●

●●

●

●●

● ●

●●
●●

●●
●●

● ●

●
●

●

●●

●
●●

●●
●

●●
●

●●

●●

●●●●

●● ●●

●

●

●●

●● ●

●●

●

●●

● ●

●●
●●

●●
●●

● ●

●
●

●

●●

●
●●

●●
●

●●
●

●●

●●

●●●●

●● ●●

●

●

●●

●● ●

●●

6 7 8 9 10

1 2 3 4 5

−2 0 2 −2 0 2 −2 0 2 −2 0 2 −2 0 2

0

5

10

15

0

5

10

15

x−coordinate

y−
co

or
di

na
te

4

8

12

y

point

● Obs

afv_cat

1

2

3

4

5

Figure 13: Evolution of the stream temperature time series in the observation dataset across ten time
points.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 47

We then fit a Bayesian space-time model, with a tail-down covariance model and an AR(1) error
structure using the ssnbayes() function. Fitting the model took about 15 minutes on a laptop (i7 @1.80
GHz and 16GB RAM).

Fit a Bayesian space-time model
fit_td <- ssnbayes(formula = y ~ X1 + X2 + X3,

data = obs_data,
path = path,
time_method = list("ar", "date"), # temporal model to use
space_method = list('use_ssn', c("Exponential.taildown")), # spatial model
iter = 4000,
warmup = 2000,
chains = 3,
addfunccol = 'addfunccol',
loglik = T)

Create a copy of the model fit and set class so that we can take
advantage of plotting functions for stanfit objects
fits <- fit_td
class(fits) <- c("stanfit")

Extract summaries of the posterior distributions for the parameter
estimates and the predictions.
stats_td <- summary(fits)
stats_td <- stats_td$summary

One of the main benefits of this Bayesian approach is that the model produces probabilistic
estimates. Figures 14 and 15 show the posterior distributions of the four parameters in the spatio-
temporal model (σ2

TU , σ2
0 , α and ϕ) and the regression coefficients (intercept and slopes). The trace

plots for of these parameters can be found in the Appendix .0.1.

Create plots of the posterior distribution of the 3 regression
coefficients
mcmc_dens_overlay(
fits, #
pars = paste0("beta[",1:3,"]"),
facet_args = list(nrow = 1))

Plot the posterior distribution of phi
mcmc_intervals(
fits,
pars = paste0("phi"),
point_size = .1,
prob_outer = 0.95

)

Plot the posterior distribution for the nugget effect, partial sill.
and range parameters in the tail-down model
mcmc_dens_overlay(
fits,
pars = c(
"var_td",
"alpha_td",
"var_nug"),

facet_args = list(nrow = 1)
)

We then assess how accurate the predictions of the missing temperature values are compared to
the true held out values.

Create a data.frame containing summaries of the posterior predictive
distributions and the true values
ypred <- data.frame(stats_td[grep("y\\[", row.names(stats_td)),])
ypred$ytrue <- obs_data$y_backup #
ypred$date <- rep(1:t, each = nrow(obs_data)/t)

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 48

σ20 Φ

σ2td αtd

0.10 0.15 0.20 0.25 0.875 0.900 0.925 0.950 0.975

1.5 2.0 2.5 3.0 80 90 100
Chain

1
2
3

Figure 14: Posterior densities of the partial sill (σ2
TU), nugget effect (σ2

0), range (α) and temporal
autocorrelation ϕ parameters. These parameters are crucial for understanding the spatial and temporal
variability in the simulated stream network dataset.

β3 β4

β1 β2

−0.4 −0.2 0.0 −1.2 −1.0 −0.8 −0.6

2 4 6 0.8 0.9 1.0 1.1 1.2
Chain

1
2
3

Figure 15: Posterior densities of the regression coefficients (β) for the intercept (β1) and the three
covariates X1, X2, and X3 (β2, β3, and β4, respectively).

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 49

ypred$dataset <- ifelse(ypred$sd == 0, 'obs', 'pred')
ypred$td_exp <- ypred$mean

Create a plot of the predicted versus true values with 95% highest
density interval
filter(ypred, dataset == 'pred') %>% ggplot() +

geom_errorbar(data = ypred, aes(x=ytrue, ymin=X97.5., ymax=X2.5.),
col = 2, width=0.5, size=0.5, alpha = 0.75) +

geom_point(aes(x = ytrue , y = td_exp), col = 2)+
geom_abline(intercept = 0, slope = 1)+
facet_wrap(~date, nrow = 2) + coord_fixed() +

xlab('y true') + ylab('y estimated') + theme_bw()

Calculate the root mean square error (RMSE) between the true and
predicted values
rmse <- sqrt(mean(((ypred$ytrue) - ypred$td_exp)^2))
rmse

Calculate the 95% prediction coverage. Ideally, this should be close to 0.95.
ypred$cov <- ifelse(ypred$ytrue > ypred$X2.5. & ypred$ytrue<ypred$X97.5,1,0)
filter(ypred, dataset == 'pred') %>%
group_by(dataset) %>%
dplyr::summarize(mean(cov))

In Figure 17, we have plotted the means of the imputed values (with a 95% prediction interval)
against the true values of the missing data. As can be seen, the means of each imputed value largely
agree with the true value, with most prediction intervals (96%) containing the true value. The RMSE
of the predicted temperature (y) is 0.245 which is small compared to the magnitude of y (Mean = 7.621
and standard deviation = 3.489 degrees). Figure 16 shows the posterior densities of the predicted
temperature (y) for 8 measurements in the testing set.

y[13] y[16] y[23] y[29]

y[1] y[2] y[5] y[8]

5.0 5.5 6.0 6.5 7.0 7.5 1 2 3 4 3 4 5 4 5 6 7

1 2 3 4 2 3 4 −0.50.0 0.5 1.0 1.5 2.0 −1 0 1 2
Chain

1
2
3

Figure 16: Posterior densities for 8 temperature predictions (y).

0.1 Predictions on a new set of prediction locations

Environmental and ecological monitoring of stream networks often requires estimation of the response
variable of interest across the whole river network. In this section we illustrate how to use the fitted
model to predict at a new set of locations using Kriging. We will produce temperature predictions at
the 499 locations we generated previously using a systematic design.

Making predictions at a new set of prediction locations

Set the seed for reproducibility

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 50

●
●

●●

●

●

●
●

●
●

●

● ●

●

●

●●●

●●●

●
●

●

●

●●
●

●

●

●

●
●●
●

●

●

●
●

●

●●●

●●

●

●

●
●●

●
●

●
●

●

●

●

●●●

●

●

●●●

●

●

●

●
●

●●
●

●

●

●
●

●●
●

●

●

●

●
●●● ●

●
●

●

●

●●

●
●●
●

●

●
●

●●

●
●

●
●●●

●

●●
●
●
●

●

●
●

●

●

●

●●
●●

●●●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

6 7 8 9 10

1 2 3 4 5

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

0

5

10

15

0

5

10

15

y true

y
es

tim
at

ed

Figure 17: Scatterplot of predicted (i.e., estimated) temperature values versus the true latent values.
The error bars represent the 95% highest density interval, indicating the range of the most plausible
true values given the predictions.

set.seed(seed)

Extract the location IDs for prediction locations
locID_pred <- sort(unique(pred_data$locID))

Define a new column containing the response variable used in
fit_td, including missing values
obs_data$y_traintest <- obs_data$y

Replace y with the original response variable, containing no
missing values
obs_data$y <- obs_data$y_backup

Produce predictions: This takes approximately 8 minutes
pred <- predict(object = fit_td, ## fitted model

path = path, # path to .ssn object
obs_data = obs_data, # observed data.frame
pred_data = pred_data, # prediction data.frame
net = 1, # network identifier (optional)
nsamples = 100, # number of samples to use from the posterior
addfunccol = 'addfunccol', # variable used for spatial weights
locID_pred = locID_pred, # location identifier for predictions
chunk_size = 60) # split the predictions into subsets of this size

Convert the prediction data.frame from wide to long format
ys <- reshape2::melt(pred, id.vars = c('locID0',

'locID', 'date'), value.name ='y')

Create variable representing the iteration number and set variable
column to NULL
ys$iter <- gsub("[^0-9.-]", "", ys$variable)
ys$variable <- NULL

As we are using a simulated dataset, we can compare the out-of-sample predictions with the true
latent values in the same way we did previously (Figure 18).

We then visualize the posterior mean of the predictions on the full network (Figure 19).

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 51

6 7 8 9 10

1 2 3 4 5

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

0

5

10

15

0

5

10

15

y true

y
es

tim
at

ed

Figure 18: Scatter plot of predicted (i.e. estimated) temperature versus the true latent values. The plot
shows a strong linear relationship between the two, indicating good agreement between the true and
estimated values.

●

●

●●
●

●●
●

● ●

●

●

●●

●
●

●●
●

●●

●

●

●●●

●● ●

●

●● ●

●●

●

●

● ●

●●
●●

●

●

●
●

●

●

●
●●

●●

●●
●

●●

●●

●

●●

●●

●● ●

●

● ●

●
●●

●
●●

●

●

●
●

●
●

●●
●

●●

●

●●●●

●● ●●

●

●

●

●● ●

●

●●

● ● ●●
●●

●

●

●

●
●●

●
●

●●
●

●●
●●●●

●● ●●

●

●●

●● ●

●

●●●
●●

●
●●

● ●

●

●

●
●●

●
●

●
●

●●

●

●●●

●●

● ●

●● ●

●●

●

●●

● ●

●
●

●●

●

●

● ●
●●

●
●

●●

●●

●

●●●

●● ●

●

●●

●●

●●

●●●
●●

●●
●●

● ●

●
●

●

●

●
●

●

●●
●

●●
●●

●● ●

●

●●

●● ●

●

●

●●

● ●

●●

●
●●

● ●

●

●

●

●
●

●●
●

●●

●●

●
●

●●

●

●

●● ●

●●

●

●●

● ●

●

●
●●

● ●

●

●

●

●

●●
●

●●

●●

●

●●●●

● ●

●

●

●

● ●

●

●

●

● ●

●

●
●

● ●

●

●

●●

●●

●●
●

●
●

●

●

●●●

●● ●●

● ●●

●● ●

6 7 8 9 10

1 2 3 4 5

−2 0 2 −2 0 2 −2 0 2 −2 0 2 −2 0 2

0

5

10

15

0

5

10

15

x−coordinate

y−
co

or
di

na
te

point

● Obs

pred

0

5

10

15

y

Figure 19: Evolution of observed and predicted stream temperatures over the 10 dates. The plot
highlights the variability in water temperatures over time.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 52

Exceedance probabilities throughout the network

It is straightforward to make probabilistic statements about the predictions based on samples from the
posterior predictive distribution. In this example, we calculate the exceedance probabilities at each
prediction location based on a biological threshold of 13 °C.

Computing the exceedance probabilities

Create an exceedance indicator based on a threshold (i.e. limit)
limit <- 13
ys$exc <- ifelse(ys$y > limit , 1, 0) ## 1== TRUE, 0== FALSE

Calculate summary statistics for the predictions, by locID and date
and join to prediction data.frame
ys <- data.frame(ys) %>% dplyr::group_by(date, locID) %>%
dplyr::summarise(sd = sd(y, na.rm=T), ## prediction standard deviation

y_pred = mean(y, na.rm=T), ## mean temperature prediction
prop = mean(exc, na.rm=T)) ## exceedance probability

ys <- dplyr::arrange(ys, locID)
pred_data <- pred_data %>% left_join(ys, by = c('locID', 'date'), keep = FALSE)

Plot the exceedance probabilities for the prediction sites on 10 dates
ggplot(nets) +
geom_path(aes(X1, X2, group = slot, size = afv_cat), lineend = 'round',

linejoin = 'round', col = 'gray')+
geom_point(data = dplyr::filter(pred_data) ,

aes(x = coords.x1, y = coords.x2, col = prop), size = 1)+
scale_size_manual(values = seq(0.2,2,length.out = 5))+
facet_wrap(~date, nrow = 2)+
scale_color_viridis(option = 'C')+
scale_shape_manual(values = c(200))+
xlab("x-coordinate") +
ylab("y-coordinate")+
coord_fixed()+
theme_bw()+
theme(axis.text=element_text(size=12),

axis.title=element_text(size=13),
legend.text=element_text(size=13),
legend.title=element_text(size=13),
strip.text.x = element_text(size = 13),
axis.text.x = element_text(angle = 45, hjust=1),
strip.background =element_rect(fill='white'))+

guides(size = 'none')+
labs(size="", colour="exceedance")

Figure 20 shows the time series of the exceedance probabilities at prediction locations obtained
from the posterior predictive distributions. Knowing when and where temperature or other water
quality variables are likely to exceed critical thresholds provides valuable information for prioritizing
management and conservation activities.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 53

●
●
●
●
●
●
●

●●
●

●●
●

●
●
● ●●

●●

●
●
●

●●
●

●
●
●●

●
●
●

●
●
●
●

●
●

●
●
●
●
● ●

●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●
●●

●●

●
●
●
●
●
●
●●

●
●

●
●
●
● ●

●
●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●

●●
●

●
●
● ●

●
●

●
●
●●●
●●

●
●
●
●

●●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●
●

●
●
●

●●
●

●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●

●●
●●

●●
●

●
●
●
●

●
●
●

●
●

●
●

●●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●●
●

●
●
●
●
●
●
●

●
●
●

●●
●

●
●
●
●
●
●

●●
●●

●
●
●
●
●
●

●●
●

●●
●

●
●
●

●●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●

●●
●●

●
●
●
●

●
●
●

●
●
●
●
●
●

●●
●

●
●
●

●
●
●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●●

●●
●

●●
●

●
●
●

●
●
●

●●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●
●
●

●●
●●

●
●
●
●

●
●
●
●
●
●

●
●
●

●●
●

●●
●

●
●
●

●
●

●
●
●
●

●
●
●
●●

●
●
●
●
●

●●
●

●
●
●

●●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●

●●
●

●
●
● ●●

●●

●
●
●

●●
●

●
●
●●

●
●
●

●
●
●
●

●
●

●
●
●
●
● ●

●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●
●●

●●

●
●
●
●
●
●
●●

●
●

●
●
●
● ●

●
●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●

●●
●

●
●
● ●

●
●

●
●
●●●
●●

●
●
●
●

●●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●
●

●
●
●

●●
●

●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●

●●
●●

●
●●

●
●
●
●

●
●
●

●
●

●
●

●●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●●
●

●
●
●
●
●
●
●

●
●
●

●●
●

●
●
●
●
●
●

●●
●●

●
●
●
●
●
●

●●
●

●●
●

●
●
●

●●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●

●●
●●

●
●
●
●

●
●
●

●
●
●
●
●
●

●●
●

●
●
●

●
●
●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●●

●●
●

●●
●

●
●
●

●
●
●

●●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●
●
●

●●
●●

●
●
●
●

●
●
●
●
●
●

●
●
●

●●
●

●●
●

●
●
●

●
●

●
●
●
●

●
●
●
●●

●
●
●
●
●

●●
●

●
●
●

●●
●●

●
●
●

●
●
●
●
●
●
●

●●
●

●●
●

●
●
● ●●

●●

●
●
●

●●
●

●
●
●●

●
●
●

●
●
●
●

●
●

●
●
●
●
● ●

●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●
●●

●●

●
●
●
●
●
●
●●

●
●

●
●
●
● ●

●
●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●

●●
●

●
●
● ●

●
●

●
●
●●●
●●

●
●
●
●

●●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●
●

●
●
●

●●
●

●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●

●●
●●

●●
●

●
●
●
●

●
●
●

●
●

●
●

●●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●●
●

●
●
●
●
●
●
●

●
●
●

●●
●

●
●
●
●
●
●

●●
●●

●
●
●
●
●
●

●●
●

●●
●

●
●
●

●●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●

●●
●●

●
●
●
●

●
●
●

●
●
●
●
●
●

●●
●

●
●
●

●
●
●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●●

●●
●

●●
●

●
●
●

●
●
●

●●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●
●
●

●●
●●

●
●
●
●

●
●
●
●
●
●

●
●
●

●●
●

●●
●

●
●
●

●
●

●
●
●
●

●
●
●
●●

●
●
●
●
●

●●
●

●
●
●

●●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●

●●
●

●
●
● ●●

●●

●
●
●

●●
●

●
●
●●

●
●
●

●
●
●
●

●
●

●
●
●
●
● ●

●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●
●●

●●

●
●
●
●
●
●
●●

●
●

●
●
●
● ●

●
●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●

●●
●

●
●
● ●

●
●

●
●
●●●
●●

●
●
●
●

●●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●
●

●
●
●

●●
●

●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●

●●
●●

●
●●

●
●
●
●

●
●
●

●
●

●
●

●●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●●
●

●
●
●
●
●
●
●

●
●
●

●●
●

●
●
●
●
●
●

●●
●●

●
●
●
●
●
●

●●
●

●●
●

●
●
●

●●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●

●●
●●

●
●
●
●

●
●
●

●
●
●
●
●
●

●●
●

●
●
●

●
●
●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●●

●●
●

●●
●

●
●
●

●
●
●

●●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●
●
●

●●
●●

●
●
●
●

●
●
●
●
●
●

●
●
●

●●
●

●●
●

●
●
●

●
●

●
●
●
●

●
●
●
●●

●
●
●
●
●

●●
●

●
●
●

●●
●●

●
●
●

●
●
●
●
●
●
●

●●
●

●●
●

●
●
● ●●

●●

●
●
●

●●
●

●
●
●●

●
●
●

●
●
●
●

●
●

●
●
●
●
● ●

●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●
●●

●●

●
●
●
●
●
●
●●

●
●

●
●
●
● ●

●
●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●

●●
●

●
●
● ●

●
●

●
●
●●●
●●

●
●
●
●

●●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●
●

●
●
●

●●
●

●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●

●●
●●

●●
●

●
●
●
●

●
●
●

●
●

●
●

●●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●●
●

●
●
●
●
●
●
●

●
●
●

●●
●

●
●
●
●
●
●

●●
●●

●
●
●
●
●
●

●●● ●●
●

●
●
●

●●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●

●●
●●

●
●
●
●

●
●
●

●
●
●
●
●
●

●●
●

●
●
●

●
●
●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●●

●●
●

●●
●

●
●
●

●
●
●

●●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●
●
●

●●
●●

●
●
●
●

●
●
●
●
●
●

●
●
●

●●
●

●●
●

●
●
●

●
●

●
●
●
●

●
●
●
●●

●
●
●
●
●

●●
●

●
●
●

●●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●

●●
●

●
●
● ●●

●●

●
●
●

●●
●

●
●
●●

●
●
●

●
●
●
●

●
●

●
●
●
●
● ●

●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●
●●

●●

●
●
●
●
●
●
●●

●
●

●
●
●
● ●

●
●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●

●●
●

●
●
● ●

●
●

●
●
●●●
●●

●
●
●
●

●●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●
●

●
●
●

●●
●

●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●

●●
●●

●
●●

●
●
●
●

●
●
●

●
●

●
●

●●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●●
●

●
●
●
●
●
●
●

●
●
●

●●
●

●
●
●
●
●
●

●●
●●

●
●
●
●
●
●

●●● ●●
●

●
●
●

●●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●

●●
●●

●
●
●
●

●
●
●

●
●
●
●
●
●

●●
●

●
●
●

●
●
●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●●

●●
●

●●
●

●
●
●

●
●
●

●●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●
●
●

●●
●●

●
●
●
●

●
●
●
●
●
●

●
●
●

●●
●

●●
●

●
●
●

●
●

●
●
●
●

●
●
●
●●

●
●
●
●
●

●●
●

●
●
●

●●
●●

●
●
●

●
●
●
●
●
●
●

●●
●

●●
●

●
●
● ●●

●●

●
●
●

●●
●

●
●
●●

●
●
●

●
●
●
●

●
●

●
●
●
●
● ●

●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●
●●

●●

●
●
●
●
●
●
●●

●
●

●
●
●
● ●

●
●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●

●●
●

●
●
● ●

●
●

●
●
●●●
●●

●
●
●
●

●●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●
●

●
●
●

●●
●

●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●

●●
●●

●●
●

●
●
●
●

●
●
●

●
●

●
●

●●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●●
●

●
●
●
●
●
●
●

●
●
●

●●
●

●
●
●
●
●
●

●●
●●

●
●
●
●
●
●

●●● ●●
●

●
●
●

●●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●

●●
●●

●
●
●
●

●
●
●

●
●
●
●
●
●

●●
●

●
●
●

●
●
●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●●

●●
●

●●
●

●
●
●

●
●
●

●●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●
●
●

●●
●●

●
●
●
●

●
●
●
●
●
●

●
●
●

●●
●

●●
●

●
●
●

●
●

●
●
●
●

●
●
●
●●

●
●
●
●
●

●●
●

●
●
●

●●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●

●●
●

●
●
● ●●

●●

●
●
●

●●
●

●
●
●●

●
●
●

●
●
●
●

●
●

●
●
●
●
● ●

●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●
●●

●●

●
●
●
●
●
●
●●

●
●

●
●
●
● ●

●
●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●

●●
●

●
●
● ●

●
●

●
●
●●●
●●

●
●
●
●

●●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●
●

●
●
●

●●
●

●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●

●●
●●

●
●●

●
●
●
●

●
●
●

●
●

●
●

●●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●●
●

●
●
●
●
●
●
●

●
●
●

●●
●

●
●
●
●
●
●

●●
●●

●
●
●
●
●
●

●●● ●●
●

●
●
●

●●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●

●●
●●

●
●
●
●

●
●
●

●
●
●
●
●
●

●●
●

●
●
●

●
●
●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●●

●●
●

●●
●

●
●
●

●
●
●

●●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●
●
●

●●
●●

●
●
●
●

●
●
●
●
●
●

●
●
●

●●
●

●●
●

●
●
●

●
●

●
●
●
●

●
●
●
●●

●
●
●
●
●

●●
●

●
●
●

●●
●●

●
●
●

●
●
●
●
●
●
●

●●
●

●●
●

●
●
● ●●

●●

●
●
●

●●
●

●
●
●●

●
●
●

●
●
●
●

●
●

●
●
●
●
● ●

●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●
●●

●●

●
●
●
●
●
●
●●

●
●

●
●
●
● ●

●
●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●

●●
●

●
●
● ●

●
●

●
●
●●●
●●

●
●
●
●

●●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●
●

●
●
●

●●
●

●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●

●●
●●

●●
●

●
●
●
●

●
●
●

●
●

●
●

●●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●●
●

●
●
●
●
●
●
●

●
●
●

●●
●

●
●
●
●
●
●

●●
●●

●
●
●
●
●
●

●●
●

●●
●

●
●
●

●●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●

●●
●●

●
●
●
●

●
●
●

●
●
●
●
●
●

●●
●

●
●
●

●
●
●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●●

●●
●

●●
●

●
●
●

●
●
●

●●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●
●
●

●●
●●

●
●
●
●

●
●
●
●
●
●

●
●
●

●●
●

●●
●

●
●
●

●
●

●
●
●
●

●
●
●
●●

●
●
●
●
●

●●
●

●
●
●

●●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●

●●
●

●
●
● ●●

●●

●
●
●

●●
●

●
●
●●

●
●
●

●
●
●
●

●
●

●
●
●
●
● ●

●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●
●●

●●

●
●
●
●
●
●
●●

●
●

●
●
●
● ●

●
●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●

●
●

●
●

●●
●●

●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●

●●
●

●
●
● ●

●
●

●
●
●●●
●●

●
●
●
●

●●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●
●

●
●
●

●●
●

●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●

●●
●●

●
●●

●
●
●
●

●
●
●

●
●

●
●

●●
●

●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●●
●

●
●
●
●
●
●
●

●
●
●

●●
●

●
●
●
●
●
●

●●
●●

●
●
●
●
●
●

●●
●

●●
●

●
●
●

●●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●

●●
●●

●
●
●
●

●
●
●

●
●
●
●
●
●

●●
●

●
●
●

●
●
●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●●
●●

●●
●

●●
●

●
●
●

●
●
●

●●
●

●
●
●
●

●●
●

●
●
●
●

●
●
●
●
●
●

●●
●●

●
●
●
●

●
●
●
●
●
●

●
●
●

●●
●

●●
●

●
●
●

●
●

●
●
●
●

●
●
●
●●

●
●
●
●
●

●●
●

●
●
●

●●
●●

●
●
●

6 7 8 9 10

1 2 3 4 5

−2 0 2 −2 0 2 −2 0 2 −2 0 2 −2 0 2

0

5

10

15

0

5

10

15

x−coordinate

y−
co

or
di

na
te

0.00

0.25

0.50

0.75

1.00
exceedance

Figure 20: Network exceedance probabilities across the ten dates. The yellow regions represent the
areas where the probability of exceeding the limit is high.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 54

Other results

Trace plots are often used to visually assess convergence when parameters are estimated in a Bayesian
model. These can be generated easily from the stanfit object we saved earlier (fits) and the traceplot
function in rstan .

σ20 Φ

σ2td αtd

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000
70

80

90

100

0.90

0.95

1.00

1.0

1.5

2.0

2.5

3.0

0.10

0.15

0.20

0.25

Chain

1
2
3

Figure 21: Trace plots of the spatial covariance parameters including the partial sill (σ2
TD), nugget effect

(σ2
0), range (α), and the temporal autocorrelation parameter, ϕ, showing good mixing of the chains.

References

G. Bal, E. Rivot, J.-L. Baglinière, J. White, and E. Prévost. A hierarchical Bayesian model to quantify
uncertainty of stream water temperature forecasts. PLoS One, 9(12):e115659, 2014. [p34]

S. Banerjee, B. P. Carlin, and A. E. Gelfand. Hierarchical modeling and analysis for spatial data. CRC press,
2014. [p28, 32]

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo,
P. Li, and A. Riddell. Stan: A probabilistic programming language. Journal of statistical software, 76
(1), 2017. [p27, 32]

N. Cressie and C. K. Wikle. Statistics for spatio-temporal data. John Wiley & Sons, 2015. [p28]

N. Cressie, J. Frey, B. Harch, and M. Smith. Spatial prediction on a river network. Journal of Agricultural,
Biological, and Environmental Statistics, 11(2):127, 2006. [p29]

C. Donegan. geostan: Bayesian spatial analysis (R package), 2022. URL https://cran.r-project.org/
package=geostan. The Comprehensive R Archive Network. [p27]

M. Dumelle, E. Peterson, J. M. Ver Hoef, A. Pearse, and D. Isaak. SSN2: Spatial Modeling on Stream
Networks in R, 2023. R package version 0.1.0. [p26]

ESRI. ArcGIS Desktop. Environmental Systems Research Institute., Redlands, CA., 2019. [p33]

A. O. Finley, S. Banerjee, and A. E.Gelfand. spBayes for large univariate and multivariate point-
referenced spatio-temporal data models. Journal of Statistical Software, 63(13):1–28, 2015. URL
http://www.jstatsoft.org/v63/i13/. [p27]

J. C. Frieden, E. E. Peterson, J. A. Webb, and P. M. Negus. Improving the predictive power of
spatial statistical models of stream macroinvertebrates using weighted autocovariance functions.
Environmental Modelling & Software, 60:320–330, 2014. [p30]

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=rstan
https://cran.r-project.org/package=geostan
https://cran.r-project.org/package=geostan
http://www.jstatsoft.org/v63/i13/

CONTRIBUTED RESEARCH ARTICLE 55

β3 β4

β1 β2

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000
0.7

0.8

0.9

1.0

1.1

1.2

1.3

−1.2

−1.0

−0.8

−0.6

2

4

6

8

−0.4

−0.2

0.0

0.2

Chain

1
2
3

Figure 22: Trace plots of the regression coefficients (β).

y[13] y[16] y[23] y[29]

y[1] y[2] y[5] y[8]

0 500100015002000 0 500100015002000 0 500100015002000 0 500100015002000

0 500100015002000 0 500100015002000 0 500100015002000 0 500100015002000

−1

0

1

2

3

4

5

6

7

0

1

2

3

4

5

2

3

4

0

1

2

3

4

0

1

2

3

4

5

6

7

Chain

1
2
3

Figure 23: Trace plots of the predicted temperature (y) in eight prediction points.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 56

J. Gabry and T. Mahr. bayesplot: Plotting for Bayesian Models, 2018. URL https://CRAN.R-project.org/
package=bayesplot. R package version 1.6.0. [p36, 42]

V. Garreta, P. Monestiez, and J. M. Ver Hoef. Spatial modelling and prediction on river networks: up
model, down model or hybrid? Environmetrics, 21(5):439–456, 2010. [p29]

A. E. Gelfand, M. Fuentes, J. A. Hoeting, and R. L. Smith. Handbook of environmental and ecological
statistics. CRC Press, 2019. [p32]

J. D. Hamilton. Time series analysis. Princeton university press, 1994. [p31]

R. J. Hyndman and Y. Khandakar. Automatic time series forecasting: the forecast package for R. Journal
of Statistical Software, 26(3):1–22, 2008. URL https://www.jstatsoft.org/article/view/v027i03.
[p34]

D. J. Isaak, E. E. Peterson, J. M. Ver Hoef, S. J. Wenger, J. A. Falke, C. E. Torgersen, C. Sowder, E. A.
Steel, M.-J. Fortin, C. E. Jordan, et al. Applications of spatial statistical network models to stream
data. Wiley Interdisciplinary Reviews: Water, 1(3):277–294, 2014. [p29]

D. J. Isaak, M. K. Young, C. H. Luce, S. W. Hostetler, S. J. Wenger, E. E. Peterson, J. M. Ver Hoef, M. C.
Groce, D. L. Horan, and D. E. Nagel. Slow climate velocities of mountain streams portend their
role as refugia for cold-water biodiversity. Proceedings of the National Academy of Sciences, 113(16):
4374–4379, 2016. [p39]

D. J. Isaak, S. J. Wenger, E. E. Peterson, J. M. Ver Hoef, D. E. Nagel, C. H. Luce, S. W. Hostetler,
J. B. Dunham, B. B. Roper, S. P. Wollrab, G. L. Chandler, D. L. Horan, and S. Parkes-Payne.
The NorWeST summer stream temperature model and scenarios for the western US: A crowd-
sourced database and new geospatial tools foster a user community and predict broad cli-
mate warming of rivers and streams. Water Resources Research, 53(11):9181–9205, 2017. doi:
https://doi.org/10.1002/2017WR020969. URL https://agupubs.onlinelibrary.wiley.com/doi/
abs/10.1002/2017WR020969. [p34, 37]

D. J. Isaak, C. H. Luce, G. L. Chandler, D. L. Horan, and S. P. Wollrab. Principal components of thermal
regimes in mountain river networks. Hydrology and Earth System Sciences, 22(12):6225–6240, 2018.
[p26]

F. L. Jackson, R. J. Fryer, D. M. Hannah, C. P. Millar, and I. A. Malcolm. A spatio-temporal statistical
model of maximum daily river temperatures to inform the management of Scotland’s Atlantic
salmon rivers under climate change. Science of the Total Environment, 612:1543–1558, 2018. [p29]

M. Kattwinkel, E. Szöcs, E. Peterson, and R. B. Schäfer. Preparing gis data for analysis of stream
monitoring data: The r package openstars. PLOS ONE, 15(9):1–10, 09 2020. doi: 10.1371/journal.
pone.0239237. URL https://doi.org/10.1371/journal.pone.0239237. [p33]

D. Lee. CARBayes: An R package for Bayesian spatial modeling with conditional autoregressive
priors. Journal of Statistical Software, 55(13):1–24, 2013. URL http://www.jstatsoft.org/v55/i13/.
[p27]

F. Lindgren and H. Rue. Bayesian spatial modelling with R-INLA. Journal of Statistical Software, 63(19):
1–25, 2015. URL http://www.jstatsoft.org/v63/i19/. [p27]

K. J. McGuire, C. E. Torgersen, G. E. Likens, D. C. Buso, W. H. Lowe, and S. W. Bailey. Network
analysis reveals multiscale controls on streamwater chemistry. Proceedings of the National Academy of
Sciences, 111(19):7030–7035, 2014. doi: 10.1073/pnas.1404820111. URL https://www.pnas.org/doi/
abs/10.1073/pnas.1404820111. [p39]

M. G. McManus, E. D’Amico, E. M. Smith, R. Polinsky, J. Ackerman, and K. Tyler. Variation in stream
network relationships and geospatial predictions of watershed conductivity. Freshwater Science, 39
(4):704–721, 2020. [p29]

E. Money, G. P. Carter, and M. L. Serre. Using river distances in the space/time estimation of dissolved
oxygen along two impaired river networks in new jersey. Water Research, 43(7):1948–1958, 2009a.
[p29]

E. S. Money, G. P. Carter, and M. L. Serre. Modern space/time geostatistics using river distances: data
integration of turbidity and E. coli measurements to assess fecal contamination along the raritan
river in New Jersey. Environmental Science & Technology, 43(10):3736–3742, 2009b. [p29]

E. Pebesma. CRAN Task View: Handling and Analyzing Spatio-Temporal Data. https://cran.r-
project.org/web/views/SpatioTemporal.html, 2021. Accessed: 2021-04-13. [p27]

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=bayesplot
https://CRAN.R-project.org/package=bayesplot
https://www.jstatsoft.org/article/view/v027i03
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR020969
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR020969
https://doi.org/10.1371/journal.pone.0239237
http://www.jstatsoft.org/v55/i13/
http://www.jstatsoft.org/v63/i19/
https://www.pnas.org/doi/abs/10.1073/pnas.1404820111
https://www.pnas.org/doi/abs/10.1073/pnas.1404820111
https://cran.r-project.org/web/views/SpatioTemporal.html
https://cran.r-project.org/web/views/SpatioTemporal.html

CONTRIBUTED RESEARCH ARTICLE 57

E. Peterson and J. M. Ver Hoef. STARS: An arcgis toolset used to calculate the spatial information
needed to fit spatial statistical models to stream network data. Journal of Statistical Software, 56(2):
1–17, 2014. [p30, 33, 34]

E. E. Peterson and J. M. Ver Hoef. A mixed-model moving-average approach to geostatistical modeling
in stream networks. Ecology, 91(3):644–651, 2010. [p28, 30, 39]

E. E. Peterson, A. A. Merton, D. M. Theobald, and N. S. Urquhart. Patterns of spatial autocorrelation
in stream water chemistry. Environmental Monitoring and Assessment, 121(1):571–596, 2006. [p28]

E. E. Peterson, J. M. Ver Hoef, D. J. Isaak, J. A. Falke, M.-J. Fortin, C. E. Jordan, K. McNyset, P. Monestiez,
A. S. Ruesch, A. Sengupta, et al. Modelling dendritic ecological networks in space: an integrated
network perspective. Ecology Letters, 16(5):707–719, 2013. [p28]

J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team. nlme: Linear and Nonlinear Mixed Effects
Models, 2020. URL https://CRAN.R-project.org/package=nlme. R package version 3.1-148. [p27]

J. C. Pinheiro and D. M. Bates. Mixed-Effects Models in S and S-PLUS. Springer, New York, 2000. doi:
10.1007/b98882. [p27]

P. J. Ribeiro Jr, P. J. Diggle, M. Schlather, R. Bivand, and B. Ripley. geoR: Analysis of Geostatistical Data,
2020. URL https://CRAN.R-project.org/package=geoR. R package version 1.8-1. [p27]

P. M. Rodríguez-González, C. García, A. Albuquerque, T. Monteiro-Henriques, C. Faria, J. B. Guimarães,
D. Mendonça, F. Simões, M. T. Ferreira, A. Mendes, et al. A spatial stream-network approach assists
in managing the remnant genetic diversity of riparian forests. Scientific Reports, 9(1):1–10, 2019.
[p29]

A. Rushworth. smnet: Smoothing for Stream Network Data, 2017. URL https://CRAN.R-project.org/
package=smnet. R package version 2.1.1. [p26]

S. K. Sahu, D. P. Lee, and K. S. Bakar. bmstdr: Bayesian Modeling of Spatio-Temporal Data with R, 2022.
URL https://CRAN.R-project.org/package=bmstdr. R package version 0.3.0. [p27]

E. Santos-Fernandez. SSNdata: Spatial stream network datasets, 2022. URL https://github.com/
EdgarSantos-Fernandez/SSNdata. [p33]

E. Santos-Fernandez, J. M. Ver Hoef, E. E. Peterson, J. McGree, D. J. Isaak, and K. Mengersen. Bayesian
spatio-temporal models for stream networks. Computational Statistics & Data Analysis, 170:107446,
2022. [p30, 31, 33, 38, 39, 41]

E. Santos-Fernandez, J. M. Ver Hoef, E. E. Peterson, J. McGree, C. A. Villa, C. Leigh, R. Turner,
C. Roberts, and K. Mengersen. Unsupervised anomaly detection in spatio-temporal stream network
sensor data. preprint, 2023. [p41]

M. Schlather, A. Malinowski, P. J. Menck, M. Oesting, and K. Strokorb. Analysis, simulation and
prediction of multivariate random fields with package RandomFields. Journal of Statistical Software,
63(8):1–25, 2015. URL http://www.jstatsoft.org/v63/i08/. [p27]

J. O. Skoien, G. Bloschl, G. Laaha, E. Pebesma, J. Parajka, and A. Viglione. Rtop: An r package
for interpolation of data with a variable spatial support, with an example from river networks.
Computers & Geosciences, 2014. [p26]

Stan Development Team. RStan: the R interface to Stan, 2018. URL http://mc-stan.org/. R package
version 2.18.2. [p42]

J. M. Ver Hoef and E. E. Peterson. A moving average approach for spatial statistical models of stream
networks. Journal of the American Statistical Association, 105(489):6–18, 2010. [p29, 30]

J. M. Ver Hoef, E. Peterson, and D. Theobald. Spatial statistical models that use flow and stream
distance. Environmental and Ecological statistics, 13(4):449–464, 2006. [p29, 30]

J. M. Ver Hoef, E. Peterson, D. Clifford, and R. Shah. SSN: An R package for spatial statistical modeling
on stream networks. Journal of Statistical Software, 56(3):1–45, 2014. [p26, 30, 39]

C. J. Vörösmarty, P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden,
S. E. Bunn, C. A. Sullivan, C. R. Liermann, et al. Global threats to human water security and river
biodiversity. Nature, 467(7315):555–561, 2010. [p26]

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=geoR
https://CRAN.R-project.org/package=smnet
https://CRAN.R-project.org/package=smnet
https://CRAN.R-project.org/package=bmstdr
https://github.com/EdgarSantos-Fernandez/SSNdata
https://github.com/EdgarSantos-Fernandez/SSNdata
http://www.jstatsoft.org/v63/i08/
http://mc-stan.org/

CONTRIBUTED RESEARCH ARTICLE 58

H. Wickham. Reshaping data with the reshape package. Journal of Statistical Software, 21(12):1–20, 2007.
URL http://www.jstatsoft.org/v21/i12/. [p38]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p42]

C. K. Wikle, L. M. Berliner, and N. Cressie. Hierarchical bayesian space-time models. Environmental
and Ecological Statistics, 5(2):117–154, 1998. [p31]

C. K. Wikle, A. Zammit-Mangion, and N. Cressie. Spatio-temporal Statistics with R. CRC Press, 2019.
[p32]

A. Zammit-Mangion and N. Cressie. Frk: an r package for spatial and spatio-temporal prediction with
large datasets. Journal of Statistical Software, 98(4):1–48, 2021. [p27]

Edgar Santos-Fernandez
School of Mathematical Sciences, Queensland University of Technology
Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS)
Y Block, Floor 8, Gardens Point Campus. GPO Box 2434. Brisbane, QLD 4001.
Australia
ORCiD: 0000-0001-5962-5417
santosfe@qut.edu.au

Jay M. Ver Hoef
Marine Mammal Laboratory, NOAA-NMFS Alaska Fisheries Science Center.
Seattle, WA and Fairbanks, AK, USA
ORCiD: 0000-0003-4302-6895
jay.verhoef@noaa.gov

James McGree
School of Mathematical Sciences, Queensland University of Technology

ORCiD: 0000-0003-2997-8929
james.mcgree@qut.edu.au

Daniel J. Isaak
Rocky Mountain Research Station, US Forest Service

ORCiD: 0000-0002-8137-325X
Daniel.isaak@usda.gov

Kerrie Mengersen
School of Mathematical Sciences, Queensland University of Technology
Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS)
Y Block, Floor 8, Gardens Point Campus. GPO Box 2434. Brisbane, QLD 4001.
Australia
ORCiD: 0000-0001-8625-9168
k.mengersen@qut.edu.au

Erin E. Peterson
EP Consulting
School of Mathematical Sciences, Queensland University of Technology
Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS)
Y Block, Floor 8, Gardens Point Campus. GPO Box 2434. Brisbane, QLD 4001.
Australia
ORCiD: 0000-0003-2992-0372
erin@peterson-consulting.com

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

http://www.jstatsoft.org/v21/i12/
https://ggplot2.tidyverse.org
https://orcid.org/0000-0001-5962-5417
mailto:santosfe@qut.edu.au
https://orcid.org/0000-0003-4302-6895
mailto:jay.verhoef@noaa.gov
https://orcid.org/0000-0003-2997-8929
mailto:james.mcgree@qut.edu.au
https://orcid.org/0000-0002-8137-325X
mailto:Daniel.isaak@usda.gov
https://orcid.org/0000-0001-8625-9168
mailto:k.mengersen@qut.edu.au
https://orcid.org/0000-0003-2992-0372
mailto:erin@peterson-consulting.com

	SSNbayes: An R Package for Bayesian Spatio-Temporal Modelling on Stream Networks
	Introduction
	Motivating dataset: repeated measures from in-situ sensor locations in a river
	A brief review

	Methods
	Spatial models for stream networks
	Mixed models
	Spatio-temporal stream network models
	Vector autoregressive model variations
	Bayesian inference and specification of prior distributions
	Prediction

	The SSNbayes package
	Data pre-processing
	Installation
	Modelling stream temperatures
	Visualizing stream network data in space and time
	Fitting spatio-temporal linear models
	Exploring results
	Predictions

	Discussion and conclusions
	Predictions on a new set of prediction locations

