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Estimating Heteroskedastic and
Instrumental Variable Models for Binary
Outcome Variables in R

by Mauricio Sarrias

Abstract The objective of this article is to introduce the package Rchoice which provides functionality
for estimating heteroskedastic and instrumental variable models for binary outcomes, whith emphasis
on the calculation of the average marginal effects. To do so, I introduce two new functions of
the Rchoice package using widely known applied examples. I also show how users can generate
publication-ready tables of regression model estimates.

1 Introduction

Often, applied researchers in different fields deal with binary (probit and logit) models that exhibit
heteroskedasticity (the error variance is not homogeneous across individuals), or with endogenous
variables.! In both cases, the standard binary logit and probit estimator will be inconsistent, which
can lead to misleading conclusions (Yatchew and Griliches 1985; Wooldridge 2010).”

One widely used estimator to address heteroskedastic disturbances in the realm of binary outcomes
is the fully parametric multiplicative heteroskedastic binary model (Keele and Park 2006). This model
assumes that the error term’s variance depends on specific known covariates. For example, Alvarez
and Brehm (1995) use a heteroskedastic probit model to show that policy choices about abortion are
heterogeneous due to unequal variances.”

If some of the regressor is endogenous, approaches such as the control function (CF, Wooldridge
2015) or the maximum likelihood estimator (MLE, Newey 1987; Rivers and Vuong 1988) allow to
remediate the inconsistent estimates using an instrumental variables (IV) approach.

Routines for heteroskedastic and IV models exist in commercial software such as Stata (StataCorp
2019) and LIMDEP (Greene 2002). One advantage of Stata is that its command margins allows such
models to quickly and flexibly compute marginal effects. This is very attractive for users who need to
produce and export tables of estimates in Latex or other formats.

In this article, I review the main approaches and functions in R to estimate heteroskedastic and
IV models for binary outcomes, with a special focus on applied examples and the computation of
the marginal effects. Additionally, this article introduces two new functions of the Rchoice package
(Sarrias 2016) that allow estimating both types of models. The first function, hetprob(), estimates
binary dependent variable models assuming a parametric form for the heteroskedasticity. The model
can be either the probit or logit model and the parameters are estimated by Maximum Likelihood (ML),
which find the parameter values that make the observed data most probable under the assumptions of
the statistical model.

The second function, ivpml(), estimates binary probit models with endogenous continuous
variables using also the ML approach. As an additional feature, Rchoice also provides functions
to compute the average marginal effects for both models under different modelling approaches:
categorical variables, interactions terms, and quadratic variables. The package can also be used in
concert with the memisc package (Elff 2012), which produces publication-ready tables of regression
model estimates. Finally, I show that both functions produce the same estimates as the corresponding
Stata commands.*

The function hetprob() is intended to complement other related packages in R. For example, the
packages glmx (Zeileis, Koenker, and Doebler 2015) and oglmx (Carroll 2018) also allow to estimate
heteroskedastic binary models using MLE. The latter has the advantage of being able to compute
the marginal effects. However, the current version does not allow to identify functions of variables
that enter the equations for the mean and standard equations, interaction terms, or polynomials.
The ivpml () function provides the MLE for the probit model and hence complements the R package
ivprobit (Zaghdoudi 2018) which provides a two-step procedure. Another is the LARF package (An

'In econometrics, endogeneity refers to situations in which an explanatory variable is correlated with the error
term. The common sources of endogeneity are omitted variables, simultaneity, and measurement error.

2Inconsistency means that the estimator will not converge in probability to the true parameter.

3For other applications see Knapp and Seaks (1992) and Williams (2009).

“Stata codes for replicating the main results of this article are presented in Appendix C and Appendix D. Do
files are available in the supplemental material.
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and Wang 2016), which estimates local averages response functions for binary treatments and binary
instruments.

2 Models

2.1 Heterokedastic binary model

The multiplicative heterokedastic binary model (also known as the location-scale binary model) for
cross-sectional data has the following structure (Williams 2009):°

vi =x B+e, 1)
Var(e;|z;) = o7 = ¢ [eXP (2?5”2, )

where y} is the latent (unobserved) response variable for individual i = 1, ..., 1, x; is a k-dimensional
vector of explanatory variables determining the latent variable y}, B is the vector of parameters, and
€; is the error term distributed either normally or logistically with E(e;|z;, x;) = 0 and multiplicative
heterokedastic variance Var(e;|z;) = O'iz, Vi =1,...,n (Harvey 1976). The variance for each individual is
modeled parametrically assuming that it depends on a p-dimensional vector of observed variables z;,
whereas J is the vector of coefficients associated with each variable. It is important to emphasize that
z; does not include a constant, otherwise the parameters are not identified (Greene and Hensher 2010).

Since we do not observe y, we need a rule that relates the binary variable that we actually observe,
i, to the latent variable. As it is standard, we use the following rule:

1 ifyf >0,
y,-—{ i ©®)

0 otherwise.

Using Equations (1), (2) and (3), the probability of observing y; = 1 is:

_ _ X/ B
Pr(y; = 1|x;,z;) = F <exp(zr5)> , 4)

where F(-) is either ®(-), that is, the cumulative distribution function (CDF) for the standard normal

distribution, such that 0z = 1, or A(+) = 1?;{’(;2) , where A(-) represents the CDF for the standard

logistic distribution, so that (762 = 712/3.

Let 0 be the (k + p)-dimensional vector of all parameters. The vector 6 can be estimated using the
Maximum Likelihood procedure. Using Equation (4), the MLE is the value of the parameters that
maximizes the following log-likelihood function:°

17% Yi
~ n x| B x| B
0p = argmax ) In {1 —F (’)] {F (1
0O ; exp(z?ﬁ) exp(ziT(S)

As in any non-linear model, the estimated coefficients alone cannot be interpreted as marginal
changes on Pr(y; = 1|x;,z;). Let wy be a continuous variable appearing in both x and z, then the partial
effect is (see Greene 2003):

oPr(y; = 1|xi,zi) _ f x| B Br — (x{ B)dx )
3o w0 @)\ ow@ ) )

where f(+) is the probability density function (PDF) for the standard normal or standard logistic
distribution. The average partial effect (APE) can be consistently estimated as follows:

x| B B — (' B)d
exp <z1T(/5\) exp (le(/F\)

and their standard error can be estimated either by delta method or bootstrap. The delta method

APE =) f ©)
i=1

SMultiplicative exponential heteroskedasticity was first proposed by Harvey (1976) for linear models. For
identification of the multiplicative heterokedastic binary model see Carlson (2019).

The analytic gradient and Hessian for the multiplicative heterokedastic binary model used by Rchoice are
presented in Appendix A.
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provides an analytic approximation for the standard errors based on the asymptotic variance-covariance
matrix of the MLE. The bootstrap is non-parametric resampling technique, which involves generating
a large number of resampled datasets (bootstrap samples) and estimating (6) for each sample. For
further details see Wooldridge (2010).

Finally, a likelihood-ratio (LR) or Wald test can be performed to test the null hypothesis of
homoskedasticity: Hy : 6 = 0.

2.2 Probit models with endogenous continous variable

Consider the following two-equation model:

vii = xiBitavaite=x Bte, 7)
Y2i = Xﬂtﬁ + xiEer +v; = ziTﬁ +v;, (8)
vii = 1y >0], ©)

wherei = 1,..,n, y]; is a latent (unobserved) response variable for individual i and we observe y; = 1
if and only if 1 [y;; > 0], yy; is the continuous endogenous variable, X;; is a k1-dimensional vector

of predetermined (exogenous) variables, x;, is a kp-dimensional vector of additional (exogenous)
T T
instruments, x; = (x?,ym) is a k x 1 column vector such thatk = k; + 1, and z; = (xﬂ, x;) isa

p x 1 vector where p = kj + ko. Equation (7) is the structural equation, whereas Equation (8) is the
first-stage equation. Further, assume that (¢, v) are distributed as bivariate normal with zero mean.

Two-step approach

The simplest approach for estimating the parameters of Equation (7) and (8) is using a two-step
procedure (Rivers and Vuong 1988) also known as Control Function (CF) apEroach (Wooldridge 2015).
Under joint normality of (e, v), we can write € as a function of v as follows:”

(o
€ilv; = f; pv; + 13, (10)
v

where Var(e;) = 02, Var(v;) = 02, 1; ~ N [0, (1 — p?)0?] and p = Cov(e;, v;)/(0c - ). If p = 0, y2 is
exogenous and the traditional probit model will deliver consistent estimates. For identification, we
need to set Var(e;) = 1. Then Equation (10) can be re-written as:

€ = Av; + 115, (11)
where 7; ~ N [0, (1 — p?)] and A = Cov(e;, v;) /2. Inserting Equation (11) in the latent Equation (7)
yields:
Yii = X{;B1 + vy2i + Avi + 75,
and the probability of observing y;; = 1is:

Pr(y1;i = 1|y2i, z;, vi) = Pr(y3; > Olyai, 2, v;) = @ (Xﬂﬂf + 9y + /\*Uz‘) . (12)

Thus, if we knew v;, a probit of y; on x and v would consistently estimate the scaled parameters

Bi =PB1/V1—p% 7" =v//1—p? and A* = A//1 — p?. Using this idea, the estimation procedure
is as follows (see Wooldridge 2010, sect. 15.7.2):

* Run an OLS regression of i, on z (Equation (8)) and compute the residuals v; = y,; — ziT J. Both

& and ¥ are consistently estimated.
* Run the probit y; on x1, y» and U to get consistent estimators of the scaled coefficients *, 7y
and A*.

*

Note that the term control function comes from the fact that the inclusion of v in the second step
controls for the correlation between €; and v;.

Some of the structural parameters can be recovered after the two-step procedure. Since o = 1,
p = Cov(e;, v;)/0p = A - 0y. Thus, an estimate of p can be recovered from:

p=A"0y, (13)

7If x ~ N(p,0?), then we can write x; = y + ou;, where u; ~ N(0,1).

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 266

where A* is the probit estimate of A* and 0y, is the square root of the usual error variance estimator
from the first-stage regression. The unscaled parameters can also be recovered using the two-stage
estimates. For instance, since v* = v/+/(1 — p?), and using our result in Equation (13), then ¥ =

7 {1 - (7\* .51,)2}1/2

As explained by Wooldridge (2010), the usual probit z-statistic on U is a valid test of the null
hypothesis that 1, is exogenous: Hyp : A* = 0.° However, the estimated variance-covariance matrix of
the probit model does not deliver correct standard errors for the rest of the parameters since it does

not include the sampling variability of 5 when A # 0.

Following Wooldridge (2015), the APEs are obtained by taking either derivatives or differences
(depending on whether the explanatory variable is continuous or discrete) of the Average Structural
Function (ASF) given by:

ASE(x1,y2) = Ev [ﬂb (B + 7"y + /\*Ui>] : (14)

This function averages out the first-stage residuals v;, purging the model of endogeneity. Under
the weak law of large numbers, a consistent estimator for ASF(xy, y») in Equation (14) is:

1 o .
ASF = — Y @ (x[iBi + 72 +A'0;) (15)
i=1

which incorporates the estimated unobservables from the first stage without perturbing them. Hence,
to estimate the APE for y, we can compute:

= w1 ¢ ~ ~
APEy, =7~ Y ¢ (xiBi + 7" yai +370;) (16)
i=1

where ¢(-) is the standard normal density function. A standard error for this APE can be obtained via
the delta method or bootstrap.

2.3 Maximum Likelihood approach
We can also estimate the parameters using the MLE. To derive the log-likelihood function, we need

to find the joint distribution f (y1;, ¥2i|z) = f(y1i|y2i, 2i) f (y2i|2i). Under the joint normality, y;|z; ~
N(z/ 8,02) and its conditional marginal density is (Wooldridge 2014):

1 i—z] 8
f(yailzi) = (774) (yzllpz> . (17)

Using the fact that the normal distribution is symmetric, the conditional density of y,; given

(y2i,2;) can be written as:
xT B+ & (v —2] )
qi- , (18)

fnilyaizi) = @

V1—p?

where g; = 2y,; — 1 (see Greene 2003). Using Equations (17) and (18), the joint probability for each
individual i is:

X B+E (yoi—2 0 215
fWiryailzi; 0) = @ [%" ( l ( - >)} 0-%45 <M> . (19)

V1—p2 1—p?

The MLE is a value of the parameter vector that maximizes the following expression:(')

R n x! B+ £ (yoi—2z]6 P
Oy = argmax ) In{ @ |g;- : U”< - ) 1 (yZlZ’>

0O i1 V1 —p? oy 1—p?

8Under the null Hy : A* = 0 it is true that € = v and therefore the distribution of v does not play any role under
the null.
The analytic gradient and Hessian for the MLE used by Rchoice are presented in Appendix B.
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After the parameters are estimated, the APE for the endogenous variable can be estimated as:

~ Tg4LPls
— 7 o1 X; B+ 50
APE;, = ——- )"

Vi-p*niH 1-p2

A second option would be to compute the effect for the structural model assuming that endogeneity
does not exist (the values of the covariates are given and fixed). In this case, the APE for the endogenous
variable is computed as:

(20)

APE,, = ~7% é(p (xjﬁ) . (1)

3 Applications

3.1 Heteroskedastic binary models
Promotion of scientists

To show how R can be used to fit heteroskedastic binary response models, I first use Allison (1999)’s
dataset called “tenure.cvs” (see also Williams 2010). The data consists of observations of the careers of
university professors over time, tracking multiple cross-sectional and longitudinal indicators including
gender, the number of published article, and quality of department, among others.

We can load the dataset into R as follows:
tenure_data <- read.csv(file = 'tenure.csv')

Following Allison (1999) and Williams (2009) I focus on whether women get a lower payoff from
their published work than men. First, I estimate a binary logit model using the glm() function for men
and women separately, where the structural model is given by

tenure* = By + Bryear + Byyear” + Baselect + Pjarticles + Bsprestige + €,
tenure = 1 [tenure® > 0],

where e is distributed logistically with mean 0 and variance 7% /3. The dependent variable, tenure, is
whether an assistant professor was promoted in that year, and 0 otherwise, year is the number of years
since the beginning of the assistant professorship, select is a measure of undergraduate selectivity
of the colleges where scientists received their bachelor’s degree, articles is the cumulative number
of articles published by the end of each person-year, and prestige is a measure of prestige of the
department in which scientist was employed. To obtain similar results as Allison (1999), I restrict the
sample to year <= 10. Thus, each person has one record per year of service as an assistant professor,
for as many as ten years.

sub_data <- subset(tenure_data, year <= 10)

logit_m <- glm(tenure ~ year + I(year*2) + select + articles + prestige,
subset = (female == 0),
data = sub_data,
family = binomial(link = "logit"))

logit_w <- glm(tenure ~ year + I(year*2) + select + articles + prestige,
subset = (female == 1),
data = sub_data,
family = binomial(link = "logit"))

To present the results I use the mtable() function from memisc package (Elff 2012).

library("memisc")
mtable("Logit for men" = logit_m,
"Logit for women”" = logit_w,
summary.stats = c("Log-likelihood”, "AIC"”, "BIC", "N"))

#>

#> Calls:
#> Logit for men: glm(formula = tenure ~ year + I(year*2) + select + articles +
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#> prestige, family = binomial(link = "logit"), data = sub_data,
#> subset = (female == 0))

#> Logit for women: glm(formula = tenure ~ year + I(year*2) + select + articles +
#> prestige, family = binomial(link = "logit"), data = sub_data,
#> subset = (female == 1))

#>

#>

#> Logit for men Logit for women
e e

#>  (Intercept) ~7.680%** —-5.842%%%

# (0.681) (0.866)

#>  year 1.909%*% 1.408%%%

#> (0.214) (0.257)

#>  I(year*2) -0.143%x% -0.096% %%

#> (0.019) (0.022)

#>  select 0.216%%* 0.055

# (0.061) (0.072)

#> articles 0.074x** 0.034%%

#> (0.012) (0.013)

#> prestige -0.431%%* -0.371%

#> (0.109) (0.156)

> m

#> Log-likelihood -526.545 -306.191

#>  AIC 1065.090 624.382

#> BIC 1097.863 654.155

#> N 1741 1056

#>

#> Significance: x*x = p < 0.001; **x = p < 0.01;

#> * = p < 0.05

From previous output, it can be noticed that the coefficient of articles for men is approximately
twice as large as for women: 0.074 vs 0.034. One possible conclusion we could draw from this result
is that women suffer from discrimination. That is, the return per additional article on the propensity
to get a promotion is on average lower for women, holding other things constant. However, Allison
(1999) notes that this result might be due to variance error term differences. For example, women might
have more heterogeneous career patterns than men due to unobserved factors affecting promotion. In
particular, assume that we have the following model for men (M) and women (W):

* T
Yim = XimPB + €im,
T
Viw = XiwB + €iw,
>
€iM ™~ A(OIUM)r

eiw ~ A(0,0%),

where A(+) is the logistic CDF. Both men and women have the same coefficients, , in the propensity
to be promoted, but different scales, 02, # 07,. Note that the logit model identifies § = £. Thus, if
women have greater variance than men, oy > oy, their coefficient will be smaller, assuming similar
return to productivity. To allow for such possibility, Williams (2009) suggests fitting a heteroskedastic
logit (HET-Logit) model where the standard deviation of the error term is modeled as

0; = exp(6 - female;).

This model can be estimated in R using the hetglm() function from glmx package or hetprob()
function from Rchoice package. The syntax to fit the model using hetprob() is the following

library("Rchoice")
het_logit <- hetprob(tenure ~ factor(female) + year + I(year”2) + select +
articles + prestige | factor(female),
data = sub_data,
link = "logit")

Similarly to hetglm() function, the formula argument of hetprob() has the formy ~ x | z, where
y is the binary response variable, x are the explanatory covariates, and z are the covariates affecting the
variance of the error term. The argument link indicates whether a logit (1ink = "logit") or probit
(link = "probit”) model should be fitted.
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The output is the following:

summary (het_logit)

H>

#> Maximum Likelihood estimation of Heteroskedastic Binary model
#> Newton-Raphson maximisation, 4 iterations

#>

Return code 8: successive function values within relative tolerance limit (reltol)

#> Log-Likelihood: -836.2824
#> 8 free parameters

#>

#> Estimates for the mean:

#> Estimate Std. error z value Pr(> z)

#> (Intercept) -7.490505 0.659663 -11.3551 < 2.2e-16 **%
#> factor(female)1 -0.939190 0.370524 -2.5348 0.0112524 =*

#> year 1.909544  0.199694  9.5624 < 2.2e-16 ***
#> I(year”2) -0.139687 0.016943 -8.2448 < 2.2e-16 **%
#> select 0.181920 0.052657 3.4548 0.0005507 ***
#> articles 0.063534  0.010219  6.2173 5.059e-10 **x*
#> prestige -0.446207 0.096904 -4.6046 4.132e-06 ***
#> -—-

#> Signif. codes: @ 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Estimates for lnsigma:

#> Estimate Std. error z value Pr(> z)

#> het.factor(female)1 0.30223 0.14618 2.0675 0.03868 *

#> -

#> Signif. codes: @ 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> LR test of lnsigma = @: chi2 4.5 with 1 df. Prob > chi2 = 0.0339

The results using hetglm() are the following

library("glmx")
het_glmx <- hetglm(tenure ~ factor(female)

+

year + I(year*2) + select +

articles + prestige | factor(female),
data = sub_data,
family = binomial(link = "logit"))

summary (het_glmx)

#>
#> Call:

#> hetglm(formula = tenure ~ factor(female) + year + I(year*2) + select +
#> articles + prestige | factor(female), data = sub_data, family = binomial(link = "logit"))

#>

#> Deviance residuals:

#> Min 1Q Median 3Q Max
#> -1.8473 -0.5666 -0.2926 -0.1149 3.3397
#>

#> Coefficients (binomial model with logit link):
#> Estimate Std. Error z value Pr(>|z|)

#> (Intercept) -7.490489  0.648517 -11.550 < 2e-16 ***
#> factor(female)1 -0.939174 0.364357 -2.578 0.009948 **x
#> year 1.909540 0.199095 9.591 < 2e-16 **x*
#> I(year*2) -0.139686 0.016762 -8.334 < 2e-16 ***
#> select 0.181919 0.051916 3.504 0.000458 **xx
#> articles 0.063534 0.009884 6.428 1.3e-10 *x*xx
#> prestige -0.446207 ©.097083 -4.596 4.3e-06 x**
#>

#> Latent scale model coefficients (with log link):

#> Estimate Std. Error z value Pr(>|z|)

#> factor(female)l 0.3022 0.1433 2.109 0.0349 *

#> -—-
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#> Signif. codes: @ '*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Log-likelihood: -836.3 on 8 Df

#> LR test for homoscedasticity: 4.501 on 1 Df, p-value: 0.03387
#> Dispersion: 1

#> Number of iterations in nlminb optimization: 7

Although the coefficients estimated by both functions are very similar, their standard errors are
somewhat different. One potential explanation for this difference is the optimization algorithm used
by each function. hetprob() uses Newton-Raphson algorithm available in maxLik() function from
maxLik package (Henningsen and Toomet 2011), whereas hetglm() uses nlminb algorithm as default.

Now, I compare the logit and Het-Logit estimates using mtable() function.!’ The following output
presents the estimates.
mtable("Logit for men" = logit_m,
"Logit for women” = logit_w,
"Heteroskedastic” = het_logit,
summary.stats = c("Log-likelihood”, "AIC"”, "BIC", "N"))
#>
#> Calls:
#> Logit for men: glm(formula = tenure ~ year + I(year*2) + select + articles +
#> prestige, family = binomial(link = "logit"), data = sub_data,
#> subset = (female == 0))
#> Logit for women: glm(formula = tenure ~ year + I(year*2) + select + articles +
#> prestige, family = binomial(link = "logit"), data = sub_data,
#> subset = (female == 1))
#> Heteroskedastic: hetprob(formula = tenure ~ factor(female) + year + I(year*2) +
#> select + articles + prestige | factor(female), data = sub_data,
#> link = "logit"”, method = "nr")
#>
#>
#> Logit for men Logit for women Heteroskedastic
#  mmmmmmmmmeo mmmmmmmeon
#> tenure tenure mean lnsigma
> o
#> (Intercept) ~-7.680%%% -5.842%%* =7.491%%%
#> (0.681) (0.866) (0.660)
#>  year 1.909%*x 1.408%*x 1.910%%%
#*> (0.214) (0.257) (0.200)
#>  I(year*2) -0.143%xx -0.096%%x% -0.140%%x
#> (0.019) (0.022) (0.017)
#> select 0.216%%% 0.055 0.182%%*
#> (0.061) (0.072) (0.053)
#> articles 0.074%*x* 0.034%% 0.064%x%
#*> (0.012) (0.013) (0.010)
#> prestige -0.431%%% -0.371% -0.446%*%
#> (0.109) (0.156) (0.097)
#>  factor(female)l -0.939% 0.302%
#> (0.371)  (0.146)
> m
#>  Log-likelihood  -526.545 -306.191 -836.282
#>  AIC 1065.090 624.382 1688.565
#> BIC 1097.863 654.155 1736.055
#> N 1741 1056 2797
#>

#> Significance: **x = p < 0.001; **x = p < 0.01; * = p < 0.05

The estimated coefficients for the HET-Logit model indicate that being a woman increases the
variance of the error term (J = @.302) and decreases the propensity to be promoted (B = -0.939).
Using the estimate 5, we can also compute how much the disturbance standard deviation differ by

gender. Note that the standard deviation of the error term for women is oy = exp(0.302), whereas for
men is op; = exp(0) = 1. Then,

mtable() does not support objects of class hetglm.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859


https://CRAN.R-project.org/package=maxLik

CONTRIBUTED RESEARCH ARTICLE 271

sigma_w <- exp(coef(het_logit)["het.factor(female)1"])
(1 - sigma_w) / sigma_w

#> het.factor(female)1
#> -0.2608322

This result implies that the standard deviation of the disturbance for men is 26% lower than the
standard deviation for women. Conversely, this also means that the standard deviation of the residuals
is exp(0.302) = 1.35 times larger for women compared to men (Williams 2009, 2010). The 95%-CI for
this ratio can be computed using the delta method by deltaMethod() function from car package (Fox,
Friendly, and Weisberg 2013):

library("car™)
sharef <- "(1 - exp( het.factor(female)1™)) / exp( het.factor(female)1~)"
deltaMethod(het_logit, sharef)

#> Estimate SE
#> (1 - exp(Thet.factor(female)1~))/exp( het.factor(female)1™) -0.26083 @.10805
#> 2.5% 97.5 %

#> (1 - exp(Thet.factor(female)1™))/exp( het.factor(female)1™) -0.47261 -0.0491

So far, the HET-Logit estimates suggest that there are gender differences in both the dependent
variable and in the variance of the error term. However, the estimated coefficients do not allow us to
conclude whether women have a lower return than men for productivity. To give some insights about
this question, I estimate a HET-Logit model including the interaction between female and articles in
the choice equation

het_logit2 <- hetprob(tenure ~ factor(female) + year + I(year*2) + select +
articles + prestige + factor(female)*articles |
factor(female),

data = sub_data,
link = "logit")

print(summary(het_logit2), digits = 3)

#> Maximum Likelihood estimation of Heteroskedastic Binary model
#> Newton-Raphson maximisation, 4 iterations

#> Return code 1: gradient close to zero (gradtol)

#> Log-Likelihood: -835.1335

#> 9 free parameters

#>

#> Estimates for the mean:

#> Estimate Std. error z value Pr(> z)

#> (Intercept) -7.3653 0.6547 -11.25 < 2e-16 ***
#> factor(female)l -0.3781 0.4500 -0.84 0.401

#> year 1.8383 0.2029 9.06 < 2e-16 *xx*
#> I(year*2) -0.1343 0.0170 -7.89 3.1e-15 **x%
#> select 0.1700 0.0517 3.29 0.001 *x%

#> articles 0.0720 0.0114 6.31 2.8e-10 *xx*
#> prestige -0.4205 0.0961 -4.37 1.2e-05 #**x%
#> factor(female)l:articles -0.0305 0.0187 -1.63 0.104

#> ---

#> Signif. codes: @ '**x' 0.001 'xx' 0.01 'x' .05 '.' 0.1 ' ' 1

#>

#> Estimates for lnsigma:

#> Estimate Std. error z value Pr(> z)

#> het.factor(female)1 0.177 0.163 1.09 0.28

#>

#> LR test of lnsigma = @: chi2 1.22 with 1 df. Prob > chi2 = 0.2684
it et

The coefficient for female * articles is not statistically significant when residual variation by
gender is involved. As argued by Allison (1999), this result proposes dissimilarities in productivity
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Figure 1: Distribution of predicted probability and predicted sigma

returns between males and females resulting from variability in unobserved factors rather than
discriminatory influences.

Once we have fitted a model, we can use the predict() command to obtain the predicted
probability and the predicted scale factor, 0;, which can be readily used for visualization as shown in
Figure 1. The following lines plots the distribution of both measures:

par(mfrow = c(1, 2))
hist(predict(het_logit2, type = "pr"),
main = "Predicted probabilities”,
xlab = "Probabilities")
hist(predict(het_logit2, type = "sigma"),
main = "Predicted sigma”,
xlab = "Sigma")

An additional feature of Rchoice package is that it allows to estimate the APEs for heteroskedastic
binary models, as in Equation (6), using effect() function. Similarly to command margins() from
margins package (Leeper 2021) or avg_slopes() from marginaleffects package (Arel-Bundock 2023),
this function takes into account whether the variables are continuous, categorical or both. The user
must specify categorical variables using factor() in the formula argument; otherwise, the effect()
function will assume that the variable is continuous, when the variable may already be a factor in the
dataset. In the following lines, we compute the APEs for a HET-Probit and HET-Logit model.'' The
results are the following;:

eff_logit <- effect(het_logit2)
het_probit <- hetprob(tenure ~ factor(female) + year + I(year*2) + select +
articles + prestige + factor(female)*articles |

factor(female),
data = sub_data,
link = "probit")

eff_probit <- effect(het_probit)
mtable(eff_probit,

eff_logit)
#>
#> Calls:
#> eff_probit: hetprob(formula = tenure ~ factor(female) + year + I(year*2) +
#> select + articles + prestige + factor(female) * articles |
#> factor(female), data = sub_data, link = "probit”, method = "nr")

"The Jacobian matrix is computed numerically using jacobian() function from numDeriv package (Gilbert
and Varadhan 2019).
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#> eff_logit: hetprob(formula = tenure ~ factor(female) + year + I(year*2) +

#> select + articles + prestige + factor(female) * articles |
#> factor(female), data = sub_data, link = "logit"”, method = "nr")
#>

#>

#> eff_probit eff_logit

B> m
#>  factor(female)1l -0.031%x -0.031%%

#> (0.012) (0.012)

#>  year 0.032%x* 0.032%x%
#* (0.002) (0.002)

#> select 0.014x*x* 0.015%*%%
#> (0.004) (0.004)

#> articles 0.006x*x* 0.005%*%*
#> (0.001) (0.001)

#> prestige -0.035%*% -0.036%**
#* (0.008) (0.008)

B> mm e
#> Log-likelihood -832.478 -835.133

#> N 2797 2797

#>

#> Significance: **x = p < 0.001;

#> **x = p <0.01; *x =p < 0.05

The APEs are very close to each other and statistically significant. According to the HET-Probit
estimates, one additional published article increases the probability of being promoted by 0.6 percent
points, whereas being a woman decreases the probability of promoted by 3.1%.

Labor participation

Our second example is a replication of Greene (2003)'s example 17.7 based on the dataset “mroz.cvs”.
This dataset is based on a cross-section data on the wages of 428 working, married women, originating
from the 1976 Panel Study of Income Dynamics (PSID), which can be loaded as follows:

mroz <- read.csv(file = 'mroz.csv')

mroz$kids <- with(mroz, factor((kidslt6 + kidsge6) > 0,
levels = c(FALSE, TRUE),
labels = c("no"”, "yes")))

mroz$finc <- mroz$faminc / 10000

Using this data, Greene (2003) estimates the following HET-Probit model for women labor

participation:
inlf* = By + Brage + ﬁzage2 + Bafinc + Bseduc + Bskids + ¢, (22)
e~ N(0,07), (23)
0; = exp(d1kids + d,finc), (24)

where inlf is a dummy variable indicating whether the woman participates in labor force, age is age
in year, finc is family income in 1975 dollars divided by 10,000, educ is education in year and kids
indicates whether children under 18 are present in the household. It is further assumed that kids and
finc affect the variability of the error term.

The probit, Het-Probit and average marginal effects are estimated as follows:'?

labor_hom <- glm(inlf ~ age + I(age”2) + finc + educ + factor(kids),
data = mroz,
family = binomial(link = "probit"))
labor_het <- hetprob(inlf ~ age + I(age”2) + finc + educ + factor(kids) |
factor(kids) + finc,
data = mroz,
link = "probit")
eff_labor_het <- effect(labor_het)

12Greene (2003) computes the marginal effects at the mean instead of the average marginal effects.
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mtable(labor_hom,

#>
#>

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

labor_het,
eff_labor_het)

Calls:

labor_hom: glm(formula = inlf ~ age + I(age”2) + finc + educ + factor(kids),
family = binomial(link = "probit"), data = mroz)

labor_het: hetprob(formula = inlf ~ age + I(age*2) + finc + educ + factor(kids) |

factor(kids) + finc, data = mroz, link = "probit"”, method = "nr"
eff_labor_het: hetprob(formula = inlf ~ age + I(age”2) + finc + educ + factor(kids) |
factor(kids) + finc, data = mroz, link = "probit"”, method = "nr")
labor_hom labor_het eff_labor_het
inlf mean lnsigma inlf
(Intercept) -4, 157*% -6.030%
(1.404) (2.498)
age 0.185%x% 0.264%* -0.009%*x*
(0.066) (0.118) (0.003)
I(age*2) -0.002%x -0.004%
(0.001) (0.001)
finc 0.046 0.424 0.313% 0.069%*
(0.043) (0.222) (0.123) (0.024)
educ 0.098x*x* 0.140%* 0.030x*x*
(0.023) (0.052) (0.009)
factor(kids): yes/no -0.449%%*% -0.879%% -0.141 -0.161%%%
(0.130) (0.303) (0.324) (0.043)
Log-likelihood -490.848 -487.636 -487.636
N 753 753 753
Significance: ***x = p < 0.001; **x = p < 0.01; * = p < 0.05

The results show that family income does not play any role in the choice equation. However, it

increases the variability of the error term. APE indicates that an increase of $10,000 of family income
increases the probability of labor force involvement by 6.9%. There is not enough statistical evidence
that proves having children under 18 in the household produces heteroskedasticity.

We can also use the Wald test provided by linearHypothesis() function from car package to test

the null hypothesis of homoskedasticity:

coefs <- names(coef(labor_het))
linearHypothesis(labor_het, coefs[grep("het”, coefs)])

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Linear hypothesis test

Hypothesis:
het.factor(kids)yes = 0
het.finc = 0

Model 1: restricted model

Model 2: inlf ~ age + I(age”2) + finc + educ + factor(kids) | factor(kids) +
finc

Df Chisq Pr(>Chisq)
1
2 2 6.5331 0.03814 *

Signif. codes: @ 'x*xx' ©0.001 '*x' .01 'x' .05 '.' 0.1 ' ' 1

The null hypothesis of homoskedasticity is rejected at the 5% with a )(% = 6.533.
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Supplementary materials provide Stata code (version 16.1) to replicate all the results in this Section.
The log file is presented in Appendix C. Overall, the results using Stata are exactly the same to those
reported by hetprob() function from Rchoice package.

3.2 Instrumental variable probit model
Control function approach

In this example, and similar to Wooldridge (2010), we use the mroz sample and assume the following
slightly modified model for married women’s labor force participation from previous Section:

inlf* =Bo + Breduc + Brexper + Bzexper? + Biage + Bskidslt6+
Bekidsge6 + Bynwifeinc + €,
nwifeinc =4y + d1educ + drexper + 53exper2 + dsage + d5kidslt6+
bekidsgeb + d7huseduc + v,
Ifp = 1[lfp* > 0]

where nwifeinc is the other sources of income (divided by 1,000) and assumed to be endogenous.
A just identified IV model is estimated by using husband’s education, (huseduc), as an instrument
for nwifeinc. The strong identification assumption here is that husband’s schooling is unrelated to
factors that affect a married woman’s labor force decision once nwifeinc and the other variables are
accounted for (Wooldridge 2010).

When interpreting the results from an IV model, it is important to compare its magnitude with a
model that assumes exogeneity. In this example, our benchmark APE for nwifeinc is obtained by the
standard probit model:

probit <- glm(inlf ~ educ + exper + I(exper”2) + age + kidslt6 + kidsge6 + nwifeinc,
data = mroz,
family = binomial(link = "probit"))
ape.probit <- mean(dnorm(predict(probit, type = "link"))) * coef(probit)["nwifeinc"]
ape.probit

#> nwifeinc
#> -0.003616176

Accordingly, an increase of $1,000 in other sources of income reduces the labor force participation
probability by 0.4%, holding all other factors constant. Note that the same APE, along with its standard
error, can also be obtained using avg_slopes() command:

library("marginaleffects”)

avg_slopes(probit, variables = "nwifeinc")

#>

#> Term Estimate Std. Error z Pr(>|z|) S 2.5% 97.5 %
#> nwifeinc -0.00362 0.00147 -2.46 0.0139 6.2 -0.0065 -0.000736
#>

#> Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high
#> Type: response

I proceed to estimate the model using the CF approach. First, I estimate the first-step equation,
which is a linear model, and obtain the residuals v:

fstep <- Im(nwifeinc ~ educ + exper + I(exper”2) + age + kidslt6 + kidsge6 + huseduc,
data = mroz)
mroz$res.hat <- fstep$residuals

We can also test the power of the instrument using 1inearHypothesis() function:

linearHypothesis(fstep, "huseduc")
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#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Linear hypothesis test

Hypothesis:
huseduc = @

Model 1: restricted model
Model 2: nwifeinc ~ educ + exper + I(exper*2) + age + kidslt6 + kidsge6 +
huseduc

Res.Df  RSS Df Sum of Sq F PreoF)
1 746 86955
2 74581120 1  5834.8 53.586 6.427e-13 #xx

Signif. codes: @ 'x*x' 0.001 '*x' .01 'x' .05 '.' 0.1 ' ' 1

The first-stage F statistic on huseduc is substantially above the traditional cut-off of ten suggesting

that the instrument is not weak.

The second-step is computed using glm() function and adding the residuals (res.hat) as an

additional explanatory variable:

sstep <- glm(inlf ~ educ + exper + I(exper*2) + age + kidslt6 + kidsge6 + nwifeinc + res.hat,

data = mroz,

family = binomial(link = "probit"))
summary (sstep)
#>
#> Call:
#> glm(formula = inlf ~ educ + exper + I(exper”2) + age + kidslt6 +
#> kidsge6 + nwifeinc + res.hat, family = binomial(link = "probit"),
#> data = mroz)
#>
#> Deviance Residuals:
#> Min 1Q  Median 3Q Max
#> -2.2523 -0.9078 0.4204 0.8566 2.2803
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z]|)
#> (Intercept) 0.0171183 ©0.5380339 0.032 0.97462
#> educ 0.1702142 0.0377615 4.508 6.56e-06 **x*
#> exper 0.1163118 0.0193869 6.000 1.98e-09 **x*
#> I(exper*2) -0.0019458 0.0005999 -3.244 0.00118 **
#> age -0.0449529 0.0101351 -4.435 9.19e-06 *xx*
#> kidslt6 -0.8444319 0.1197268 -7.053 1.75e-12 *xx*
#> kidsge6 0.0477912 0.0449431 1.063 0.28761
#> nwifeinc -0.0368639 0.0183848 -2.005 0.04495 =*
#> res.hat 0.0267092 ©0.0191539 1.394 0.16318
#> ---
#> Signif. codes: @ '**x' 0.001 'xx' 0.01 'x' .05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 1029.75 on 752 degrees of freedom
#> Residual deviance: 800.61 on 744 degrees of freedom
#> AIC: 818.61
#>
#> Number of Fisher Scoring iterations: 4

Since the z-statistic for res.hat is 1.4, we cannot reject the null hypothesis that nwifeinc is

exogenous: Hy : A = 0.

An estimate of p can be obtained using Equation (13) and the following syntax:

lambda.hat <- coef(sstep)["res.hat"]

k

<- length(fstep$coefficients)
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SSE <- sum(fstep$residuals”2)

n <- length(fstep$residuals)
sigma.upsilon <- sqrt(SSE/(n - k))

rho.hat <- lambda.hat * sigma.upsilon
rho.hat

#> res.hat
#> 0.2787068

Thus, the estimated correlation using the CF approach is p = 0.279. It is important to recall that the
estimated coefficients for the sstep model represent the coefficients scaled by a factor of 1/+/1 — p2.
Moreover, the standard errors from the sstep model are biased since they do not consider the sampling
error of the first stage. However, we can use ivprobit() function from ivprobit package (Zaghdoudi
2018) to get the correct standard errors:'?

library("ivprobit")
twostep.probit <- ivprobit(inlf ~ educ + exper + I(exper”2) + age + kidslt6 + kidsge6 |
nwifeinc | educ + exper + I(exper*2) + age + kidslt6 +
kidsge6 + huseduc,
data = mroz)

summary (twostep.probit)

#> Coef S.E. t-stat p-val

#> Intercep 0.01711834 0.54865782 ©0.0312 0.975118

#> educ 0.17021419 0.03848938 4.4224 1.121e-05 ***
#> exper 0.11631183 0.01976301 5.8853 6.001e-09 *x*
#> I(exper*2) -0.00194584 0.00061195 -3.1798 0.001535 **
#> age -0.04495285 0.01032548 -4.3536 1.526€-05 ***
#> kidslt6 -0.84443188 0.12176581 -6.9349 8.818e-12 *x*
#> kidsgeb6 0.04779117 0.04578807 1.0437 0.296940

#> nwifeinc -0.03686390 ©0.01874338 -1.9668 0.049580 *
#> ---

#> Signif. codes: @ '**x' 0.001 'xx' 0.01 'x' .05 '.' 0.1 ' ' 1

The estimates of the sstep and twostep.probit models are the same, while their standard errors
are slightly different.

The APE for nwifeinc—and any other continuous variable—can be computed using Equation (16)
and its standard error via bootstrap method. Below, I use package boot (Canty 2002) to perform the
simulation. First, a function called ape() is created which returns the APE. The first argument of this
function is the dataset, whereas the second argument can be an index vector of the observations in the
dataset.

ape <- function(data, indices){
d <- datalindices, ]
# Compute the first-stage regression
fstep <- Im(nwifeinc ~ educ + exper + I(exper*2) + age + kidslt6 + kidsge6 +
huseduc,
data = d)
# Obtain the residuals
d$res.hat <- fstep$residuals
# Compute the second-stage regression
sstep <- glm(inlf ~ educ + exper + I(exper*2) + age + kidslt6 + kidsge6 +
nwifeinc + res.hat,
data =4d,
family = binomial(link = "probit"))
# Compute APE for nwincome
out <- mean(dnorm(predict(sstep, type = "link"))) * coef(sstep)["nwifeinc"]
return(out)

Once we have defined the function ape (), we can use the boot () function to perform the bootstrap
procedure. In the following syntax, R = 500 resamplings are used and the 90%-CI interval is obtained
using boot.ci() function.

1Bivprobit() uses a minimum chi-squared estimator (Newey 1987).
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library("boot")

set.seed(666)

results <- boot(data = mroz, statistic = ape, R = 500)
results

#>

#> ORDINARY NONPARAMETRIC BOOTSTRAP

#>

#>

#> Call:

#> boot(data = mroz, statistic = ape, R = 500)
#>

#>

#> Bootstrap Statistics :

#> original bias std. error
#> t1* -0.0110576 -0.0005050597 0.005877061

boot.ci(results, type = "norm”, conf = 0.90)

#> BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

#> Based on 500 bootstrap replicates

#>

#> CALL :

#> boot.ci(boot.out = results, conf = 0.9, type = "norm"”)
#>

#> Intervals :

#> Level Normal

#> 90% (-0.0202, -0.0009 )

#> Calculations and Intervals on Original Scale

The results show that another $1,000 in other sources of income reduces the labor force participation
probability by 1.1 percent points with 90%-CI [—2, —.09]. This estimate, which is marginally statistically
significant, is about three times larger than the probit estimate that treats nwifeinc as exogenous:

-0.04.
Finally, we can recover the unscaled parameters by multiplying the coefficients by /(1 — p?) as
follows:

coef(sstep) * sqrt(1 - rho.hat*2)

#> (Intercept) educ exper  I(exper”2) age kidslt6
#> 0.016440046 0.163469667 0.111703116 -0.001868741 -0.043171653 -0.810972324
#> kidsge6 nwifeinc res.hat

#> 0.045897507 -0.035403215 0.025650873

Maximum likelihood estimator

In this Section I estimate the model from previous Section using the MLE. To do so, I use the ivpml ()
function from Rchoice package. The syntax is as follows:

fiml.probit <- ivpml(inlf ~ educ + exper + I(exper*2) + age + kidslt6 + kidsge6 +
nwifeinc | huseduc + educ + exper + I(exper*2) + age +
kidslt6 + kidsge6,

data = mroz)

#>

#> Estimating a just identified model....

#>

#> Obtaining starting values from probit and linear model...

The syntax of ivpml () is similar to that of ivreg() function from AER package. The formula has
two part in the right-hand side, thatis,y ~ x | z wherey is the binary response variable, x are the
regressors (x in Equation (7)), and z are the exogenous variables (x; and x; in Equation (8)).
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During the optimization procedure, ivpml () displays several messages which can be turned-off
by setting messages = FALSE. The output indicates that the model is just-identified and that the initial
values for the optimization procedure are obtained from the traditional probit and linear models for
the structural and first-stage equation, respectively. Similarly to hetprob() function, the optimization
algorithm can be managed using the argument method, which is passed on to the maxLik() function.
Currently, the default algorithm is the Newton-Raphson, method = "nr".

summary (fiml.probit)

#> Maximum Likelihood estimation of IV Probit model

#> Newton-Raphson maximisation, 3 iterations

#> Return code 8: successive function values within relative tolerance limit (reltol)
#> Log-Likelihood: -3230.642

#> 18 free parameters

#> Estimates:

#> Estimate Std. error z value Pr(> z)

#> inlf: (Intercept) 1.6499e-02 5.3008e-01 0.0311 0.9751702

#> inlf:educ 1.6403e-01 3.1225e-02 5.2531 1.495e-07 *x*xx%
#> inlf:exper 1.1209e-01 2.1199e-02 5.2873 1.241e-07 **xx*
#> inlf:I(exper*2) -1.8751e-03 5.9150e-04 -3.1701 0.0015237 **
#> inlf:age -4.3319e-02 1.1331e-02 -3.8230 0.0001319 ***
#> inlf:kidslt6 -8.1375e-01 1.2994e-01 -6.2623 3.794e-10 **x*
#> inlf:kidsge6 4.6054e-02 4.3139e-02 1.0676 0.2857141

#> inlf:nwifeinc -3.5524e-02 1.6190e-02 -2.1941 0.0282247 *
#> nwifeinc: (Intercept) -1.4720e+01 3.7672e+00 -3.9076 9.322e-05 ***
#> nwifeinc:huseduc 1.1782e+00 1.6009e-01 7.3594 1.847e-13 *x*xx%
#> nwifeinc:educ 6.7469e-01 2.1254e-01 3.1744 0.0015016 **
#> nwifeinc:exper -3.1299e-01 1.3752e-01 -2.2760 0.0228480 *
#> nwifeinc:I(exper*2) -4.7756e-04 4.4955e-03 -0.1062 0.9153983

#> nwifeinc:age 3.4015e-01 5.9390e-02 5.7274 1.020e-08 **x%
#> nwifeinc:kidslté 8.2627e-01 8.1402e-01 1.0151 0.3100812

#> nwifeinc:kidsge6 4.3553e-01 3.2027e-01 1.3599 0.1738728

#> lnsigma 2.3398e+00 2.5768e-02 90.8016 < 2.2e-16 #***
#> atanhrho 2.7379e-01 1.9296e-01 1.4189 0.1559361

#> --—-

#> Signif. codes: @ '**x' 0.001 'xx' 0.01 'x' .05 '.' 0.1 ' ' 1

#>

#> Instrumented: nwifeinc
#> Instruments: (Intercept) huseduc educ exper I(exper”2) age kidslt6 kidsge6
#> Wald test of exogeneity (corr = @): chi2 2.01 with 1 df. Prob > chi2 = ©.1559

During the optimization procedure the parameters ¢, and p might tend to the boundary points
of the parameter space, generating identifiability problems of the MLE. To avoid this issue, ivpml ()
re-parametrizes the parameters. 14 First, to ensure o, > 0, ivpml () instead estimates log vy such that:

oy = exp(logvy). (25)

Second, ivpml() forces the correlation to remain in the (—1,+1) range by using the inverse

hyperbolic tangent:
1 1+p
atanh(p) =7 = 2log (—1 —P) ,

where T is unrestricted, and p can be obtained using the inverse of t:
771 = p = tanh(7). (26)

In the following syntax, we recover o, and p using Equations (25) and (26), respectively, and their
standard errors are computed using delta method approach by deltaMethod() function:

deltaMethod(fiml.probit, "exp(lnsigma)")

14This re-parametrization is also used by ivprobit function in Stata.
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#> Estimate SE 2.5 % 97.5 %
#> exp(lnsigma) 10.37928 0.26746 9.85508 10.903

deltaMethod(fiml.probit, "tanh(atanhrho)")

#> Estimate SE 2.5 % 97.5 %
#> tanh(atanhrho) ©.267145 ©.179190 -0.084061 0.6184

Again, the FIML estimate of p is close to that found using the CF approach which was 0.279. If
significant, a positive p would indicate that there is a positive correlation between € and v. That is, the
unobserved factors that make it more likely for a woman to have a higher income from other sources
also make it more likely that the woman will be participating in the labor force.

For those users who are more familiar with Stata (see Appendix D), it is important to mention that
its function ivprobit estimates the 95%-CI for p and 0y, as follows:

cbind(exp(coef (fiml.probit)["lnsigma”] - gnorm(@.975) * stdEr(fiml.probit)["lnsigma”]),
exp(coef (fiml.probit)["1lnsigma”] + gnorm(@.975) * stdEr(fiml.probit)["1lnsigma”]))

#> [,11] [,2]
#> lnsigma 9.868094 10.91695

cbind(tanh(coef (fiml.probit)["atanhrho”] - gqnorm(@.975) * stdEr(fiml.probit)["atanhrho"]),

tanh(coef (fiml.probit)["atanhrho”] + qnorm(0.975) * stdEr(fiml.probit)["atanhrho"]))

# [,1] [,2]
#> atanhrho -0.1040317 0.5730038

The APEs can be estimated using the function effect (). The main argument of this function is
asf. If asf = TRUE (the default), then the APEs are computed using Equation (20). On the other hand,
if asf = FALSE the APEs are computed using Equation (21).

summary (effect(fiml.probit))

> m
#> Marginal effects for the IV Probit model:

B>

#> dydx Std. error z value Pr(> z)

#> educ 0.051057 0.011101 4.599 4.24e-06 **xx%

#> exper 0.023071 0.002952 7.816 5.44e-15 **x*

#> age -0.013484 0.002986 -4.516 6.31e-06 **xx%

#> kidslt6 -0.253295 0.033077 -7.658 1.89e-14 *x*xx%

#> kidsge6  0.014335 0.013520 1.060 0.2890

#> nwifeinc -0.011058 0.005550 -1.992 0.0463 *

#> ---

#> Signif. codes: @ '*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Note: Marginal effects computed as the average for each individual

summary (effect(fiml.probit, asf = FALSE))

>
#> Marginal effects for the IV Probit model:

B> o

#> dydx Std. error z value Pr(> z)

#> educ 0.048777 0.008733 5.585 2.33e-08 *x*x*

#> exper 0.021997 0.003723  5.908 3.46e-09 **x

#> age -0.012882 0.003322 -3.878 0.000105 **xx%

#> kidslt6 -0.241982 0.036594 -6.613 3.78e-11 *x*xx%

#> kidsge6  ©.013695 0.012792 1.071 0.284373

#> nwifeinc -0.010564 0.004736 -2.230 0.025724 *

#> ---

#> Signif. codes: @ 'xxx' 90.001 'xx' 90.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Note: Marginal effects computed as the average for each individual
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The results show that both APEs are close to each other. Note also that the estimated APE for
nwifeinc using the CF approach is very similar to that ones obtained by MLE. Appendix D also
shows that the Stata function ivprobit() provides the same estimates and marginal effects as ivpml ()
function.

4 Summary

The aim of the article was to provide a primer on estimating heteroskedastic and IV model for binary
outcomes in R. I also show that the current version of Rchoice package (available at https://cran.r-
project.org/web/packages/Rchoice/index.html) allows to estimate such models in a flexible way
and provides accurate average marginal effects that are very similar to those provided by Stata’s
margins command. Rchoice can be used in concert with other packages. For example, one can format
the summary output from Rchoice with memisc to produce well-formatted tables for regression
estimates

5 Appendix A: Gradient and Hessian for binary response models with
heteroskedasticity

In this section, I provide the analytic gradient and Hessian used by hetprob() function in Rchoice.
The log-likelihood function for the binary choice model with exponential heteroskedasticity can be
written as:

£(0) = i{lnl—"(ai),

-
where F(-) is either the CDF of the standard normal or standard logistic distribution, 8 = (,BT, ) T)

is the full (k 4 p)-dimensional vector of parameters, and:

xlTﬁ
= (exp(ziT5)> ’

7 =2(y;i —1).

The gradient is:

[<5)
<
~
(=
=
Il
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53
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where m(-) = f(-)/F(-) = ¢(-)/®(-) for the probit model and m(-) = 1 — A(-) for the logit model,
and da; /060 = g; such that:
9y X;
= (B) = i : :
y (%) xplz 9) <— (x'p) >

200) (ae(e)) ,

The Hessian is given by:

9a; 9a; o) R
oo 9% _ (GpopT  pasT | _ exp(z] 8) "7
= 30007 |\ _ou o )=\ __ g, 17 axp T |
350pT 30057 Xi expl(z 0) Zi%i
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6 Appendix B: Gradient and Hessian for binary response models with
endogeneity

In this section, I provide the analytic gradient and Hessian used by ivpml function in Rchoice. The
log-likelihood function can be written as:

() = ; [In (@(a;)) +In(1) — In (6) + In [p(5,)]],

.
where 0 = (ﬁT, 5T, (Tv,p> is an (k + p + 2)-dimensional vector and:

XlTﬁ + (% (yZi - ZlT(5>
a; =4qi ’

1—p?
by = Yoi — 1?5,
(%7
i =2(yi = 1),
oy = exp(Inwy),
p = tanh(7).

The first derivatives of the log-likelihood function are:

%(ﬁe) :ié _m(ai) (\/{11_7) Xi] I
o= e (2255 ) +n (3)
18 o |

where m(a;) = ¢(a;)/®P(a;), dtanh(7)/dT = sech?(7), and we use the fact that ¢/ (b;) = —b;p(b;) so
that ¢'(b;) /¢ (b;) = —b;.

The Hessian is given by:
P00)  208) () 20(6)
dBIBT  0BIST  9BdInv, dpot
. 220(6)  9%4(8) 2((8)
H= 0006 " 9899 Inv, 980T
. 90(8) 94(8)
d(Invy)? dlnv,0t
) P0(0)
91?2
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The second derivatives are:

210 el u Vo
200) & i ‘ a (e .
aﬁa(sT_,-; —h(u7)< 1_p2> (a)x,zf},
920(0) n [ i ’
3Eainr; = ,; —h(a;) ( 1‘7_ p2> (Pbi)x;‘] ,
20(0) & i N qi [ X B+ }
- o () (0 (3252 )+
?06) & i NEAED, C .
W_z; h(a;) <m> —5] ziz]
?00) L (b qip ’
m_l; (—v) {h(ai) 1p2> —2] zZj,
2(0) _ | o (aile/ow)\ ([ X Bo+bi :
g o (1) (o (252
L) 3 e (e oy () o
a(h’lvv)z = 1 1*P2 L 1*P2 il
ORI Cl G PV T 2
ah’ll/vaT Z;{ 1|: ( l) m‘]l( Sech2(,l.) + (1 SeChZ(T) 7
FUO) 5 ey [ g 2 B B+ bp
- ( 1) 1 + 1 ( 1) 4
o2 Z;[ ! ( sech2(1)> sech?(1)
where h(a;) = —a;m(a;) —m(a;)?.

7 Appendix C: Stata code for heteroskedastic binary response models

**x Example 1: Promotion of scientists **x

. import delimited "$dir/tenure.csv”, clear
(23 vars, 2,945 obs)

. %% Logit models for men
. quietly eststo logit_m:

. quietly eststo logit_w:

and women
logit tenure year
articles prestige

logit tenure year

c.year#c
if (year

c.year#c

articles prestige if (year
. esttab logit_m logit_w, b(3) se(3)
m (2)

tenure tenure
tenure
year 1.909%**% 1.408*%%*%

(0.214) (0.257)
c.year#c.y~r -0.143%%% -0.096%%*

(0.019) (0.022)

The R Journal Vol. 15/2, June 2023

.year select ///
<= 10 & female == 0)

.year select ///
<= 10 & female

D)

ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE

284

select 0.216%x*%* 0.055
(0.061) (0.072)

articles 0.074x%x* 0.034%xx%
(0.012) (0.013)

prestige -0.431%%*% -0.371%
(0.109) (0.156)

_cons -7.680%%*% -5.842%%%
(0.681) (0.866)

N 1741 1056

Standard errors in parentheses

*

P<0.05, *% p<0.01, **x p<0.00]T

. **x Heterokedastic logit model
. quietly ssc install oglm

. quietly eststo het_logit: oglm tenure i.female year c.year#c.year select ///
articles prestige if (year <= 10), hetero(i.female) link(logit)

. esttab logit_m logit_w het_logit, b(3) se(3)

(3

tenure

1.910%*%
(0.200)
-0.140%*%
(0.017)
0.182%%%
(0.053)
0.064xx%
(0.010)
-0.446%%%
(0.097)
0.000
)
-0.939%
(0.371)

0.000
)

0.302%
(0.146)

7. 497 xkx
(0.660)

m (2)

tenure tenure

tenure

year 1.909%*% 1.408**%
(0.214) (0.257)

c.year#c.y~r -0.143%%% -0.096%**
(0.019) (0.022)

select 0.216%x% 0.055
(0.061) (0.072)

articles 0.074x%x* 0.034xx%
(0.012) (0.013)

prestige -0.431%%*% -0.371%
(0.109) (0.156)

0.female

1.female

_cons -7.680%%x% -5.842%%%
(0.681) (0.866)

Insigma

0.female

1.female

cutl

_cons

N 1741 1056

Standard errors in parentheses

*

. %% Testing how much the disturbance standard deviation differ by gender
. margins, expression((1 - exp([lnsigmal_b[1.female])) / exp([lnsigmal_b[1.femalel))

P<0.05, *% p<0.01, *¥*x p<0.00]T

Warning: expression() does not contain predict() or xb().
Warning: prediction constant over observations.

Predictive margins
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Model VCE : OIM
Expression : (1 - exp([lnsigmal_b[1.femalel)) / exp([lnsigmal_b[1.femalel)
| Delta-method
| Margin  Std. Err. z P>|z]| [95% Conf. Interval]
_____________ ey gy gy gy Sy Sy ey
cons | -.2608323 .1080501 -2.41 0.016 -.4726065 -.0490581

. *%x Heterokedastic logit model 2
. eststo het_logit2: oglm tenure i.female year c.year#c.year select ///
articles prestige i.female#fc.articles if (year <= 10), hetero(i.female) link(logit)

Heteroskedastic Ordered Logistic Regression Number of obs = 2,797
LR chi2(8) = 415.39
Prob > chi2 = 0.0000
Log likelihood = -835.13347 Pseudo R2 = 0.1992
tenure | Coef. Std. Err z P>|z]| [95% Conf. Intervall
__________________ e e e e e
tenure |
1.female | -.3780598 .4500207 -0.84 0.401 -1.260084 .5039645
year | 1.838257 .2029491 9.06 0.000 1.440484 2.23603
|
c.year#c.year | -.1342828 .017024 -7.89 0.000 -.1676492 -.1009165
|
select | .1699659 .0516643 3.29 0.001 .0687057 .2712261
articles | .0719821 .0114106 6.31 0.000 .0496178 .0943464
prestige | -.4204742 .0961206 -4.37 0.000 -.608867 -.2320813
|
female#c.articles |
1 | -.0304836 .0187427 -1.63 0.104 -.0672185 .0062514
__________________ e e e e e e e e e
lInsigma |
1.female | .1774193 1627087 1.09 0.276 -.1414839 .4963226
__________________ e e e e e e e e e
|

. %% Plot predicted probability and sigma
. predict phat, pr outcome(1)
. predict sigmahat, sigma

. hist phat
(bin=34, start=2.232e-12, width=.02503351)

. hist sigmahat
(bin=34, start=1, width=.00570976)

. *%x Average Marginal Effects for logit and probit heterokedastic models
. quietly oglm tenure i.female year c.yeari#c.year select ///

articles prestige i.female#c.articles if (year <=10), hetero(i.female) link(probit)

. eststo eff_probit: margins, dydx(x) predict(outcome(1)) post

Average marginal effects Number of obs = 2,797
Model VCE : 0IM

Expression : Pr(tenure==1), predict(outcome(1))

dy/dx w.r.t. : 1.female year select articles prestige

| Delta-method
| dy/dx  Std. Err. z P>|z| [95% Conf. Interval]
_____________ e
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1.female
year
select
articles
prestige

-.031161
.031839
.0142546
.00559
-.0350608

.0115614 -2.70 0.007 -.053821 -.0085011
.0019586 16.26 0.000 .0280002 .0356779
.0041796 3.41 0.001 .0060626 .0224465
.0007685 7.27 0.000 .0040838 .0070962
.0077056 -4.55 0.000 -.0501635 -.0199581

Note: dy/dx for factor levels is the discrete change from the base level.

. quietly oglm tenure i.female year c.year#c.year select ///

articles prestige i.female#c.articles if (year <=10), hetero(i.female) link(logit)

. eststo eff_logit: margins, dydx(*) predict(outcome(1)) post
Average marginal effects

: 0IM

: Pr(tenure==1),
: 1.female year

Model VCE
Expression
dy/dx w.r.t.

year
select
articles

Del
dy/dx S

-.0312105
.0319057
.0145808
.0053378

Number of obs = 2,797
predict(outcome(1))

select articles prestige
ta-method
td. Err. z P>|z| [95% Conf. Intervall]
.0115836 -2.69 0.007 -.053914 -.008507
.0019277 16.55 0.000 .0281275 .0356839
.0042388 3.44 0.001 .006273 .0228886
.0007523 7.09 0.000 .0038632 .0068123
.007934 -4.55 0.000 -.0516215 -.0205207

prestige

-.0360711

Note: dy/dx for factor levels is the discrete change from the base level.

. esttab eff_probit eff_logit, b(3) se(3)

0.female
1.female
year
select
articles

prestige

-0.031%x%
(0.012)
0.032x*%*
(0.002)
0.014x*x%
(0.004)
0.006%**
(0.001)
-0.035%%*
(0.008)

-0.031%*
(0.012)
0.032x%*
(0.002)
0.015%%%
(0.004)
0.005%x%*
(0.001)
-0.036%*%
(0.008)

Standard errors in parentheses
* p<@.05, ** p<@.01, *x*x p<0.001

. **xx Example 2: Labor Participation **x

. * Open dataset and create variables

. import delimited "$dir/mroz.csv”, clear
(kidslt6 + kidsge6) > @

. gen finc = faminc/10000

. gen kids =

. * Hetekedastic binary probit model

. quietly eststo labor_hom: probit inlf age c.age#c.age finc educ kids
. quietly eststo labor_het: oglm inlf age c.age#c.age finc educ i.kids, ///
hetero(finc i.kids) link(probit)
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. quietly eststo eff_labor_het: margins, dydx(x) predict(outcome(1)) post
. esttab labor_hom labor_het eff_labor_het, b(3) se(3)

m (2)
inlf inlf
main
age Q.185%* Q.264%
(0.066) (0.118)
c.aget#c.age -0.002%% -0.004*
(0.001) (0.001)
finc 0.046 0.424
(0.042) (0.222)
educ 0.098*x* 0.140%%
(0.023) (0.052)
kids -0.449%%%
(0.131)
0.kids 0.000
)
1.kids -0.879%%
(0.303)
_cons -4.157%%
(1.402)
Insigma
finc 0.313%
(0.123)
0.kids 0.000
)
1.kids -0.141
(0.324)
cutl
_cons 6.030%
(2.498)
N 753 753

Standard errors in parentheses
* p<@.05, ** p<0.01, *x*x p<0.001

. * Wald test
. estimates restore labor_het
(results labor_het are active now)

. quietly oglm
. test [lnsigmal: finc 1.kids

( 1) [lnsigmalfinc = @
( 2) [lnsigmall.kids = @

chi2( 2) =  6.53
Prob > chi2 =  ©.0381

-0.009xx%
(0.003)

0.069%*
(0.024)

0.030%%x
(0.009)

0.000

¢
—0.16T%x%

(0.043)

8 Appendix D: Stata code for binary response models with endogeneity

. *%xx IV Probit **x
. KRR RKRKRKKARRRRKRKR KRR A AARRR R RAAA Ak kkkkk

. %

. *%% Control function approach #x*
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. import delimited "$dir/mroz.csv”, clear
(22 vars, 753 obs)

. * Probit estimates and marginal effect
. probit inlf educ exper c.exper#c.exper age kidslt6 kidsge6 nwifeinc

Iteration 0: log likelihood = -514.8732
Iteration 1: log likelihood = -402.06651
Iteration 2: log likelihood = -401.30273
Iteration 3: log likelihood = -401.30219
Iteration 4: log likelihood = -401.30219
Probit regression Number of obs = 753
LR chi2(7) = 227.14
Prob > chi2 = 0.0000
Log likelihood = -401.30219 Pseudo R2 = 0.2206
inlf | Coef. Std. Err z P>|z]| [95% Conf. Intervall
________________ +________________________________________________________________
educ | .1309047 .0252542 5.18 0.000 .0814074 .180402
exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311
|
c.exper#c.exper | -.0018871 . 0006 -3.15 0.002 -.003063 -.0007111
|
age | -.0528527 .0084772 -6.23 0.000 -.0694678 -.0362376
kidslt6 | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029
kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179
nwifeinc | -.0120237 .0048398 -2.48 0.013 -.0215096  -.0025378
_cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901
. margins, dydx(nwifeinc)
Average marginal effects Number of obs = 753
Model VCE : 0IM
Expression : Pr(inlf), predict()
dy/dx w.r.t. : nwifeinc
| Delta-method
| dy/dx  Std. Err. z P>|z| [95% Conf. Interval]
_____________ o e e
nwifeinc | -.0036162 .0014414 -2.51 0.012 -.0064413 -.0007911

. % Control function approach
. eststo fstep: reg nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6 huseduc

Source | SS df MS Number of obs = 753
————————————— e N o1 @ A 215 = 27.13
Model | 20676.7705 7 2953.82436 Prob > F = 0.0000
Residual | 81120.3451 745 108.886369 R-squared = 0.2031
————————————— +-———-——-------———--------————————— Adj R-squared = 0.1956
Total | 101797.116 752 135.368505 Root MSE = 10.435
nwifeinc | Coef Std. Err t P>|t]| [95% Conf. Intervall
________________ e e
educ | .6746951 .2136829 3.16 0.002 .2552029 1.094187
exper | -.3129877 .1382549 -2.26 0.024 -.5844034  -.0415721
|
c.exper#c.exper | -.0004776 .0045196 -0.11 0.916 -.0093501 .008395
|
age | .3401521 .0597084 5.70 0.000 .2229354 .4573687
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kidslt6
kidsge6
huseduc

_cons

01 0.313 -.7803305
35 0.177 -.1965845
32 0.000 .8621956
89 0.000 -22.15559

2.432874
1.067642
1.494115
-7.285383

. predict res_h

. test huseduc
( 1) huseduc
FC 1,
Pro

. eststo sstep: probit inlf educ exper c.expertc.

Iteration
Iteration
Iteration
Iteration
Iteration

A wN 2O

| .8262719 .8183785
| .4355289 .3219888
| 1.178155 .1609449
| -14.72048 3.787326
at, resi
=0
745) = 53.59
b>F= 0.0000

log likelihood
log likelihood
log likelihood
log likelihood
log likelihood

Probit regression

Log likelihood

= -400.30301

-514.8732
-401.13728
-400.30361
-400.30301
-400.30301

Number of obs =

exper age kidslt6 kidsge6 nwifeinc res_hat

c.exper#c.exper

age
kidslt6
kidsge6
nwifeinc
res_hat
_cons

.1702153
.1163123

-.044953
-.8444363
.0477905
-.0368641
.0267093

I
+
I
I
|
| -.0019459
I
|
I
I
|
I
| .0171187

.0376718
.0193312

.0006009

.0101367
.1198154
.0443204
.0182706
.0189352
.5392914

LR chi2(8) =

Prob > chi2 =

Pseudo R2 =
z P>|z| [95% Conf
52 0.000 .0963798
02 0.000 .0784239
24 0.001 -.0031235
43 0.000 -.0648206
05 0.000 -1.07927
08 0.281 -.0390758
02 0.044 -.0726738
.41 0.158 -.0104031
03 0.975 -1.039873

. 2440507
.1542007

-.0007682

-.0250855
-.6096025
.1346568
-.0010543
.0638217
1.07411

. * Two-step IV

-probit
. ivprobit inlf educ exper c.experi#c.exper age kidslt6 kidsge6 (nwifeinc = huseduc), twostep

Checking reduced-form model. ..

Two-step probit with endogenous regressors

Number of obs =
Wald chi2(7) =

nwifeinc
educ
exper

c.exper#c.exper

age
kidslt6
kidsge6

_cons

-.0368641
.1702153
.1163123

-.0019459

-.044953
-.8444363
.0477905
.0171187

.0186314
.0384014
.0197084

.0006129

.010327
.1218529
.045177
.5498911

Prob > chi2 =
z P>|z| [95% Conf.
98 0.048 -.0733809
43 0.000 .0949499
90 0.000 .0776846
17 0.001 -.0031471
35 0.000 -.0651936
.93 0.000 -1.083264
06 0.290 -.0407549
03 0.975 -1.060648

-.0003472
. 2454806
.15494

-.0007446

-.0247125
-.605609
.1363359
1.094885

Instrumented:
Instruments:

nwifeinc
educ exper c.exper#c.exper age
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Wald test of exogeneity: chi2(1) = 1.99

. %

. k%% MLE *%x%

Prob > chi2 = 0.1584

. ivprobit inlf educ exper c.exper#c.exper age kidslt6 kidsge6 (nwifeinc = huseduc)

Fitting exogenous probit model

Iteration
Iteration
Iteration
Iteration
Iteration

A wN -2

log likelihood = -514.8732
log likelihood = -401.13728
log likelihood = -400.30361
log likelihood = -400.30301
log likelihood = -400.30301

Fitting full model

Iteration 0:
Iteration 1:
Iteration 2:

Probit model with endogenous regressors Number of obs = 753
Wald chi2(7) = 200.50
Log likelihood = -3230.6421 Prob > chi2 = 0.0000
| Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
________________________ +________________________________________________________________
nwifeinc | -.0355243 .0161904 -2.19 0.028 -.0672569 -.0037916
educ | .1640289  .0312249 5.25 0.000 .1028293 .2252285
exper | .112085  .0211991 5.29 0.000 .0705356 .1536344
|
c.exper#c.exper | -.0018751 .0005915 -3.17 0.002 -.0030345 -.0007158
I
age | -.0433193 .0113314 -3.82 0.000 -.0655284 -.0211101
kidslt6 | -.8137458 .1299442 -6.26 0.000 -1.068432 -.5590599
kidsge6 | .0460536  .0431386 1.07 0.286 -.0384966 .1306037
_cons | .0164965  .5300821 0.03 0.975 -1.022445 1.055438
________________________ e e e e e e e e e e e e e e
corr(e.nwifeinc,e.inlf)| .2671475  .1791903 -.1040303 .5730063
sd(e.nwifeinc) | 10.37928  .2674576 9.868095 10.91695
Instrumented: nwifeinc
Instruments: educ exper c.exper#c.exper age kidslt6 kidsge6 huseduc

Wald test of exogeneity (corr = @): chi2(1) = 2.01

log likelihood = -3230.6635
log likelihood = -3230.6421
log likelihood = -3230.6421

Prob > chi2 = @.1559

. eststo mel: margins, dydx(x) predict(pr) post

Average marginal effects Number of obs = 753
Model VCE : 0IM
Expression : Average structural function probabilities, predict(pr)
dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6
| Delta-method
| dy/dx  Std. Err. z P>|z| [95% Conf. Interval]
_____________ e
nwifeinc | -.0110576 .0055497 -1.99 0.046 -.0219348 -.0001805
educ | .0510572  .0111011 4.60 0.000 .029299%4 .072815
exper | .0230711 .0029517 7.82 0.000 .0172858 .0288563
age | -.013484 .002986 -4.52 0.000 -.0193365 -.0076314
kidslt6 | -.2532945 .0330766 -7.66 0.000 -.3181235  -.1884655
kidsge6 | .0143351 .0135204 1.06 0.289 -.0121644 .0408345
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. qui ivprobit inlf educ exper c.exper#c.exper age kidslt6 kidsge6 (nwifeinc =
. eststo me2: margins, dydx(x) predict(pr fix(nwifeinc)) post

Average margi
Model VCE

Expression
dy/dx w.r.t.

nal effects
: 0IM

: Average structural function probabilities, predict(pr fix(nwifeinc))
: nwifeinc educ exper age kidslt6 kidsge6

Number of obs

753

nwifeinc
educ
exper
age
kidslt6
kidsge6

De

1ta-method
Std. Err. z

.0487769
.0219965
-.0128817
-.2419815

I
I
+
| -.0105638
I
I
I
I
| .0136948

.0047364 -2.23

.0087333 5.59
.0037232 5.91
.0033216 -3.88
.0365941 -6.61

.0127924 1.07

-.0198469
.03166
.0146992
-.019392
-.3137047
-.0113777

-.0012807
.0658937
.0292939

-.0063714

-.1702583
.0387674

Warning: The

chosen prediction can result in estimates of derivatives or
contrasts that do not have a structural function interpretation.

. esttab mel me2, b(3) se(3)

nwifeinc
educ
exper
age
kidslté

kidsge6

-0.011%
(0.006)
0.05Tx*x*
(0.011)
0.023%x%*
(0.003)
-0.013%*x
(0.003)
-0.253%%x
(0.033)
0.014
(0.014)

-0.011%
(0.005)
0.049%xx
(0.009)
0.022%%%
(0.004)
-0.013%xx*
(0.003)
-0.242%%%
(0.037)
0.014
(0.013)

Standard errors in parentheses
* p<0.05, *x p<0.01, *** p<0.001
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