
CONTRIBUTED RESEARCH ARTICLE 307

Taking the Scenic Route: Interactive and
Performant Tour Animations
by Casper Hart and Earo Wang

Abstract The tour provides a useful vehicle for exploring high dimensional datasets. It works by
combining a sequence of projections—the tour path—in to an animation—the display method. Cur-
rent display implementations in R are limited in their interactivity and portability, and give poor
performance and jerky animations even for small datasets. We take a detour into web technologies,
such as Three.js and WebGL, to support smooth and performant tour visualisations. The R package
detourr implements a set of display tools that allow for rich interactions (including orbit controls,
scrubbing, and brushing) and smooth animations for large datasets. It provides a declarative R
interface which is accessible to new users, and it supports linked views using crosstalk and shiny.
The resulting animations are portable across a wide range of browsers and devices. We also extend
the radial transformation of the Sage Tour (Laa, Cook, and Lee (2021)) to 3 or more dimensions with
an implementation in 3D, and provide a simplified implementation of the Slice Tour (Laa, Cook, and
Valencia (2020)).

1 Introduction

An important first step in any data analysis task is to plot the data so that we can get an intuitive
understanding of its structure, for example identifying the presence of clusters or outliers. When the
data consists of one or two variables this is quite straightforward, but as the dimensionality of the
data increases it becomes more difficult to visualise.

Several methods exist for high dimensional data visualisation. Given a data matrix X we can
simply plot each variable X1 . . . Xp against the others in a pairwise fashion with the result being a
scatterplot matrix (e.g. (Becker and Cleveland 1987)). We can also view projections of our data by
calculating Y = XA where A is a p × d projection matrix with d usually being 1 or 2. We can choose A
in several different ways, some examples being Principal Component Analysis (PCA) which chooses
the directions which explain the maximum variance, and Linear Descriminant Analysis (LDA) which
maximises the ratio of between-group and within-group sums of squares. The scatterplot matrix can
also be thought of as a projection method where the projections are parallel to each pair of coordinate
axes. These are all examples of linear dimension reduction techniques, but non-linear techniques are also
available such as t-SNE (Van der Maaten and Hinton 2008) and UMAP (McInnes, Healy, and Melville
2018) that aim to preserve both local and global structure of the data.

Rather than generating a single static visual, the tour (Asimov 1985); (Buja et al. 2005) works by
combining a smooth sequence of projections in to an animation, which can then be viewed using a
variety of different display methods (Wickham et al. 2011). This allows the viewer to explore the data
from a number of different perspectives while being able to visually connect what would otherwise
be disjointed views. However, existing display implementations for tours in R are limited in their
interactivity, performance, and portability, and generally result in jerky animations even for small
datasets with only tens or hundreds of observations.

In this paper we introduce a new R package called detourr, which provides portable and perfor-
mant display methods for tours. In the first section we give a background of tours and review a few
existing software implementations, and in the section following we describe how the software is used.
We will then highlight some of the implementation decisions related to performance, and later provide
a case study using embeddings created from the MNIST (LeCun 1998) dataset. In the final section we
will discuss how this work might be extended in future.

2 Background and related works

At its core, the tour is a sequence of projections of a data set that are combined together to form an
animation. If we denote an n × p data matrix X and a p × d projection matrix A, then we can denote
our n × d projected data set Y as Y = XA.

Each projection matrix A is often referred to as a plane, frame, or basis. (Note that in this paper,
the term frame is avoided in this context to avoid ambiguity with animation frames). These bases are
constrained to be orthonormal, so each column of A is a unit vector, and is orthogonal to each other
column. In order to produce a smooth animation, a set of target bases are selected and interpolated
between. Geodesic interpolation is generally used as described in (Buja et al. 2005).

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=detourr

CONTRIBUTED RESEARCH ARTICLE 308

2.1 Types of tours

Different tour paths arise from using different methods for selecting the target bases. For example, the
grand tour was introduced by (Asimov 1985) and chooses a set of target projections at random. This
can be thought of as a random walk around projections of the data.

The projection pursuit guided tour chooses bases to find a more interesting projection than the
current one, where the interestingness is defined by some index function. Index functions such as
central mass, holes, and lda are described in (Cook, Swayne, and Buja 2007).

Other types of tours include the little tour, which ensures bases parallel to the axes are visited; the
frozen tour will fix some of the values in the projection matrix A between bases; the local tour chooses
bases that are within some angular distance of the starting basis.

In all of these, the tour path is calculated in two steps; the target basis is calculated and then
interpolation is done so that the transition to the next basis is smooth. Some methods generate the
tour path in a single step, for example the langevitour package in R (Harrison 2022) produces tours as
more of a physics simulation where points have position, velocity, momentum, and damping, and the
position of points in subsequent animation frames is allowed to evolve while taking in to account user
interactions.

2.2 Display methods

The typical display methods for tours include histograms or density plots for 1D projections, and
x-y scatter plots for 2D ones. 3D data can be viewed by a 3D scatterplot with a virtual perspective
camera to enable displaying on a monitor. This can be enhanced with fog to make closer points more
prominent, and interactive rotation controls to give a more immersive 3D experience. Projections with
3 or more dimensions can be displayed using parallel coordinates plots. Other displays exist such as
Andrew’s plot (Andrews 1972), where each point is represented by a Fourier curve plotted between
−π and π.

These display methods can be enhanced to display additional information, for example the slice
tour described in (Laa, Cook, and Valencia 2020) highlight points whose orthogonal distance to the
projection plane is smaller than some threshold, and fade out points that are further away. This is
good for finding hollowness in data, with an example shown in the case study.

Furthermore, the data may be transformed after being projected. One consequence of the curse of
dimensionality is that when projecting from high to low dimensions, the points tend to crowd towards
the centre. (Laa, Cook, and Lee 2021) describes the sage tour, and provides a radial transformation that
ensures the relative volume at a radius r in the data space is preserved in the projected space. The
effect of this is that the crowding is reduced, and uniformly distributed data in the original space will
continue to be uniform in the projected space.

2.3 Software implementations

The tourr package (Wickham et al. 2011) is the most prevalent and comprehensive software in R (R
Core Team 2021) for visualising tours. It implements many of the tour paths described previously
including grand, little, guided, frozen, etc. and display methods including scatter plots (with variations
for the sage and slice tour), parallel coordinates plots, depth displays, Andrew’s plot. The package
also allows exporting tours as GIF images via the gifski package (Ooms 2021), or exporting to GGobi
(Swayne et al. 2003) to allow for interaction and linked brushing, etc. However, the tourr package uses
the R graphics device as the primary display, which is quite limited in performance and interactivity.

The spinifex package (Spyrison and Cook 2020) provides manual tours built on tourr and using R
shiny (Chang et al. 2021), and allows the user to manipulate the contribution of each variable one at
a time. The liminal R package (Lee 2021) provides an interactive gadget for displaying tour visuals.
Linked selection and brushing is implemented on both visuals, and play / pause / restart controls are
provided.

The langevitour R package instead uses the htmlwidgets package (Vaidyanathan et al. 2021) to
display the tour. The main calculations are performed in JavaScript and the points are displayed as
a scatter plot using HTML5 Canvas. The displays have good performance so large numbers of data
points can be plotted with the animation remaining smooth, and includes interactive features such
as drag-and-drop of additional plot elements, and modifying parameters of the tour and having the
changes reflected in real time. Once the tour visualisation is generated it then no longer relies on the
R runtime so it can be easily exported and embedded on a website for example. But this package is
developed with a particular focus of visualising physics dynamics, rather than the more classical tour
methods like in tourr.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=langevitour
https://CRAN.R-project.org/package=tourr
https://CRAN.R-project.org/package=gifski
https://CRAN.R-project.org/package=spinifex
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=liminal
https://CRAN.R-project.org/package=htmlwidgets

CONTRIBUTED RESEARCH ARTICLE 309

(Kipp, Laa, and Cook 2019) uses D3.js (Bostock, Ogievetsky, and Heer 2011) combined with the R
shiny (Chang et al. 2021) package to display dynamic tour visualisations. However, this setup had
limited performance; the client-server nature of shiny led to inconsistent frame rates, and the number
of points that could be drawn was limited to <2000 because of the limitations of SVG when drawing
many individual elements.

3 Usage and interactivity

When designing the user API for detourr, a data-oriented approach is taken to make it approachable,
and the visuals are built in JavaScript to enable rich user interactions. detourr also supports the full
suite of tour path generating functions from the tourr package. The result is an experience that is
feature-rich, immersive, and accessible to newcomers.

This chapter is structured as follows. The first section describes the user API in R and supported
features, the second describes how the user can interact with the resulting visual. Throughout the
chapter, we use the pdfSense dataset (Wang et al. (2018); Lee (2021)) to provide a running example.
This data set consists of 2808 observations and 56 input variables from CT14HERA parton distribution
function fits. The first 6 principal components are used to create the tour, accounting for ~55% of the
variance in the data.

3.1 User interface

detourr has a data-oriented user interface heavily influenced by the Tidy Data (Wickham (2014))
workflow, Grammar of Graphics (Wilkinson (2012); Wickham (2010)), and ggplot2 (Wickham (2016)).
The visualisation is built in a sequence of steps which follow the logical flow of data in the tour
building process, which makes the API intuitive and accessible.

Instantiating the tour

To begin, we instantiate a tour using the detour() function:

p <- detour(pdf_df, tour_aes(
projection = starts_with("PC"),
colour = Type,
label = ID

))

The first argument to detour() is a data frame in tidy format containing the tour data and aesthetics.
Enforcing the use of data frames encourages data-centric statistical thinking. The second argument
defines the aesthetic mapping of data variables through the tour_aes() function, similar to ggplot2.
The currently supported aesthetics are:

• projection: (required) the numeric columns to be projected
• colour: point colour
• label: label text to be shown when the mouse is hovered over a point.

These mappings support tidy evaluation and tidyselect syntax (Henry and Wickham (2022)) such
as starts_with(), where(is.numeric()), column ranges using col_1:col_n, negation -col_n, and
others, for easier column selection.

Generating the tour path

Once the tour is initialised with the data and aesthetics, the tour path is defined by piping the output
from detour() to the tour_path() function. Note that |> is the pipe operator introduced in R 4.1:

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=tidyselect

CONTRIBUTED RESEARCH ARTICLE 310

p <- p |> tour_path(grand_tour(3))
p

#> # A tibble: 458 x 2
#> is_new_basis projection_matrix
#> <lgl> <list>
#> 1 TRUE <dbl [6 x 3]>
#> 2 FALSE <dbl [6 x 3]>
#> 3 FALSE <dbl [6 x 3]>
#> 4 FALSE <dbl [6 x 3]>
#> 5 FALSE <dbl [6 x 3]>
#> # i 453 more rows

The tour_path() function defines parameters for the tour such as:

• tour_path: the tour path generator, e.g. grand_tour(), guided_tour(), or any other path gener-
ator compatible with the tourr package

• start: the starting basis or projection matrix
• fps: frames per second with which to display the animation. Defaults to 30 but can be increased

for a smoother animation or decreased for very large data.
• max_bases: the number of basis frames to generate. A higher number will give a longer tour

animation.

The resulting detour object is stored in a standard data frame for easy consumption and inspection.
It contains the full details of the tour path, where the ith row corresponds to the ith animation frame of
the tour, with the following columns:

1. is_new_basis: whether the projection matrix corresponds to a new basis (TRUE) or is interpolated
(FALSE)

2. projection_matrix: the projection matrix.

This form gives the user full visibility of the tour path, and allows the projection matrices to be
traced and extracted for further analyses.

Creating the animation

To display the tour animation, we simply pipe the output of tour_path() to any of the functions
prefixed with show_ provided by the detourr package. The available display functions are:

• show_scatter(): the core 2D or 3D scatter plot display
• show_slice(): a slice tour display based on Laa, Cook, and Valencia (2020)
• show_sage(): a sage tour implementation based on Laa, Cook, and Lee (2021)

p |> show_scatter(axes = FALSE)

The output of tour_path() becomes the input of show_*(), forming a fluent pipeline. For the three
display methods described above, the common parameters are:

• palette: the colour palette to use for the tour.
• center: whether the data should be centred before displaying.
• axes: whether to show axis / what the axis titles should be
• edges: a two-column numeric matrix defining indices of points where line segments should be

drawn between
• paused: whether the animation should be initialised in a paused state.
• scale_factor: used to scale the points in or out so that they appear on a sensible range, similar

to a zoom function. Defaults to the reciprocal of maximum distance from a point to the origin,
so that the points fit inside a unit ball.

There are also parameters specific to each display method, such as slice_relative_volume for
show_slice(), and gamma and R for show_sage(). These details will be described further in the Display
Methods section.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 311

Figure 1: Initial frame of the scatterplot display generated by the ‘show_scatter‘ display function.
Controls are on the left, and an interactive timeline is on the bottom of the plot.

Putting all of this together, we have:

detour(pdf_df, tour_aes(
projection = starts_with("PC"),
colour = Type,
label = ID

)) |>
tour_path(grand_tour(3)) |>
show_scatter()

This chaining process allows us to construct the tour visualisation incrementally in a way that
is intuitive and easy to follow. The user is able to inspect the result at each step in the chain, and it
aligns well with the grammar of graphics and tidy data workflows. This makes detourr accessible to
newcomers who may not have worked with tours previously.

3.2 Interactivity

Presently, several well-developed R packages allow the use of web technologies in R; htmlwidgets
allows binding R code with HTML and JavaScript to create standalone widgets; shiny provides features
for combining various elements in to interactive web applications powered by R; crosstalk (Cheng
and Sievert (2022)) enables linked selection and brushing between different HTML Widgets; and
rmarkdown (Allaire et al. (2022)) allows creating HTML documents with HTML Widgets embedded
within. The use of web technologies such as JavaScript enable the resulting visuals to be portable and
accessible, and enable the implementation of rich interactive features. In this section we will describe
these interactive features and how they can be configured.

Label aesthetics

In the above example, labels are defined within the call to tour_aes(), which contains all of the
aesthetic mappings for the tour. The label aesthetic produces a tooltip which is shown whenever
the mouse is hovered over the data point. By default, the text in the tooltip will have the format
column_name: value, with each specified column on a new line. If users want more control over what
appears in the tooltip, one can use the I() function so that the values in the aesthetic column appear
as-is. For example in 2, the left plot specifies the label aesthetic as label = c(InFit, Type, ID, pt,
x, mu) and the right is specifies the label as-is by using label = I(ID) in the call to tour_aes(). When
using the I() function for the label aesthetic, only one column can be specified at a time.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=crosstalk
https://CRAN.R-project.org/package=rmarkdown

CONTRIBUTED RESEARCH ARTICLE 312

Figure 2: (Left) Tooltip showing data from the 6 columns specified in the ‘label‘ aesthetic. Note that
both the column names and values are present in the tooltip. (Right) The ‘ID‘ column is provided as-is
to the label aesthetic via the ‘I()‘ function.

Controls

Table 1 shows a breakdown of the controls found on the left side of the visual. Note that the icon for
the currently selected control will be highlighted blue; otherwise it will be black. When the icons are
hovered over in the show_scatter() widget, alternative text will be shown.

Timeline controls

The timeline at the bottom of the widget controls play and pause, and allows for scrubbing to a specific
point in the tour. The timeline can also be used to jump to a specific basis by clicking on any of the
white basis markers, and hovering the mouse over the basis markers will display the index of that
basis.

Linked selection and filtering

detourr supports linked selection and filtering by integrating with crosstalk. When a crosstalk
SharedData object is provided to detour() in place of a data frame, selections made using the box
selection tool will be reflected in all linked visuals. Likewise, any selection or filtering applied to a
linked visual will be reflected by detourr. Compatible widgets include plotly (Sievert (2020)), leaflet
(Cheng, Karambelkar, and Xie (2022)), and DT (Xie, Cheng, and Tan (2022)). An example of this is
shown in the case study.

4 Web technologies for performance

One of the goals of this work is to improve upon the animation performance of existing tour displays.
detourr uses several different web technologies to maximise performance so that smooth animations
can be played with large data sets consisting of upwards of 100k data points. This performance also
enables the animations to work with less powerful devices, making detourr accessible to a wider range
of users.

The primary technology that allows for high-performance data visualisation is JavaScript itself.
JavaScript engines in browsers such as Chrome and Firefox are highly optimised, leveraging methods
such as Just-In-Time (JIT) compilation for improved runtime speed. However JavaScript is single-
threaded, dynamically typed, and garbage collected, so despite these optimisations we can still run in
to performance bottlenecks in some situations.

Figure 4 shows a simplified overview of the data flow in detourr when creating and viewing
a widget. On the left are the operations that are performed by R, which only occur once when the
visual is first created and have a minimal performance impact. On the right are the main operations

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=plotly
https://CRAN.R-project.org/package=leaflet
https://CRAN.R-project.org/package=DT

CONTRIBUTED RESEARCH ARTICLE 313

Table 1: An overview of the interactive controls available in the detourr displays

Control Icon Description

Orbit When the ‘show_scatter()‘ widget is generated, orbit
controls will be enabled by default. This allows click
and drag to rotate the visual, and scrolling/pinching to
zoom. Note that orbit controls for the 2D variant work
best if dragging from left to right, not up and down.
Also note that the icon for the currently selected control
will be highlighted blue; otherwise it will be black.

Pan The pan control also allows scrolling to zoom, and
click and drag to pan.

Box Selection The selection control allows for transitory box selection
by brushing. Holding the ‘shift‘ key will allow for
persistent selection, and points outside of the selection
will be indicated by increased transparency. There is
currently a limitation where only visible points can be
selected. If a point is completely obscured by other
points, it will not be selected.

Brush The brush button will apply the current colour to the
selected points.

Colour Selector The colour selector will look slightly different
depending on the browser being used. When the
colour selection is changed, the selected points will be
updated immediately.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 314

Figure 3: An illustration of the box selection and brush tool being used together.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 315

Instantiate tour

Generate tour path

Create and display widget

Render points
(Three.js / WebGL)

Calculate next frame Y=XA
(TensorFlow.js / WASM)

Animation
loop

JSON

R JavaScript

Figure 4: An overview of the data flow when creating a detourr visualisation. The full tour path is
generated in R and then passed to JavaScript when the widget is created. The operations that occur in
the animation loop in JavaScript are the most important to optimise.

performed by JavaScript when the widget is displayed in a browser or IDE. Linear algebra and
rendering operations need to run 30 times per second, so the technology decisions surrounding them
have a big impact on performance. These technology decisions and are discussed in this chapter.

4.1 Linear algebra operations

The single-threaded nature of JavaScript makes matrix multiplication a performance bottleneck. At
each animation frame, we must calculate the product XA where X is our data matrix and A is our
projection matrix. The slice tour generated by the show_slice() display function requires an additional
step of calculating the distance from each point to the projection plane which involves several more
matrix operations.

To address this, detourr uses TensorFlow.js (Abadi et al. (2016)) as the main library for storing
data and projection matrices and performing matrix operations. TensorFlow.js requires the user chose
between one of three available backends:

CPU is a single-threaded JavaScript implementation which carries with it the limitations of
JavaScript dynamic typing and garbage collection causing non-deterministic slow-downs at runtime.

WebAssembly (WASM) is a binary format that is used as a compilation target allowing code
written in other languages like C, C++, and Rust to be run in the browser. This circumvents the
dynamic typing and garbage collection limitations of JavaScript and allows near-native execution
speed. The TensorFlow WASM backend uses the XNNPACK library from Google to accelerate matrix
operations, which can run operations in parallel using threads and SIMD (Single Instruction Multiple
Data).

WebGL: uses WebGL shaders to perform matrix operations on the GPU. According to the docu-
mentation, the performance benefit is primarily seen with large and complex deep learning models, so
is unlikely to provide much benefit over the WebAssembly backend for our use case, and so is not
investigated further in this section.

4.2 Performance comparison

To compare these backend options a simple performance profile was run in Microsoft Edge (Chromium)
on a Macbook Pro 2019 (i7, 32Gb RAM). The implementations that were compared were:

• Hand Coded: a manual JavaScript implementation coded using for loops, operating on nested
arrays representing data and projection matrices.

• TensorFlow CPU: the vanilla single-threaded CPU backend for TensorFlow.js.
• TensorFlow WASM: the TensorFlow.js WASM backend.

These backends were compared across 3 datasets of different sizes and complexity, using a 2D
Grand Tour:

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 316

0%

10%

20%

Hand Coded TensorFlow CPU TensorFlow WASM
Backend

%
 S

cr
ip

tin
g

T
im

e

Data Set

mnist_embeddings_32d

mnist_embeddings_8d

pdfsense

TensorFlow Backend Performance Comparison

Figure 5: Performance comparison across different data sets and backends. TensorFlow provides
better performance than a hand-coded implementation across the board. For smaller datasets like
pdfsense, there is little difference between CPU and WASM backends for TensorFlow.js, but for larger
dataset WASM performs much better.

• pdfsense: The same data set used throughout this chapter; 2808 observations across 56 variables,
taking the first 6 principal components for the tour.

• mnist_embeddings_8d: 8-dimensional embeddings of the MNIST dataset, with a total of 10k
observations.

• mnist_embeddings_32d: 32-dimensional embeddings of the MNIST dataset, again with 10k
observations.

Figure 5 shows the performance of the three backends across the example datasets. TensorFlow
provides better performance across the board when compared to the hand-coded implementation, but
the difference between the CPU and WASM backends only becomes apparent with the larger MNIST
embeddings datasets. Note that the metric % Scripting Time is the time spent across all JavaScript
scripting for the visual, and not just the time spend on linear algebra operations. This is why we see
such diminishing returns with the smaller pdfsense dataset.

Another important comparison is the performance of the show_slice() display function between
these datasets. The slice tour uses additional matrix operations to calculate the distance from each
point to the projection plane, so the benefit of WASM backend is even more apparent. This is shown in
Figure 6

4.3 Rendering

When displaying data visuals using JavaScript in a browser, there are three main technologies that can
be used:

SVG is commonly used for web-based visuals, including in software such as D3.js (Bostock,
Ogievetsky, and Heer (2011)) with good support for interaction and animation. Kipp, Laa, and Cook
(2019) uses D3.js with SVG for rendering tours, but describes performance issues when the number of
points gets close to 2,000. This is because while SVG is suitable for drawing large and complex shapes,
performance can degrade when rendering many individual shapes.

HTML5 Canvas (2D) uses a canvas element with a 2D rendering context and provides good
performance, allowing many thousand data points to be used with smooth animation. This is the
rendering method used by the langevitour package, and provides much better performance over SVG
for this use case.

HTML5 Canvas (WebGL) uses the WebGL rendering context with GPU acceleration to achieve
high performance, and is used by a range of browser-based 3D animations and games. This typically
provides higher performance than using the 2D canvas rendering context.

detourr implements HTML5 Canvas with the WebGL rendering context using the Three.js (Cabello
(2010)) library. This is the same library that powers the TensorFlow Embedding Projector (Smilkov et
al. (2016)), and allows for flexible and performant 2D and 3D data visuals.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 317

0%

10%

20%

30%

40%

50%

TensorFlow CPU TensorFlow WASM
Backend

%
 S

cr
ip

tin
g

T
im

e

Data Set

mnist_embeddings_32d

mnist_embeddings_8d

pdfsense

TensorFlow Backend Performance Comparison (slice tour)

Figure 6: The additional matrix operations required by the slice tour display function make the
performance benefit of the WASM backend much more apparent.

One downside of using HTML5 Canvas elements is that custom logic is needed to determine
where the mouse pointer is relative to visual elements when interactions occur. This issue is resolved is
by rendering the image twice; the first pass renders to the screen and the second renders to an invisible
“picking” scene. The colours of the points in this picking scene correspond to the ID of the point that
was rendered. When a mouse is hovered over a pixel or a set of pixels are selected, we simply check
their colour in the picking scene to determine which point IDs relate to the event. Rendering the scene
twice at each frame makes performance all the more important.

Despite this extra step, a naive performance benchmark of the rendering performance of detourr
using the mnist_embeddings_8d data set at 30 FPS shows only 3% of the time is devoted to rendering
and painting points, which for our use case is negligible.

5 Display methods

There are three display functions implemented in the detourr package: show_scatter(), show_sage(),
and show_slice(). All three support 2D and 3D tour paths, and are based on the core show_scatter()
function. In this section, we will delve in to some of the implementation details of these functions and
how the original and sage display has been extended to three dimensions.

5.1 Scatter display

The scatter display forms the core of the three display methods, and contains all of the features and
interactions described in previous sections. It is implemented in TypeScript using the Three.js library
(Cabello (2010)) for rendering and TensorFlow.js (Abadi et al. (2016)) for linear algebra operations.

5.2 Slice display

The slice display is implemented in the show_slice() function, and is based on the slice tour described
in Laa, Cook, and Valencia (2020). At each animation frame, the distance from each point to the
projection plane is computed. Those points closer than some threshold h to the projection plane are
highlighted, and those further away are greyed out. Slices offset from the origin are also supported.

Despite the slice tour itself being equivalent to that in tourr, the implementation has been modified
for a simpler implementation. Laa, Cook, and Valencia (2020) calculates the distance as:

ν̃2
i = ||x′i ||

2 (1)

where

x′i = xi − (xi · a1)a1 − (xi · a2)a2 (2)

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 318

Figure 7: Selected frames of a 2D slice tour of a hollow unit sphere. The anchor for the slice is set to (1,
0, 0). Initially the slice is near the origin, but moves closer to the edge of the sphere as v1 rotates to be
near orthogonal to the projection plane.

and similar for the 3-dimensional case but with an additional term. With some rearranging, we
can instead express this with the equivalent:

ν̃2 = (X − XAAT)21p (3)

This requires fewer terms than the original, and is in a form that is more elegant to implement
using TensorFlow.js. The implementation is also the same for both the 2D and 3D variants which keeps
the code simple.

Offsetting the slice

Laa, Cook, and Valencia (2020) provides a generalisation of equations (1) and (2) for a projection plane
passing through an arbitrary anchor point c as follows:

1. Calculate xi
′ as per equation (2)

2. Calculate the component c′ of c orthogonal to the projection plane as:

c′ = c − (c · a1)a1 − (c · a2)a2

3. Calculate ν2
i = ||x′i − c′||2 = x′2i + c′2 − 2x′i · c′ where the cross-term is expressed as:

x′i · c′ = xi · c − (c · a1)(xi · a1)− (c · a2)(xi · a2)

With this method there are many terms to calculate, and it was found it was difficult to implement
and test. To circumvent this issue we instead take a different approach. Rather than offsetting the
projection plane to pass through the point c and then calculating the distances for each point, we
instead offset the data points by c in the opposite direction. This gives a distance calculation between
points and projection plane that is equivalent to the original implementation but is much simpler to
calculate. First we calculate the offset points X′:

X′ =

x1 − c
x2 − c

...
xn − c

 (4)

And then calculate the distances to the projection plane similar to equation (3):

ν̃2 = (X′ − X′AAT)21p (5)

Figure 7 shows a slice tour implemented using equations (4) and (5) with an anchor of (1, 0, 0).
Initially v1 is almost parallel to the projection plane, and so the slice runs close to the origin and only
the points near the outside of the hollow sphere are highlighted. As the tour progresses, v1 becomes
nearly orthogonal to the projection plane, and so the slice runs close to the edge of the sphere and only
a small number of points near the centre of the visual are highlighted.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 319

5.3 Sage display

As the dimension of data increases, the volume of space that contains the data increases exponentially.
One effect of this is that points tend to sit close to the edge of the space, with few points near the center.
Hastie et al. (2001) gives a good illustration of this, where if we have N uniformly distributed points
in a unit ball of dimension p centred at the origin, the median distance from the origin to the closest
point is given by the equation

d(p, N) =

(
1 − 1

2

1
N

) 1
p

(6)

Counter-intuitively, when we project data from a high-dimensional space to low-dimensions, we
see the opposite effect where points tend to crowd towards the center of the projected space. Laa,
Cook, and Lee (2021) describes a method for correcting this distortion so that points are less crowded
towards the center. It does this by ensuring the relative volume at a given radius r in the original space
is preserved in the projected space. The relative volume for a 2-dimensional projection is given by the
equation

v2(r; p, R) =
V2D(r; p, R)

V(R, p)
= 1 −

(
1 −

(r
R

)2
) p

2

(7)

where p is the dimension of our original data, R is the radius of the p-ball that contains our data,
and r is the projected radius within [0, R].

The formula for the corrected radius r′y is then given as

r′y = R

√
1 −

(
1 −

(r
R

)2
) p

2

(8)

detourr uses a slight variation of equation (8) to calculate the corrected radius, which omits the
multiplier of R. This is because we always plot the data on the range r′y = [0, 1], so the multiplier is
not needed:

r′y =

√
1 −

(
1 −

(r
R

)2
) p

2

(9)

The full implementation is as follows:

1. Calculate the projected data Y = XA, where X has already been scaled.
2. Calculate the trimmed radius of the projected points rtrim

y = min(ry, R) and apply the radial
transformation described in equation (9) to get the corrected radius r′y.

3. Scale the Euclidean point vectors by a factor of
r′y
ry

This differs from the original implementation described in Laa, Cook, and Lee (2021) in that
we don’t convert the Euclidean vectors to polar form, and instead apply the scaling directly to the
Euclidean vectors. This removal of the conversion step was primarily to improve performance.

Extension to 3D

Laa, Cook, and Lee (2021) provides the equation for the relative projected volume at radius r on to a
two dimensional disk for the 2-dimensional sage display. In this paper, we extend and implement
the scatter, sage, and slice displays in 3D, and to do this we needed to calculate the relative projected
volume for the case of a 3-dimensional projection.

In the appendix we show that the relative projected volume for a sphere at radius r is given by:

v3(r; p, R) = BetaInc
((r

R

)2
,

3
2

,
p − 1

2

)
(10)

Where BetaInc(x, α, β) is the regularised incomplete beta function. This is important because it
represents the radial CDF of points projected to 3 dimensions, and suggests that the radial PDF of the

projected points is Beta
(

3
2 , p−1

2

)
assuming the original data is a uniformly distributed ball of radius

R.

So for the three dimensional case, the full radial transformation for the sage tour is given by

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 320

Figure 8: (Top) Initial frames of a 3D scatter tour of a 3, 10, and 50 dimensional ball respectively from
left to right. (Bottom) Selected frames of a 3D sage tour of similar 3, 10, and 50 dimensional balls. As
the dimensionality increases, the standard scatter display crowds the points near the center, whereas
the sage display shows a consistent radial distribution of points. All screenshots are at the same zoom
level.

r′y = 3

√
BetaInc

((r
R

)2
,

3
2

,
p − 1

2

)
(11)

We also show that this generalises to any projection from p to d dimensions with p > d with the
equation:

v(r; p, R, d) = BetaInc
((r

R

)2
,

d
2

,
p − d

2
+ 1
)

(12)

This also suggests that equation (7) is a special case of equation (12).

The 3D sage tour is currently implemented in the show_sage() function, and like the scatter and
slice displays the correct variant is chosen automatically based on the dimension of the provided
tour path. However, this is not implemented for d > 3 as we don’t yet have a display method that
can handle higher-dimensional projections. This will be implemented as an extension of a Parallel
Coordinates Plot (PCP) or Andrew’s plot in future.

An example of the 3D sage tour is shown in Figure 8.

6 Case study — MNIST embeddings

A common task when analysing wide or sparse data sets is to generate embeddings; finding a lower
dimensional representation of high dimensional data, placing similar objects close together and
dissimilar objects far apart in the embedding space. This is especially useful when dealing with text or
image data.

An example of this is the algorithm used for facial recognition in FaceNet (Schroff, Kalenichenko,
and Philbin (2015)). A neural network is trained which maps a vector representation of images of faces
to a lower dimensional space. The network minimises the distance between examples of the same
class and maximises distances between examples from different classes in the output space. The result
is that the euclidean distance between faces can be used as a metric for face similarity, so an unknown
face can be classified as belonging to a specific individual if the distance between the unknown face
and one or more known faces is small.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 321

Figure 9: Selected frames from the 8-dimensional MNIST embeddings data using show_scatter() as the
display method. The colour corresponds to the handwritten digit 0, 1, ..., 9. Despite the large number
of data points, the animation of the tour is smooth and interactions are responsive.

The datasets mnist_embeddings_8d and mnist_embeddings_32d in the detourr package are embed-
dings trained using a similar algorithm to FaceNet but using the MNIST (LeCun (1998)) handwritten
digits dataset. The training set consists of 60,000 28x28 pixel training images and in the following
examples we visualise the test set containing 10,000 examples.

6.1 Scatterplot display

Using the core show_scatter() function to display a grand_tour() tour path in Figure 9 we can see
quite good separation between the clusters corresponding to each of the 10 digits. Despite the tour
animation consisting of 10,000 data points, the animation runs smoothly at 30 FPS in Microsoft Edge
on a Macbook Pro 2019. Running a performance profile of the animation indicates the CPU is idle
90% of the time while the animation is playing. The remaining time is divided between scripting
(6%, including linear algebra operations), rendering (1.4%), painting (0.8%) and system (1.8%). When
running the same tour on the mnist_embeddings_32d dataset, the animation is still quite smooth and
CPU is 80% idle.

In the lower left of Figure 9 is an example of the label aesthetic at work. This allows the user
to identify which group a set of points belongs to, as well as the precise ID of any outliers that may
require further investigation.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 322

Figure 10: Selected frames from the 8-dimensional MNIST embeddings data using show_sage() as the
display method with a 2D grand tour path. The sage display shows the data points near the surface of
the unit ball, which is due to the L2 normalisation of the original embeddings. This structure was not
clear in the standard scatter display but is preserved with the sage display.

6.2 Sage and Slice display methods

The show_scatter() display method gives the viewer a fairly good sense of the data set, but there
is some structure that may not be obvious. The embeddings in the mnist_embeddings_8d and
mnist_embeddings_32d datasets are L2 normalised, so the points sit on the surface of a unit ball
in the high-dimensional space. To reveal this structure, we can use the sage (Laa, Cook, and Lee (2021))
or slice (Laa, Cook, and Valencia (2020)) display methods, which are implemented as show_sage() and
show_slice() respectively.

The sage display scales points outwards based on their radius so that the relative volume of the
circle or sphere in the projected space is the same as in the original space. In the example shown in
Figure 10, the show_sage() display method is used. The effect is that the projected points tend sit
much closer to the surface of the unit circle, giving a much clearer view of the ball-like structure of the
original data.

The slice display highlights points based on their proximity to the projection plane. Points that
are close to the projection plane are highlighted and those further away are faded out by making
them transparent. In the case of the MNIST embedding data in Figure 11 the ball structure of the data
manifests as a clear circular void in the middle of the plot, with points highlighted only towards the
edges.

6.3 Linked selection

Plot interactions such as selection and filtering can be helpful for identifying and exploring outliers,
clusters, and other interesting features in a dataset. These are enhanced even further when multiple
visuals are linked, and selections and filters are applied to all linked visuals. In this example, we
compare the tour animation with the result of a T-SNE (Van der Maaten and Hinton (2008)) which
was performed using the excellent Rtsne R package (Krijthe (2015)) and displayed using plotly. The
visuals are linked using the R package crosstalk and a set of filter checkboxes is also added.

Figure 12 shows the linked visuals in their initial state with no filtering applied. We can then use
the selection tool in either of the visuals to highlight points, and see the highlighting applied to both
visuals as in Figure 13.

Figure 14 shows the result of filtering the visuals using the filter checkboxes on the left. In the
filtered visual, outlying points are much easier to see, and they can be easily investigated using
tooltips.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=Rtsne

CONTRIBUTED RESEARCH ARTICLE 323

Figure 11: Selected frames of the 8-dimensional MNIST embeddings data using show_slice() as the
display method. The slice display makes the hollowness of this data apparent.

Figure 12: Linked visuals of the tour using detourr (left) compared to a T-SNE dimension reduction
(right)

Figure 13: Linked visuals with selection applied. Points can be selected in either visual via click-and-
drag and the selection will be reflected in both.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 324

Figure 14: Linked visuals with filtering applied. Viewing each digit individually makes outlying
points much more apparent, and those points can be identified using tooltips.

The code used to produce figures 12, 13, and 14 is shown below. Here each plot is created using a
crosstalk SharedData object in place of a standard data frame, and linked together using the bscols
function:

library(crosstalk)
library(Rtsne)
library(plotly)

data(mnist_embeddings_8d)

ts <- select(mnist_embeddings_8d, starts_with("X")) |>
Rtsne(num_threads = 4)

Y <- as_tibble(ts$Y)
names(Y) <- c("Y1", "Y2")

plot_df <- bind_cols(mnist_embeddings_8d, Y)
shared_mnist <- SharedData$new(plot_df)

detour_plot <- detour(shared_mnist, tour_aes(
projection = starts_with("X"), color = label,
label = c(id, label),

)) |>
tour_path(grand_tour(2)) |>
show_sage(width = "100%", height = "450px")

tsne_plot <- plot_ly(shared_mnist,
x = ~Y1,
y = ~Y2,
text = paste0("Label: ", plot_df$label, "
", "ID: ", plot_df$id),
color = ~label,
height = 450,
colors = viridisLite::viridis(10)

) |>
highlight(on = "plotly_selected", off = "plotly_doubleclick") |>
add_trace(type = "scatter", mode = "markers")

bscols(
list(

filter_checkbox("label", "Label", shared_mnist, ~label)
),
detour_plot, tsne_plot,
widths = c(1, 5, 6)

)

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 325

7 Conclusion and future work

In this paper we have introduced detourr which provides interactive, performant, and portable tour
visualisations from R. We accomplish these things using web technologies; TensorFlow.js (Abadi et
al. (2016)) provides fast linear algebra operations through WebAssembly, Three.js provides GPU
rendering via WebGL, and JavaScript & HTML enable good performance and interactive features
across the board. We also provide a simplified implementation of the Slice display (Laa, Cook, and
Valencia (2020)), and have generalised the radial transformation from the Sage display (Laa, Cook,
and Lee (2021)) to work with tours of 3 or more dimensions. All of this is done with an intuitive user
interface which makes the software accessible to new users.

Looking ahead, the priority for the next stage of development is to leverage detourr’s extensible
design to implement additional display methods such as density plots, histograms, parallel coordinates
plots, and Andrew’s plot. Additional changes could also be made to allow the radial transformation
of the sage display and the highlighting of points from the slice display to be incorporated in to these
other display methods, rather than being limited to only the scatter plot display. This would also allow
the additional information from both the sage and slice tour applied to the same visual.

Further enhancements could be made by implementing facetting; allowing grouped data to be
displayed across separate visuals with unified controls and timeline added. This could be taken further
by allowing multiple different displays to use the same controls and timeline, for example displaying a
scatter plot alongside one or more density plots.

To extend the existing scatter plot displays, the addition of an interactive legend would greatly
enhance the user experience. As well as providing context for the point colour / fill, this would allow
the user to be able to filter groups without needing to use a separate package like shiny or crosstalk. A
shape aesthetic would also be beneficial, and the ability to export the projection matrix at the current
frame would make it easier to perform analysis once an interesting projection is found.

As well as being able to display points and lines, support for plotting surfaces would allow for
rich visualisations of regression model fits and classification boundaries. Three.js has good support for
drawing surfaces, however it’s not clear how a decision boundary can be projected down to a lower
number of dimensions or whether this is actually feasible.

Support for displaying images or sprites directly on the tour visual or as an extension of the tooltip
functionality is possible. A similar feature is implemented in the Tensorboard Embedding Visualiser
(Smilkov et al. (2016)) which also uses Three.js under the hood.

What’s more, Three.js has support for VR, which would be an interesting addition for exploring
an immersive 3D tour visual.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 326

8 Radial CDF of hyperspheres projected to 3 dimensions

In order to implement the 3D variant of the sage tour (Laa, Cook, and Lee (2021)), we need an
expression for the relative projected volume of a sphere of radius R. This is then used as a scaling
factor for point radii in the visualisation to prevent points from being crowded towards the centre.

First we denote the volume of a p-dimensional hypersphere by:

2πp/2Rp

pΓ(p/2)

In the appendix of Laa et al. (2022) (equations 7–10) is a derivation for the relative projected
volume of a ball of radius r.

F(r; p, R) =
Vinside(r; p, R)

V(p, r)
(13)

= 1 − Voutside(r; p, R)
V(p, r)

(14)

And the formula for Voutside(r; p, R) for a circle is given as:

Voutside(r; p, R) =
∫ R

r
V(p − 2,

√
R2 − x2)2πxdx (15)

To extend this to the 3-dimensional case, we can modify (15) to express the volume outside a
sphere of radius r as:

Voutside(r; p, R) =
∫ R

r
V(p − 3,

√
R2 − x2)4πx2dx (16)

and it follows that the relative projected volume for a sphere is

F3(r; p, R) = 1 −
∫ R

r V(p − 3,
√

R2 − x2)4πx2dx
V(p, R)

(17)

We know 2Γ(3/2) = Γ(1/2) =
√

π so with some rearranging this can be reduced to:

F3(r; p, R) = 1 − 2
Rp

Γ(p/2 + 1)
Γ(3/2)Γ((p − 1)/2)

∫ R

r
(R2 − x2)(p−3)/2x2dx (18)

Denoting u = 1 −
(x

R
)2 and dx = R2

−2x du = R
−2

√
1−u

du for a change of variable this becomes

F3(r; p, R) = 1 − Γ(p/2 + 1)
Γ(3/2)Γ((p − 1)/2)

∫ 1− r2

R2

0
u(p−3)/2(1 − u)1/2du (19)

= 1 − BetaInc
(

1 −
(r

R

)2
,

p − 1
2

,
3
2

)
(20)

= BetaInc
((r

R

)2
,

3
2

,
p − 1

2

)
(21)

where BetaInc is the regularised incomplete beta function (the CDF of a Beta distribution).

We can generalise this to any projection from p to d dimensions using the same steps, but with

Voutside(r; p, R, d) =
∫ R

r
V(p − d,

√
R2 − x2)

2πd/2

Γ(d/2)
xd−1dx (22)

where 2πd/2

Γ(d/2) xd−1 is the surface area of a d-ball.

This results in the relative projected volume of a projection from p to d dimensions being given by:

F(r; p, R, d) = BetaInc
((r

R

)2
,

d
2

,
p − d

2
+ 1
)

(23)

Figures 15 and 16 compare the theoretical results from equations (21) and (23) respectively with

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 327

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
r

R
el

at
iv

e
pr

oj
ec

te
d

vo
lu

m
e

p

10

5

50

Radial projected CDF for a sphere

Figure 15: Relative projected volume for projections from p dimensions to d=3 dimensions. The solid
line is simulated data, and the dashed line is the theoretical CDF

simulated values.

References

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
et al. 2016. “TensorFlow: A System for Large-Scale Machine Learning.” In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 265–83.

Allaire, JJ, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, Hadley Wick-
ham, Joe Cheng, Winston Chang, and Richard Iannone. 2022. Rmarkdown: Dynamic Documents for r.
https://github.com/rstudio/rmarkdown.

Andrews, David F. 1972. “Plots of High-Dimensional Data.” Biometrics, 125–36.
Asimov, Daniel. 1985. “The Grand Tour: A Tool for Viewing Multidimensional Data.” SIAM Journal on

Scientific and Statistical Computing 6 (1): 128–43.
Becker, Richard A, and William S Cleveland. 1987. “Brushing Scatterplots.” Technometrics 29 (2):

127–42.
Bostock, Michael, Vadim Ogievetsky, and Jeffrey Heer. 2011. “D3 Data-Driven Documents.” IEEE

Transactions on Visualization and Computer Graphics 17 (12): 2301–9.
Buja, Andreas, Dianne Cook, Daniel Asimov, and Catherine Hurley. 2005. “Computational Methods

for High-Dimensional Rotations in Data Visualization.” Handbook of Statistics 24: 391–413.
Cabello, Ricardo. 2010. “Three.js.” GitHub Repository. https://github.com/mrdoob/three.js.
Chang, Winston, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff Allen, Jonathan

McPherson, Alan Dipert, and Barbara Borges. 2021. Shiny: Web Application Framework for r.
%7Bhttps://CRAN.R-project.org/package=shiny%7D.

Cheng, Joe, Bhaskar Karambelkar, and Yihui Xie. 2022. Leaflet: Create Interactive Web Maps with the
JavaScript ’Leaflet’ Library. %7Bhttps://CRAN.R-project.org/package=leaflet%7D.

Cheng, Joe, and Carson Sievert. 2022. Crosstalk: Inter-Widget Interactivity for HTML Widgets. %7Bhttps:
//rstudio.github.io/crosstalk/%7D.

Cook, Dianne, Deborah F Swayne, and Andreas Buja. 2007. Interactive and Dynamic Graphics for Data
Analysis: With r and GGobi. Springer Science & Business Media.

Harrison, Paul. 2022. Langevitour: Langevin Tour. %7Bhttps://CRAN.R-project.org/package=langevitour%
7D.

Hastie, Trevor, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. 2001. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer.

Henry, Lionel, and Hadley Wickham. 2022. Tidyselect: Select from a Set of Strings. %7Bhttps://CRAN.R-
project.org/package=tidyselect%7D.

Kipp, Michael, Ursula Laa, and Dianne Cook. 2019. “Connecting r with D3 for Dynamic Graphics, to
Explore Multivariate Data with Tours.” The R Journal 11 (1): 245.

Krijthe, Jesse H. 2015. Rtsne: T-Distributed Stochastic Neighbor Embedding Using Barnes-Hut Implementa-
tion. https://github.com/jkrijthe/Rtsne.

Laa, Ursula, Dianne Cook, Andreas Buja, and German Valencia. 2022. “Hole or Grain? A Section

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://github.com/rstudio/rmarkdown
https://github.com/mrdoob/three.js
%7Bhttps://CRAN.R-project.org/package=shiny%7D
%7Bhttps://CRAN.R-project.org/package=leaflet%7D
%7Bhttps://rstudio.github.io/crosstalk/%7D
%7Bhttps://rstudio.github.io/crosstalk/%7D
%7Bhttps://CRAN.R-project.org/package=langevitour%7D
%7Bhttps://CRAN.R-project.org/package=langevitour%7D
%7Bhttps://CRAN.R-project.org/package=tidyselect%7D
%7Bhttps://CRAN.R-project.org/package=tidyselect%7D
https://github.com/jkrijthe/Rtsne

CONTRIBUTED RESEARCH ARTICLE 328

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
r

R
el

at
iv

e
pr

oj
ec

te
d

vo
lu

m
e

d

2

3

4

8

Radial projected CDF for a ball with dimension d (p=10)

Figure 16: Relative projected volume for a projection of p=10 dimensions to d dimensions. The solid
line is simulated data, and the dashed line is the theoretical CDF. This shows the generalisation to d >
3 dimensions

Pursuit Index for Finding Hidden Structure in Multiple Dimensions.” Journal of Computational and
Graphical Statistics 0 (0): 1–14. https://doi.org/10.1080/10618600.2022.2035230.

Laa, Ursula, Dianne Cook, and Stuart Lee. 2021. “Burning Sage: Reversing the Curse of Dimensionality
in the Visualization of High-Dimensional Data.” Journal of Computational and Graphical Statistics,
1–10.

Laa, Ursula, Dianne Cook, and German Valencia. 2020. “A Slice Tour for Finding Hollowness in
High-Dimensional Data.” Journal of Computational and Graphical Statistics 29 (3): 681–87.

LeCun, Yann. 1998. “The MNIST Database of Handwritten Digits.” Http://Yann. Lecun. Com/Exdb/Mnist/.
Lee, Stuart. 2021. Liminal: Multivariate Data Visualization with Tours and Embeddings. %7Bhttps:

//CRAN.R-project.org/package=liminal%7D.
McInnes, Leland, John Healy, and James Melville. 2018. “UMAP: Uniform Manifold Approximation

and Projection for Dimension Reduction.” arXiv. https://doi.org/10.48550/ARXIV.1802.03426.
Ooms, Jeroen. 2021. Gifski: Highest Quality GIF Encoder. %7Bhttps://CRAN.R-project.org/package=

gifski%7D.
R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R

Foundation for Statistical Computing. %7Bhttps://www.R-project.org/%7D.
Schroff, Florian, Dmitry Kalenichenko, and James Philbin. 2015. “Facenet: A Unified Embedding for

Face Recognition and Clustering.” In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 815–23.

Sievert, Carson. 2020. Interactive Web-Based Data Visualization with r, Plotly, and Shiny. Chapman;
Hall/CRC. %7Bhttps://plotly-r.com%7D.

Smilkov, Daniel, Nikhil Thorat, Charles Nicholson, Emily Reif, Fernanda B. Viégas, and Martin Wat-
tenberg. 2016. “Embedding Projector: Interactive Visualization and Interpretation of Embeddings.”
arXiv. https://doi.org/10.48550/ARXIV.1611.05469.

Spyrison, Nicholas, and Dianne Cook. 2020. “spinifex: An R Package for Creating a Manual Tour
of Low- dimensional Projections of Multivariate Data.” The R Journal 12 (1): 243–57. https:
//doi.org/10.32614/RJ-2020-027.

Swayne, Deborah F, Duncan Temple Lang, Andreas Buja, and Dianne Cook. 2003. “GGobi: Evolving
from XGobi into an Extensible Framework for Interactive Data Visualization.” Computational
Statistics & Data Analysis 43 (4): 423–44.

Vaidyanathan, Ramnath, Yihui Xie, JJ Allaire, Joe Cheng, Carson Sievert, and Kenton Russell. 2021.
Htmlwidgets: HTML Widgets for r. %7Bhttps://CRAN.R-project.org/package=htmlwidgets%7D.

Van der Maaten, Laurens, and Geoffrey Hinton. 2008. “Visualizing Data Using t-SNE.” Journal of
Machine Learning Research 9 (11).

Wang, Bo-Ting, TJ Hobbs, Sean Doyle, Jun Gao, Tie-Jiun Hou, Pavel M Nadolsky, and Fredrick I Olness.
2018. “Mapping the Sensitivity of Hadronic Experiments to Nucleon Structure.” Physical Review D
98 (9): 094030.

Wickham, Hadley. 2010. “A Layered Grammar of Graphics.” Journal of Computational and Graphical
Statistics 19 (1): 3–28.

———. 2014. “Tidy Data.” The Journal of Statistical Software 59. http://www.jstatsoft.org/v59/i10/.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://doi.org/10.1080/10618600.2022.2035230
%7Bhttps://CRAN.R-project.org/package=liminal%7D
%7Bhttps://CRAN.R-project.org/package=liminal%7D
https://doi.org/10.48550/ARXIV.1802.03426
%7Bhttps://CRAN.R-project.org/package=gifski%7D
%7Bhttps://CRAN.R-project.org/package=gifski%7D
%7Bhttps://www.R-project.org/%7D
%7Bhttps://plotly-r.com%7D
https://doi.org/10.48550/ARXIV.1611.05469
https://doi.org/10.32614/RJ-2020-027
https://doi.org/10.32614/RJ-2020-027
%7Bhttps://CRAN.R-project.org/package=htmlwidgets%7D
http://www.jstatsoft.org/v59/i10/

CONTRIBUTED RESEARCH ARTICLE 329

———. 2016. Ggplot2: Elegant Graphics for Data Analysis. springer.
Wickham, Hadley, Dianne Cook, Heike Hofmann, and Andreas Buja. 2011. “Tourr: An r Package for

Exploring Multivariate Data with Projections.” Journal of Statistical Software 40: 1–18.
Wilkinson, Leland. 2012. “The Grammar of Graphics.” In Handbook of Computational Statistics, 375–414.

Springer.
Xie, Yihui, Joe Cheng, and Xianying Tan. 2022. DT: A Wrapper of the JavaScript Library ’DataTables’.

%7Bhttps://CRAN.R-project.org/package=DT%7D.

Casper Hart
University of Auckland
Department of Statistics
casperhart93@gmail.com

Earo Wang
The University of Auckland
Department of Statistics
earo.wang@gmail.com

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

%7Bhttps://CRAN.R-project.org/package=DT%7D
mailto:casperhart93@gmail.com
mailto:earo.wang@gmail.com

	Taking the Scenic Route: Interactive and Performant Tour Animations
	Introduction
	Background and related works
	Types of tours
	Display methods
	Software implementations

	Usage and interactivity
	User interface
	Interactivity

	Web technologies for performance
	Linear algebra operations
	Performance comparison
	Rendering

	Display methods
	Scatter display
	Slice display
	Sage display

	Case study — MNIST embeddings
	Scatterplot display
	Sage and Slice display methods
	Linked selection

	Conclusion and future work
	Radial CDF of hyperspheres projected to 3 dimensions
	References

