Supplementary materials are available in addition to this article. It can be downloaded at
RJ-2023-051.zip
J. M. Becker, J. H. Cheah, R. Gholamzade, C. M. Ringle and M. Sarstedt. PLS-SEM’s most wanted guidance.
International Journal of Contemporary Hospitality Management, 2022. URL
https://doi.org/10.1108/IJCHM-04-2022-0474.
W. W. Chin and J. Dibbern. An introduction to a permutation based procedure for multi-group PLS analysis: Results of tests of differences on simulated data and a cross cultural analysis of the sourcing of information system services between germany and the USA. In
Handbook of partial least squares, pages. 171–193 2010. Berlin Heidelberg: Springer. URL
https://doi.org/10.1007/978-3-540-32827-8_8.
ISBN 978-3-540-32825-4.
G. C. Chow. Tests of equality between sets of coefficients in two linear regressions.
Econometrica: Journal of the Econometric Society, 591–605, 1960. URL
https://doi.org/10.2307/1910133.
T. K. Dijkstra and J. Henseler. Consistent partial least squares path modeling.
MIS quarterly, 39(2): 297–316, 2015. URL
https://www.jstor.org/stable/26628355.
V. Esposito Vinzi, L. Trinchera, S. Squillacciotti and M. Tenenhaus. REBUS-PLS: A response-based procedure for detecting unit segments in PLS path modelling.
Applied Stochastic Models in Business and Industry, 24(5): 439–458, 2008. URL
https://doi.org/10.1002/asmb.728.
J. Evermann and M. Rönkkö. Recent developments in PLS.
Communications of the Association for Information Systems, 44: 123–132, 2021. URL
https://doi.org/10.17705/1CAIS.044XX.
J. F. Hair Jr, G. T. M. Hult, C. M. Ringle, M. Sarstedt, N. P. Danks and S. Ray.
Partial least squares structural equation modeling (PLS-SEM) using r: A workbook. Los Angeles: Springer Nature, 2021. URL
https://doi.org/10.1007/978-3-030-80519-7.
ISBN 9783030805197.
J. F. Hair Jr, G. T. M. Hult, C. Ringle and M. Sarstedt.
A primer on partial least squares structural equation modeling (PLS-SEM). Los Angeles: saGe publications, 2016. URL
https://doi.org/10.1007/978-3-030-80519-7.
ISBN 978-1-5443-9640-8.
J. F. Hair Jr, L. M. Matthews, R. L. Matthews and M. Sarstedt. PLS-SEM or CB-SEM: Updated guidelines on which method to use.
International Journal of Multivariate Data Analysis, 1(2): 107–123, 2017a. URL
https://doi.org/10.1504/IJMDA.2017.087624.
J. F. Hair Jr, J. J. Risher, M. Sarstedt and C. M. and Ringle. When to use and how to report the results of PLS-SEM.
European business review, 31(1): 2–24, 2019. URL
https://doi.org/10.1108/EBR-11-2018-0203.
J. F. Hair Jr, M. Sarstedt, C. M. Ringle and S. P. Gudergan. Advanced issues in partial least squares structural equation modeling. Los Angeles: saGe publications, 2017b. ISBN 9781483377391.
J. Henseler. Composite-based structural equation modeling: Analyzing latent and emergent variables. New York: Guilford Publications, 2020. ISBN 9781462545605.
J. Henseler, C. M. Ringle and M. Sarstedt. Testing measurement invariance of composites using partial least squares.
International marketing review, 3(3): 405–431, 2016. URL
https://doi.org/10.1108/IMR-09-2014-0304.
J. Henseler, C. M. Ringle and R. R. Sinkovics. The use of partial least squares path modeling in international marketing. In
New challenges to international marketing, pages. 277–319 2009. Bingley: Emerald Group Publishing Limited. URL
https://doi.org/10.1108/S1474-7979(2009)0000020014.
ISBN 978-1-84855-468-9.
M. Keil, B. C. Tan, K. K. Wei, T. Saarinen, V. Tuunainen and A. Wassenaar. A cross-cultural study on escalation of commitment behavior in software projects.
MIS quarterly, 299–325, 2000. URL
https://doi.org/10.2307/3250940.
M. Klesel, F. Schuberth, J. Henseler and B. Niehaves. A test for multigroup comparison using partial least squares path modeling.
Internet research, 29(3): 464–477, 2019. URL
https://doi.org/10.1108/IntR-11-2017-0418.
M. Klesel, F. Schuberth, B. Niehaves and J. Henseler. Multigroup analysis in information systems research using PLS-PM: A systematic investigation of approaches.
ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 53(3): 26–48, 2022. URL
https://doi.org/10.1145/3551783.3551787.
T. Kollmann, C. Stöckmann, J. M. Kensbock and A. Peschl. What satisfies younger versus older employees, and why? An aging perspective on equity theory to explain interactive effects of employee age, monetary rewards, and task contributions on job satisfaction.
Human Resource Management, 59(1): 101–115, 2020. URL
https://doi.org/10.1002/hrm.21981.
G. Lamberti.
Genpathmox: Pathmox approach segmentation tree analysis. 2022. URL
https://CRAN.R-project.org/package=genpathmox. R package version 0.9.
G. Lamberti. Hybrid multigroup partial least squares structural equation modelling: An application to bank employee satisfaction and loyalty.
Quality \(\&\) Quantity, 1–23, 2021. URL
https://doi.org/10.1007/s11135-021-01096-9.
G. Lamberti, T. Aluja Banet and J. Rialp Criado. Work climate drivers and employee heterogeneity.
The International Journal of Human Resource Management, 33(3): 472–504, 2020. URL
https://doi.org/10.1080/09585192.2020.1711798.
G. Lamberti, T. B. Aluja and G. Sanchez. The pathmox approach for PLS path modeling segmentation.
Applied Stochastic Models in Business and Industry, 32(4): 453–468, 2016. URL
https://doi.org/10.1002/asmb.2168.
G. Lamberti, T. Banet Aluja and G. Sanchez. The pathmox approach for PLS path modeling: Discovering which constructs differentiate segments.
Applied Stochastic Models in Business and Industry, 33(6): 674–689, 2017. URL
https://doi.org/10.1002/asmb.2270.
L. Lebart, A. Morineau and J. P. Fenelon. Traitement des donnees statistiques. Paris: Dunod, 1979. ISBN 10. 2040107878.
W. Y. Loh and Y. S. Shih. Split selection methods for classification trees.
Statistica sinica, 815–840, 1997. URL
https://www.jstor.org/stable/24306157.
M. E. Rademaker and F. Schuberth.
cSEM: Composite-based structural equation modeling. 2020. URL
https://CRAN.R-project.org/package=cSEM. Package version: 0.4.0.
S. Ray, N. P. Danks and A. C. Valdez.
Seminr: Building and estimating structural equation models. 2020. URL
https://CRAN.R-project.org/package=seminr. Package version: 0.4.0.
M. Rönkkö.
Matrixpls: Matrix-based partial least squares estimation. 2017. URL
https://github.com/mronkko/matrixpls. R package version 1.0.5.
Y. Rosseel. Lavaan: An r package for structural equation modeling.
Journal of Statistical Software, 48(2): 1–36, 2012. URL
https://doi.org/10.18637/jss.v048.i02.
G. Sanchez and T. Aluja. Pathmox: A PLS-PM segmentation algorithm. Proceedings of KNEMO, 69: 2006.
G. Sanchez, L. Trinchera and G. Russolillo.
Plspm: Tools for partial least squares path modeling (PLS-PM). 2015. URL
https://github.com/gastonstat/plspm. R package version 0.4.9.
M. Sarstedt, J. F. Hair, M. Pick, B. D. Liengaard, L. Radomir and C. M. Ringle. Progress in partial least squares structural equation modeling use in marketing research in the last decade.
Psychology \(\&\) Marketing, 39(5): 1035–1064, 2022a. URL
https://doi.org/10.1002/mar.21640.
M. Sarstedt, J. F. Hair Jr and C. M. Ringle. PLS-SEM: Indeed a silver bullet–retrospective observations and recent advances.
Journal of Marketing Theory and Practice, 1–15, 2022b. URL
https://doi.org/10.1080/10696679.2022.2056488.
M. Sarstedt, L. Radomir, O. I. Moisescu and C. M. Ringle. Latent class analysis in PLS-SEM: A review and recommendations for future applications.
Journal of Business Research, 138: 398–407, 2022c. URL
https://doi.org/10.1016/j.jbusres.2021.08.051.
G. Shmueli, S. Ray, J. M. V. Estrada and S. B. Chatla. The elephant in the room: Predictive performance of PLS models.
Journal of Business Research, 69(10): 4552–4564, 2016. URL
https://doi.org/10.1016/j.jbusres.2016.03.049.
G. Shmueli, M. Sarstedt, J. F. Hair, J. H. Cheah, H. Ting, S. Vaithilingam and C. M. Ringle. Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict.
European journal of marketing, 53(11): 2322–2347, 2019. URL
https://doi.org/10.1108/EJM-02-2019-0189.
K. Soetaert.
Diagram: Functions for visualising simple graphs (networks), plotting flow diagrams. 2020. URL
https://CRAN.R-project.org/package=diagram. R package version 1.6.5.
H. Wold. Partial least squares. In
Encyclopedia of statistical sciences, pages. 581–591 1985. John Wiley; Sons, Ltd. URL
https://doi.org/10.1002/0471667196.ess1914.pub2.