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clustAnalytics: An R Package for
Assessing Stability and Significance of
Communities in Networks
by Martí Renedo-Mirambell and Argimiro Arratia

Abstract This paper introduces the R package clustAnalytics, which comprises a set of criteria for
assessing the significance and stability of communities in networks found by any clustering algorithm.
clustAnalytics works with graphs of class igraph from the R-package igraph, extended to handle
weighted and/or directed graphs. clustAnalytics provides a set of community scoring functions, and
methods to systematically compare their values to those of a suitable null model, which are of use
when testing for cluster significance. It also provides a non parametric bootstrap method combined
with similarity metrics derived from information theory and combinatorics, useful when testing for
cluster stability, as well as a method to synthetically generate a weighted network with a ground truth
community structure based on the preferential attachment model construction, producing networks
with communities and scale-free degree distribution.

1 Introduction

The segmentation of a network into communities such that individuals in the same community
share similar features, whilst individuals across communities are dissimilar is a technique known
as clustering, and is a principal task in the analysis of networks. This can be achieved by various
algorithms that differ significantly in their understanding of what constitutes a community (or cluster)
and in the way to find them. Once a clustering algorithm is selected, the user is faced with the problem
of determining how meaningful the clusters obtained are. Here is where clustAnalytics comes into
play.

clustAnalytics contains a suite of novel methods to validate the partitions of networks obtained
by any given clustering algorithm. In particular, its clustering validation methods focus on two of
the most important aspects of cluster assessment: the significance and the stability of the resulting
clusters. Clusters produced by a clustering algorithm are considered to be significant if there are
strong connections within each cluster, and weaker connections (or fewer edges) between different
clusters. On the other hand, stability measures how much a clustering remains unchanged under small
perturbations of the network. In the case of weighted networks, these could include the addition and
removal of vertices, as well as the perturbation of edge weights.

clustAnalytics handles weighted networks (that is, those in which the connections between nodes
have an assigned numerical value representing some property of the data), as well as unweighted, and
contains several other functionalities for producing different statistics on a network, and measures of
similarity of partitions produced by two different clustering algorithms, most notably an enhanced
version of the Reduced Mutual Information (RMI) of Newman et al. (2020). In the following sections
we introduce some examples of usage and highlight the principal tasks resolved by clustAnalytics.

2 Background concepts

Community detection on networks, which are represented by graphs, is a very active topic of research
with many applications. The igraph (Csardi and Nepusz, 2006) package contains a collection of the
most popular algorithms for this task, such as the Louvain (Blondel et al., 2008), walktrap (Pons and
Latapy, 2005) and label propagation Raghavan et al. (2007) algorithms.

Evaluating the significance of the community structure of a network is no simple task, because there
is not an authoritative definition of what a significant community is. However, there is some agreement
in the literature (see the survey by Fortunato (2010)) in that communities should have high internal
connectivity (presence of edges connecting nodes in the community) while being well separated from
each other. These notion can be quantified and formalized by applying several community scoring
functions (also known as quality functions in (Fortunato, 2010)), that gauge either the intra-cluster
or inter-cluster density. clustAnalytics implements the most relevant, or representative, community
scoring functions following the taxonomy of these quality measures done by Yang and Leskovec
(2015) and the further discussion on how to adapt them to weighted networks in (Arratia and Renedo-
Mirambell, 2021).
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significance

scoring
functions

scoring_functions(g, com, type , weighted, w_max)
average_degree, average_odf, conductance, coverage,
cut_ratio, density_ratio, edges_inside, expansion, FOMD,
internal_density, max_odf, normalized_cut,
weighted_clustering_coefficient, weighted_transitivity

graph
rewiring

rewireCpp(g, Q=100, weight_sel="const_var", lower_bound=0,
upper_bound=NULL)

evaluation

evaluate_significance(g, alg_list, gt_clustering, w_max)
evaluate_significance_r(g, alg_list, gt_clustering,

Q=100, lower_bound=0, w_max=NULL,
table_style = "default")

stability

boot_alg_list(g, alg_list, R=999, return_data=FALSE,
type="global")

reduced_mutual_information(c1, c2, base=2, normalized=FALSE,
method="approximation2")

other functions

apply_subgraphs(g, com, f, ...)
barabasi_albert_blocks(m, p, B, t_max, G0=NULL, t0=NULL,

G0_labels=NULL, type="block_first")
sample_with_replacement=FALSE

sort_matrix(M)

Table 1: clustAnalytics list of functions split by category.

However, to evaluate the significance of clusters on a given network, one needs reference values of
the scoring functions to determine whether they are actually higher than those of a comparable network
with no community structure. For this, we use a method described in (Arratia and Renedo-Mirambell,
2021) that rewires edges (or transfers some of their weight, in the case of weighted networks) while
keeping the degree distribution constant. Then, it can be determined that the partition of a network
contains significant clusters if it obtains sufficiently better scores than those for a comparable network
with uniformly distributed edges.

On the other hand, stability measures how much the partition of a network into communities
remains unchanged under small perturbations. In the case of weighted networks, these could include
the addition and removal of vertices, as well as the perturbation of edge weights. This is consistent
with the idea that meaningful clusters should capture an inherent structure in the data and not be
overly sensitive to small or local variations, or the particularities of the clustering algorithm. To
measure the variation that such perturbations present in the clusters, there are multiple similarity
metrics available. We have selected for inclusion the Variation of Information (Meilă, 2007), the
Reduced Mutual Information (Newman et al., 2020), and the Rand Index (both in its original and
adjusted forms) (Hubert and Arabie, 1985). The first two are based on information theory, while the
second one counts agreements and disagreements in the membership of pairs of elements. Then, it
is possible to evaluate the network using resampling methods such as nonparametric bootstrap, as
described for clustering on Euclidean data by Hennig (2007), and later for networks by Arratia and
Renedo-Mirambell (2021), and quantify the deviations from the initial partition with the similarity
measures.

3 The clustAnalytics package

The clustAnalytics package (version 0.5.4) contains 23 functions for assessing clustering significance
and stability, and other useful utilites. These are listed in Table 1 grouped by category. It also contains
some auxiliary functions to support package management and provide useful baseline graphs with
communities. Check these in the reference manual. In what follows we detail the usage of the main
functions.

3.1 Cluster significance

The scoring functions are formally defined in (Arratia and Renedo-Mirambell, 2021), and were selected
and programmed based on the analysis of appropriate scoring functions for unweighted graphs made
in (Yang and Leskovec, 2015). They take into account the weights of the edges if the graph is weighted.
They take as arguments the graph as an igraph object, and a membership vector: a vector of the
same length as the graph order for which each element is an integer that indicates the cluster that its
corresponding vertex belongs to.
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A general call to all the scoring functions is made with scoring_functions(), which computes all
the scores and returns a dataframe containing a row for each community (if type = "local") and a
column for each score, or alternatively (if type = "global") returns a single row with the weighted
average scores. Additionally, an individual function is available for each of the scores, as listed in
Table 1. The package includes efficient implementations of the clustering coefficient and transitivity
for weighted networks introduced by McAssey and Bijma (2015).

The main functions for significance evaluation are
evaluate_significance_r() and evaluate_significance().

The first one takes an igraph graph and a list of clustering algorithms, and computes the scoring
functions of the resulting communities, both on the original graph and on rewired versions of it for
comparison. The second version does the same while skipping the rewired graphs. By default the
clustering algorithms used by these functions are Louvain, label propagation and Walktrap, but they
can take any list of clustering algorithms for igraph graphs. Both functions allow for comparison
against ground-truth in cases where this is known.

The edge rewiring method (including its versions for weighted networks) is available separately
as rewireCpp. This differs from the igraph function rewire, in that it is capable of rewiring weighted
as well as directed graphs while keeping the weighted degrees constant.

Rewiring algorithm

The function rewireCpp provided by the package is an implementation of the switching algorithm
that rewires edges while keeping the degree distribution constant described in (Milo et al., 2003; Rao
et al., 1996) (conceived originally for unweighted graphs). The function has been extended to work
with weighted and/or directed graphs.

The directed version works very similarly to the undirected one. In the unweighted case, at each
step of the algorithm, two directed edges AC and BD are selected randomly, and replaced with the new
edges AD, BC (as in the original algorithm, any steps that would produce self-edges or multi-edges
are skipped). For vertices A and B, we add and remove 1 to the out-degree, so it remains constant (as
well as the in-degree, since no incoming edges are modified). Analogously, we add and remove one
incoming edge to both the C and D vertices, so their in-degrees remain constant as well.

We do the same for the directed weighted case, extending the undirected unweighted algorithm.
This time, when edges AC and BD are selected, there is a transfer of a certain amount w̄ of weight
from both AC and BD to AD and BC. This means that the only effects on the in and out-degrees are
adding and removing w̄ to out-degrees of vertices A and B, and the same to out-degrees of vertices C
and D, which means that they all remain constant.

If the graph is directed, the rewireCpp function automatically detects it and internally runs the
implementation for directed graphs, so there is no need to specify direction as a parameter. The
following example is a food network (where edges indicate predator-prey relationships) from the
igraphdata package:

> data(foodwebs, package="igraphdata")
> rewired_ChesLower <- rewireCpp(foodwebs$ChesLower, weight_sel = "max_weight")

In the weighted case, the rewiring algorithm transfers a certain amount w of weight from some
edges to others. The package provides two settings, which are chosen according to what type of
weighted graph is provided as input:

• Complete graphs with a fixed upper bound: These graphs have an edge between every pair of
vertices, which will usually be the result of applying some function to each pair. For example,
networks resulting from computing correlations of time series (where each series corresponds
to a vertex, and the edge weights are the correlations between series) fall into this category.

• More sparse graphs with weights that are non-negative but not necessarily upper bounded:
This describes most commonly found weighted graphs, where the weights quantify some
characteristic of the edges. Multigraphs also fit here, if we reinterpret them as weighted graphs
where the edge weight is the number of parallel edges between each pair of vertices.

Of the first type, we show an example built from correlations of currency exchange time series (from
Arratia and Renedo-Mirambell (2021)). In this network (g_forex included in the package) vertices are
pairs of exchange rates, and the edge weights are the correlations of their corresponding time series,
scaled to the interval [0, 1]. In this case, the appropriate setting is the one that keeps the variance of the
edge weights constant.

> data(g_forex, package="clustAnalytics")
> rewireCpp(g=g_forex, weight_sel="const_var", lower_bound=0, upper_bound=1)
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As for the second type, this includes most of the well known examples of weighted graphs, such
as Zachary’s karate club graph:

> data(karate, package="igraphdata")
> rewired_karate <- rewireCpp(karate, weight_sel="max_weight")

The number of iterations, which is computed as Q · #edges can be controlled with the parameter Q,
but we recommend leaving it on the default value (Q = 100), which has been shown to provide more
than enough shuffling, while still being very fast (Arratia and Renedo-Mirambell, 2021, p.10).

3.2 Cluster stability

As for the study of cluster stability, the function used to perform the evaluation is boot_alg_list().
This performs a bootstrap resampling (i.e. uniform sampling of the vertices with replacement) of
the input graph, applies a given list of clustering algorithms, and measures the variation of the
communities obtained in the resampled graphs with respect to the original communities. In more
detail, for each input graph and a list of clustering algorithms, the set of vertices in the input graph
is resampled many times, the induced graph is obtained by taking the new set of vertices with the
induced edges from the original graph (two vertices are joined with an edge on the resampled graph if
they were on the original graph), and the clustering algorithms are applied to it. Then, the resulting
clusterings (in each of the resampled graphs) are compared to the clustering of the original graph using
several metrics: the variation of information (vi.dist from package mcclust), normalized reduced
mutual information (NRMI) and both adjusted and regular Rand index (rand.index from package
fossil and adjustedRandIndex from package mclust). If return_data is set to TRUE, the output is a list
of objects of class boot (from package boot); otherwise, returns a table with the mean distances from
the clusters in the original graph to the resampled ones, for each of the algorithms.

The Reduced Mutual Information is provided as a separate function:
reduced_mutual_information().

This is an implementation of Newman’s Reduced Mutual Information (RMI) Newman et al. (2020), a
version of the mutual information that is corrected for chance. The exact computation of this metric
cannot be reasonably achieved for even moderately sized graphs, so it must be approximated. We
provide two analytical methods for this approximation, and other that combines a Monte Carlo method
with the analytical formula (method="hybrid").

> data(karate, package="igraphdata")
> c1 <- membership(cluster_louvain(karate))
> c2 <- V(karate)$Faction
> reduced_mutual_information(c1, c2, method="approximation2")
[1] 0.5135699

Just as with the standard mutual information, the RMI can be normalized as well:

> reduced_mutual_information(c1, c2, method="approximation2", normalized=TRUE)
[1] 0.6621045

3.3 Graph generators and other utilities

In the analysis of clustering algorithms it is useful to generate controlled examples of networks with
communities. The package igraph provides the function sample_sbm which builds random graphs
with communities from the stochastic block model, and hence these networks have binomial degree
distribution.

We provide in clustAnalytics the barabasi_albert_blocks() function, which produces scale-free
graphs using extended versions of the Barabási-Albert model that include a community structure.
This function generates the graph by iteratively adding vertices to an initial graph and joining them
to the existing vertices using preferential attachment (existing higher degree vertices are more likely
to receive new edges). Additionally, vertices are assigned labels indicating community membership,
and the probability of one vertex connecting to another is affected by their community memberships
according to a fitness matrix B (if a new vertex belongs to community i, the probability of connecting
to a vertex of community j is proportional to Bij).

The parameters that need to be set are m the number of new edges per step, the vector p of
label probabilities, the fitness matrix B (with the same dimensions as the length of p), and t_max the
final graph order. The initial graph G0 can be set manually, but if not, an appropriate graph will be
generated with m edges per vertex, labels sampled from p, and edge probabilities proportional to B.
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There are two variants of the model. If type="Hajek", new edges are connected with preferential
attachment to any existing vertex but using the appropriate values of B as weights (see (Hajek
and Sankagiri, 2019)). If type="block_first", new edges are connected first to a community with
probability proportional to the values of B, and then a vertex is chosen within that community
with regular preferential attachment. In this case, the resulting degree distribution is scale-free (see
(Renedo-Mirambell and Arratia, 2023) for a proof of this fact).

This is a simple example with just two communities and a graph of order 100 and size 400:

> B <- matrix(c(1, 0.2, 0.2, 1), ncol=2)
> G <- barabasi_albert_blocks(m=4, p=c(0.5, 0.5), B=B, t_max=100, type="Hajek",

sample_with_replacement = FALSE)
> plot(G, vertex.color=(V(G)$label), vertex.label=NA, vertex.size=10)

Figure 1: Example of the barabasi_albert_communities function with the community labels as vertex
colors.

Finally, it is worth mentioning the apply_subgraphs() function, which is used internally in the
package, but has also been made available to the user because it can be very convenient. It simply
calls a function f on each of the communities of a graph (treated as it’s own igraph object), acting as a
wrapper for the vapply function. The communities are given as a membership vector com. For a very
simple example, we call it to obtain the order of each of the factions of the karate club graph:

> apply_subgraphs(g=karate, com=V(karate)$Faction, f=gorder)
[1] 16 18

4 An introductory example

As a toy example we consider a famous benchmark social network: the Zachary’s karate club
graph (Zachary, 1977). First to showcase the graph randomization procedure rewireCpp, we ap-
ply it to the Zachary’s karate club graph with the default settings (positive weights with no upper
bound, which suits this graph):

> library(clustAnalytics)
> data(karate, package="igraphdata")
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> rewired_karate <- rewireCpp(karate, weight_sel = "max_weight")
> par(mfrow=c(1,2), mai=c(0,0.1,0.3,0.1))
> plot(karate, main="karate")
> plot(rewired_karate, main="rewired_karate")

The resulting plots are shown in Figure 2.
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Figure 2: Karate club graph before and after the edge randomization process. Colors represent the
faction of each participant, the ground truth clustering in this network.

The resulting rewired graph has lost its original communities centered around nodes A and H,
and if any alternative community structure appears, it is only due to chance. Now we continue with
an analysis of significance and stability of some known clustering algorithms on the Zachary’s karate
club graph.

4.1 Evaluating cluster significance

The function evaluate_significance takes the graph and a list of clustering functions as arguments.
If the graph has a known ground truth community structure (such as the factions in the karate club),
we can set ground_truth=TRUE and set gt_clustering as the membership vector to evaluate it and
compare it to the results of the clustering algorithms. In our karate graph the ground truth is available
with V(karate)$Faction.

> evaluate_significance(karate, ground_truth=TRUE,
+ alg_list=list(Louvain=cluster_louvain,
+ "label prop"= cluster_label_prop,
+ walktrap=cluster_walktrap),
+ gt_clustering=V(karate)$Faction)

Louvain label prop walktrap ground truth
size 9.58823529 10.52941176 10.00000000 17.05882353
internal density 1.29491979 1.29766214 1.32254902 0.76885813
edges inside 50.35294118 59.17647059 51.82352941 104.82352941
av degree 5.05882353 5.29411765 5.05882353 6.14705882
FOMD 0.26470588 0.29411765 0.26470588 0.41176471
expansion 3.47058824 3.00000000 3.47058824 1.29411765
cut ratio 0.14311885 0.12786548 0.14540629 0.07638889
conductance 0.25696234 0.22578022 0.25484480 0.09518717
norm cut 0.37937069 0.34206059 0.38131607 0.19090909
max ODF 0.43576990 0.42077566 0.51172969 0.38911607
average ODF 0.18336040 0.17884402 0.18493603 0.07498851
flake ODF 0.05882353 0.02941176 0.08823529 0.00000000
density ratio 0.87751142 0.88955342 0.86846364 0.90017702
modularity 0.41978961 0.41510519 0.41116042 0.37146614
graph_order 34.00000000 34.00000000 34.00000000 34.00000000
n_clusters 4.00000000 4.00000000 4.00000000 2.00000000
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mean_cluster_size 8.50000000 8.50000000 8.50000000 17.00000000
coverage 0.74458874 0.77922078 0.74458874 0.90476190
global density ratio 0.75864388 0.76992481 0.74273256 0.80043860
VIdist_to_GT 0.90782167 0.82624391 0.87293838 0.00000000

If a ground truth clustering has been provided, the row VIdist_to_GT indicates the variation of
information distance (Meilă, 2007) between that and each of the partitions. In this case the label
propagation algorithm obtains the partition closest to the ground truth, while the Louvain algorithm
is the furthest.

With the function evaluate_significance_r we compute the scoring functions as above, and
we compare the results to those of a distribution of randomized graphs obtained with the rewiring
method. The parameters of the rewiring method can be selected as shown in Table 1, in this case
we specify weight_sel="max_weight", but we could also set an upper bound if appropriate to the
graph. The resulting (default) table is shown below. This is a table with three columns per algorithm:
the scores for the original graph, the mean of the corresponding scores for the rewired graphs and
its percentile rank within the distribution of scores for rewired graphs. If parameter table_style =
"string", the function instead returns a table with a column per algorithm where each element is of
the format "original|rewired(percentile)".

> evaluate_significance_r(karate,
+ alg_list=list(Lv=cluster_louvain,
+ "WT"= cluster_walktrap),
+ weight_sel="max_weight", n_reps=100)

Lv WT Lv_r WT_r Lv_perc WT_perc
size 9.58823529 10.00000000 8.1670588 8.3705882 0.86 0.81
internal density 1.29491979 1.32254902 1.3911098 1.3728923 0.45 0.55
edges inside 50.35294118 51.82352941 29.1011765 39.1491176 0.99 0.82
av degree 5.05882353 5.05882353 3.6779412 3.8764706 1.00 0.98
FOMD 0.26470588 0.26470588 0.1723529 0.1955882 0.98 0.87
expansion 3.47058824 3.47058824 6.2323529 5.8352941 0.00 0.02
cut ratio 0.14311885 0.14540629 0.2383912 0.2325316 0.00 0.00
conductance 0.25696234 0.25484480 0.4755745 0.4825704 0.00 0.01
norm cut 0.37937069 0.38131607 0.6760032 0.7073753 0.00 0.00
max ODF 0.43576990 0.51172969 0.6456208 0.6610584 0.00 0.03
average ODF 0.18336040 0.18493603 0.4450276 0.4626576 0.00 0.01
flake ODF 0.05882353 0.08823529 0.3423529 0.4088235 0.00 0.01
density ratio 0.87751142 0.86846364 0.7441942 0.7591046 1.00 1.00
modularity 0.41978961 0.41116042 0.1797852 0.1545682 1.00 1.00
clustering coef 0.54148426 0.61381521 0.4306771 0.4253075 0.76 0.87
graph_order 34.00000000 34.00000000 34.0000000 34.0000000 0.00 0.00
n_clusters 4.00000000 4.00000000 4.8200000 6.4800000 0.04 0.05
mean_cluster_size 8.50000000 8.50000000 7.2306667 5.7914928 0.72 0.85
coverage 0.74458874 0.74458874 0.5413420 0.5705628 1.00 0.98
global density ratio 0.75864388 0.74273256 0.5296269 0.5789977 1.00 0.98

Depending on the application, more emphasis might be given to some of the metrics over others,
but in most cases, those that take into account both internal and external connectivity (such as the
modularity, conductance, or density ratio) will be the most relevant. Networks with significant clusters
should result in values that are on the extremes of the distribution of rewired scores (so percentile rank
one or close to one for the scores where higher values are better, and zero or close to zero for those
where lower is better). The interpretation of the results is discussed in more detail in (Arratia and
Renedo-Mirambell, 2021).

If one simply wishes to compare clustering algorithms against each other, though, the distribution
of rewired scores is not necessary and the evaluate_significance function should be used instead.

4.2 Applying scoring functions

If it is the case that we already have some explicit community partition, but not the algorithm that
produced it, we can assess its significance by applying the scoring functions directly to the network
and the partition. To apply all scoring functions at once use scoring_functions with either type local
or global:

> scoring_functions(karate, V(karate)$Faction, type="local")
size internal density edges inside av degree FOMD expansion cut ratio
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1 16 0.8250000 99 6.187500 0.5000000 1.375000 0.07638889
2 18 0.7189542 110 6.111111 0.3333333 1.222222 0.07638889
conductance norm cut max ODF average ODF flake ODF density ratio modularity

1 0.10000000 0.1909091 0.3636364 0.05651941 0 0.9074074 NA
2 0.09090909 0.1909091 0.4117647 0.09140548 0 0.8937500 NA

> scoring_functions(karate, V(karate)$Faction, type="global")
size internal density edges inside av degree FOMD expansion cut ratio

[1,] 17.05882 0.7688581 104.8235 6.147059 0.4117647 1.294118 0.07638889
conductance norm cut max ODF average ODF flake ODF density ratio modularity

[1,] 0.09518717 0.1909091 0.3891161 0.07498851 0 0.900177 0.3714661
graph_order n_clusters mean_cluster_size coverage global density ratio

[1,] 34 2 17 0.9047619 0.8004386

Alternatively, we can apply the scoring functions individually. Each is called with the graph and
the membership vector as arguments, and return a vector with the scores for each community:

> cut_ratio(karate, V(karate)$Faction)
[1] 0.07638889 0.07638889

> conductance(karate, V(karate)$Faction)
[1] 0.10000000 0.09090909

A case in point are the clustering coefficient and transitivity. As they can be applied to weighted
graphs in general and not only to their partition into communities, they are simply called with the
graph as the only argument:

> weighted_clustering_coefficient(karate)
[1] 0.8127164

To be able to obtain the result for every community in the graph, we provide the function
apply_subgraphs; which given a graph, a membership vector and a scalar function that takes a
graph as input, applies the function to every community and returns the vector of results. In this case
it works as follows:

> apply_subgraphs(karate, V(karate)$Faction, weighted_clustering_coefficient)
[1] 0.9514233 0.7783815

4.3 Evaluating cluster stability

Here we perform a nonparametric bootstrap to the karate club graph and the same selection of
algorithms. For each instance, the set of vertices is resampled, the induced graph is obtained by taking
the new set of vertices with the induced edges from the original graph, and the clustering algorithms
are applied. Then, these results are compared to the induced original clusterings using the metrics
mentioned above: the variation of information (VI), the normalized reduced mutual information
(NRMI), and both adjusted and regular Rand index (Rand and adRand). Their exact definitions can be
found in (Arratia and Renedo-Mirambell, 2021).

> boot_alg_list(g=karate, return_data=FALSE, R=99,
+ alg_list=list(Louvain=cluster_louvain,
+ "label prop"= cluster_label_prop,
+ walktrap=cluster_walktrap))

Louvain label prop walktrap
VI 0.2657555 0.3623330 0.2608622
NRMI 0.7024417 0.3415649 0.6959898
Rand 0.8584598 0.5969139 0.8609266
AdRand 0.6457648 0.2574423 0.6645099
n_clusters 5.9191919 5.1313131 6.3030303

Note that in this table the variation of information is a distance, so lower values indicate similar
partitions, while for the NRMI, Rand, and adRand, higher values mean the partitions are more similar
(1 means they are the same partition). Therefore, algorithms that produce stable clusters should result
in low values of VI, and high values of the rest of metrics. In this example network we can see how
the Louvain and walktrap algorithms have similar stability, while the label propagation algorithm
performs much worse, and this is reflected in all metrics.
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4.4 Clustering assessment on synthetic ground truth networks

We can evaluate the significance and stability of clusters produced by a set of clustering algorithms
on a network with known community synthetically created with the stochastic block model (with
function sample_sbm) or the preferential attachment model (with barabasi_albert_blocks). The
former produces a network with binomial degree distribution, and the latter produces networks with
scale-free degree distribution.

Let us generate a graph from a stochastic block model in which we set very strong clusters: the
elements in the diagonal of the matrix are much larger than the rest, so the probability of intra-cluster
edges is much higher than that of inter-cluster edges.

> pm <- matrix (c(.3, .001, .001, .003,
.001, .2, .005, .002,
.001, .005, .2, .001,
.003, .002, .001, .3), nrow=4, ncol=4)

> g_sbm <- igraph::sample_sbm(100, pref.matrix=pm, block.sizes=c(25,25,25,25))
> E(g_sbm)$weight <- 1
> memb <- c(rep(1,25), rep(2,25), rep(3,25), rep(4,25))
> significance_table_sbm <- evaluate_significance(g_sbm, gt_clustering=memb)
> significance_table_sbm

Louvain label prop walktrap ground truth
size 25.00000000 2.144000e+01 25.00000000 25.00000000
internal density 0.26500000 3.228846e-01 0.26500000 0.26500000
edges inside 79.50000000 6.968000e+01 79.50000000 79.50000000
av degree 3.18000000 3.010000e+00 3.18000000 3.18000000
FOMD 0.43000000 4.000000e-01 0.43000000 0.43000000
expansion 0.24000000 5.800000e-01 0.24000000 0.24000000
cut ratio 0.00320000 6.907324e-03 0.00320000 0.00320000
conductance 0.03812704 1.091380e-01 0.03812704 0.03812704
norm cut 0.05064474 1.272639e-01 0.05064474 0.05064474
max ODF 0.29047619 3.554762e-01 0.29047619 0.29047619
average ODF 0.03789358 1.068777e-01 0.03789358 0.03789358
flake ODF 0.00000000 1.000000e-02 0.00000000 0.00000000
density ratio 0.98728802 9.778080e-01 0.98728802 0.98728802
modularity 0.69994949 6.663131e-01 0.69994949 0.69994949
clustering coef 0.28604270 3.302172e-01 0.28604270 0.28604270
graph_order 100.00000000 1.000000e+02 100.00000000 100.00000000
n_clusters 4.00000000 6.000000e+00 4.00000000 4.00000000
mean_cluster_size 25.00000000 1.666667e+01 25.00000000 25.00000000
coverage 0.96363636 9.121212e-01 0.96363636 0.96363636
global density ratio 0.97584906 9.498650e-01 0.97584906 0.97584906
VIdist_to_GT 0.00000000 3.403855e-01 0.00000000 0.00000000

In this case, memb is the membership vector of the ground truth clusters of the model. The clusters
in the network are so strong that both the Louvain and walktrap algorithms manage to identify and
match them exactly (their VI distance to the ground truth clustering is zero).

We now assess for stability of the clustering algorithms on this sbm graph:

> b_sbm <- boot_alg_list(g=g_sbm, return_data=FALSE, R=99)
> b_sbm

Louvain label prop Walktrap
VI 0.1234341 0.1769217 0.1178832
NRMI 0.8536997 0.7841236 0.8656356
Rand 0.9411244 0.9230160 0.9472768
AdRand 0.8306925 0.7651778 0.8476909
n_clusters 6.9797980 7.7070707 7.4646465

We can clearly see that for all metrics, the results are much more stable than in the previous
example, which makes sense because we purposefully created the SBM graph with very strong
clusters.
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5 The clustAnalytics package in context of related R packages

The outstanding quality of clustAnalytics is that it is a set of robust and efficient measures for assessing
significance and stability of clustering algorithms on graphs with the convenience of working with
igraph objects, which makes it a valuable complement to the igraph package (Csardi and Nepusz,
2006). A revision of the CRAN Task View: Cluster Analysis & Finite Mixture Models shows that there are
very few packages devoted to assessing quality of clusters in general, and none for igraph graphs as
input. One could use in a limited manner some of the existing packages by converting igraph graphs to
their adjacency matrices, but then quality evaluation follows different paradigms not quite pertaining
to networks. For instance, the package ClustAssess (Shahsavari et al., 2022) conceived for evaluating
robustness of clustering of single-cell RNA sequences data using proportion of ambiguously clustered
pairs, as well as similarity across methods and method stability using element-centric clustering
comparison; sigclust (Huang et al., 2014) which provides a single function to assess the statistical
significance of splitting a data set into two clusters; clValid (Brock et al., 2021) implements Dunn
Index, Silhouette, Connectivity, Stability, BHI and BSI, for a statistical and biological-based validation
of clustering results. None of these apply directly to igraph objects, and were not conceived for the
analysis of clustering in social networks.
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