Supplementary materials are available in addition to this article. It can be downloaded at
RJ-2023-049.zip
E. J. Beh. A comparative study of scores for correspondence analysis with ordered categories.
Biometrical Journal, 40: 413–429, 1998a. URL
https://doi.org/10.1002/(SICI)1521-4036(199808)40:4<413::AID-BIMJ413>3.0.CO;2-V.
E. J. Beh. Correspondence analysis using orthogonal polynomials. University of Wollongong, Australia: Unpublished PhD Thesis, 1998b.
E. J. Beh. Elliptical confidence regions for simple correspondence analysis.
Journal of Statistical Planning and Inference, 140: 2582–2588, 2010. URL
http://dx.doi.org/10.1016/j.jspi.2010.03.018.
E. J. Beh. Simple correspondence analysis of ordinal cross-classifications using orthogonal polynomials.
Biometrical Journal, 39: 589–613, 1997. URL
https://doi.org/10.1002/bimj.4710390507.
E. J. Beh and P. J. Davy. Partitioning
Pearson’s chi-squared statistic for a completely ordered three-way contingency table.
The Australian and New Zealand Journal of Statistics, 40: 465–477, 1998. URL
https://doi.org/10.1111/1467-842X.00050.
E. J. Beh and R. Lombardo. An introduction to correspondence analysis. Chichester, UK: John Wiley & Sons, 2021a.
E. J. Beh and R. Lombardo. Confidence regions and approximate p-values for classical and non symmetric correspondence analysis.
Communications in Statistics - Theory and Methods, 44: 95–114, 2015. URL
https://doi.org/10.1080/03610926.2013.768665.
E. J. Beh and R. Lombardo. Correspondence analysis, theory, practice and new strategies. Chichester, UK: John Wiley & Sons, 2014.
E. J. Beh and R. Lombardo. Correspondence analysis using the cressie–read family of divergence statistics.
International Statistical Review, 2023. URL
https://doi.org/10.1111/insr.12541.
E. J. Beh and R. Lombardo. Features of the polynomial biplot for ordered contingency tables.
Journal of Computational and Graphical Statistics, 31: 403–412, 2021b. URL
https://doi.org/10.1080/10618600.2021.1990773.
E. J. Beh, B. Simonetti and L. D’Ambra. Partitioning a non-symmetric measure of association for three-way contingency tables.
Journal of Multivariate Analysis, 98: 1391–1411, 2007. URL
https://doi.org/10.1016/j.jmva.2007.01.011.
A. Carlier and P. M. Kroonenberg. Decompositions and biplots in three-way correspondence analysis.
Psychometrika, 61: 355–373, 1996. URL
https://doi.org/10.1007/BF02294344.
A. Carlier and P. M. Kroonenberg. The case of the French cantons: An application of three-way correspondence analysis. In Visualization of categorical data, Eds J. Blasius and M. Greenacre pages. 253–275 1998. San Diego: Academic Press.
E. Ceulemans and H. A. L. Kiers. Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method.
British Journal of Mathematical & Statistical Psychology, 59: 133–150, 2006. URL
https://doi.org/10.1348/000711005X64817.
C. C. Clogg. Some models for the analysis of association in multiway cross-classifications having ordered categories.
Journal American Statistical Association, 77: 803–815, 1982. URL
https://doi.org/10.2307/2287311.
N. A. C. Cressie and T. R. C. Read. Multinomial goodness-of-fit tests.
Journal of the Royal Statistical Society, Series B, 46: 440–464, 1984. URL
http://www.jstor.org/stable/2345686.
L. D’Ambra and N. C. Lauro. Non-symmetrical correspondence analysis for three-way contingency table. In Multiway data analysis, Eds R. Coppi and S. Bolasco pages. 301–315 1989. Amsterdam: Elsevier.
J. A. Davis. Codebook for the 1977 General Social Survey. 1977. National Opinion Research Centre, Chicago.
P. H. C. Eilers. : Analysis of multi-way arrays., 2019. URL
https://CRAN.R-project.org/package=multiway. R package version 1.0-6 [online; last accessed March 13, 2019].
P. L. Emerson. Numerical construction of orthogonal polynomials from a general recurrence formula.
Biometrics, 24: 696–701, 1968. URL
https://doi.org/10.2307/2528328.
P. Giordano, H. A. Kiers and M. A. D. Ferraro. Three-way component analysis using the
R package ThreeWay.
Journal of Statistical Software, 57: 1–23, 2014. URL
10.18637/jss.v057.i07.
L. A. Goodman and W. H. Kruskal. Measures of association for cross classifications.
Journal of the American Statistical Association, 49: 732–764, 1954. URL
https://doi.org/10.2307/2281536.
J. C. Gower, P. J. F. Groenen and M. van de Velden. Area biplots.
Journal of Computational and Graphical Statistics, 19: 46–61, 2010. URL
https://www.jstor.org/stable/25651299.
J. C. Gower, P. J. F. Groenen, M. van de Velden and K. Vines. Better perceptual maps: Introducing explanatory icons to facilitate interpretation.
Food Quality and Preference, 36: 61–69, 2014. URL
https://doi.org/10.1016/j.foodqual.2014.01.004.
J. C. Gower, S. Lubbe and N. le Roux. Understanding biplots. Chichester: Wiley, 2011.
M. Greenacre. Biplots in Practice. Barcelona: Fundación BBVA, 2010.
H. van Herk and M. van de Velden. Insight into the relative merits of rating and ranking in a cross-national context using three-way correspondence analysis.
Food Quality and Preference, 18: 1096–1105, 2007. URL
https://doi.org/10.1016/j.foodqual.2007.05.006.
M. J. Hoffman. : Fast truncated singular value decomposition and principal components analysis for large dense and sparse matrices., 2017. URL
https://CRAN.R-project.org/package=irlba. R package version 2.3.5.1 [online; last accessed October 3, 2022].
L. R. Kahle. Social values and social change: Adaptation to life in america. New York: Praeger, 1983.
H. A. L. Kiers, P. M. Kroonenberg and J. M. F. T. Berge. An efficient algorithm for
TUCKALS3 on data with large numbers of observation units.
Psychometrika, 57: 415–422, 1992. URL
https://doi.org/10.1007/BF02295429.
P. M. Kroonenberg. Applied multiway data analysis. Hoboken, NJ: John Wiley & Sons, 2008.
P. M. Kroonenberg. Singular value decompositions of interactions in three-way contigency tables. In Multiway data analysis, Eds R. Coppi and S. Bolasco pages. 169–184 1989. Amsterdam: Elsevier.
P. M. Kroonenberg. The
TUCKALS line: A suite of programs for three-way data analysis.
Computational Statistics and Data Analysis, 18: 73–96, 1994. URL
https://doi.org/10.1016/0167-9473(94)90133-3.
P. M. Kroonenberg. Three mode principal component analysis. Leiden: DSWO Press, 1983.
P. M. Kroonenberg and J. D. Leeuw. Principal component analysis of three mode data by means of alternating least squares algorithms.
Psychometrika, 45: 69–97, 1980. URL
https://doi.org/10.1007/BF02293599.
P. M. Kroonenberg and R. Lombardo. Nonsymmetric correspondence analysis: A tool for analysing contingency tables with a dependence structure.
Multivariate Behavioral Research Journal, 34: 367–397, 1999. URL
https://doi.org/10.1207/S15327906MBR3403_4.
P. M. Kroonenberg and F. J. Oort. Three-mode analysis of multi-mode covariance matrices.
British Journal of Mathematical and Statistical Psychology, 56: 305–336, 2003. URL
https://doi.org/10.1348/000711003770480066.
H. O. Lancaster. Complex contingency tables treated by the partition of the chi-square.
Journal of Royal Statistical Society, Series B, 13: 242–249, 1951. URL
https://www.jstor.org/stable/2984066.
N. C. Lauro and L. D’Ambra. L’analyse non symétrique des correspondances. In Data analysis and informatics III, Eds E. Diday and et al pages. 433–446 1984. Amsterdam: Elsevier.
D. Leibovici. Spatio-temporal multiway data decomposition using principal tensor analysis on k-modes: The r package.
Journal of Statistical Software, 34(10): 34 pages, 2010. URL
10.18637/jss.v034.i10.
J. Li, J. Bien and M. T. Wells. : An
R package for multidimensional array (tensor) unfolding, multiplication, and decomposition.
Journal of Statistical Software, 87(10): 31 pages, 2018. URL
DOI: 10.18637/jss.v087.i10.
R. J. Light and H. B. Margolin. An analysis of variance for categorical data.
Journal of the American Statistical Association, 66: 534–544, 1971. URL
https://doi.org/10.2307/2283520.
S. Loisel and Y. Takane. Partitions of
Pearson’s chi-square statistic for frequency tables: A comprehensive account.
Computational Statistics, 31: 1429–1452, 2016. URL
https://doi.org/10.1007/s00180-015-0619-1.
R. Lombardo and E. J. Beh. Partitioning the Cressie-Read divergence statistic for three-way contingency tables: A study on environmental sustainability data. In IES 2022 innovation & society 5.0: Statistical and economic methodologies for quality assessment. Book of short papers, Eds R. Lombardo, I. Camminatiello and V. Simonacci pages. 491–497 2022. PKE Press.
R. Lombardo and E. J. Beh. Three–way correspondence analysis for ordinal–nominal variables. In SIS 2017 statistics and data science: New challenges, new generations, 28–30 june 2017, florence (italy) proceedings of the conference of the italian statistical society, Eds A. Petrucci and R. Verde pages. 613–620 2017. Firenze Press.
R. Lombardo and E. J. Beh. Variants of simple correspondence analysis. The R Journal, 8/2: 167–184, 2016.
R. Lombardo, E. J. Beh and L. Guerrero. Analysis of three-way non-symmetrical association of food concepts in cross-cultural marketing.
Quality & Quality, 53: 2323–2337, 2019. URL
https://doi.org/10.1007/s11135-018-0733-6.
R. Lombardo, E. J. Beh and P. M. Kroonenberg. Symmetrical and non-symmetrical variants of three-way correspondence analysis for ordered variables.
Statistical Science, 36 (4): 542–561, 2021. URL
https://doi.org/10.1214/20-STS814.
R. Lombardo, A. Carlier and L. D’Ambra. Nonsymmetric correspondence analysis for three-way contingency tables. Methodologica, 4: 59–80, 1996.
R. Lombardo, Y. Takane and E. J. Beh. Familywise decompositions of
Pearson’s chi-square statistic in the analysis of contingency tables.
Advances in Data Analysis and Classification, 14 (3): 629–649, 2020. URL
https://doi.org/10.1007/s11634-019-00374-7.
M. Marcotorchino. Utilisation des comparaisons par paires en statistique des contingencies: Partie i. 1984a.
M. Marcotorchino. Utilisation des comparaisons par paires en statistique des contingencies: Partie II. 1984b.
M. Marcotorchino. Utilisation des comparaisons par paires en statistique des contingencies: Partie III. 1985.
T. Murakami and P. M. Kroonenberg. Three-mode models and individual differences in semantic differential data.
Multivariate Behavioral Research, 38: 247–283, 2003. URL
https://doi.org/10.1207/S15327906MBR3802_5.
L. Pardo and M. C. Pardo. Minimum power-divergence estimator in three-way contingency tables.
Journal of Statistical Computation and Simulation, 73: 819–831, 2003. URL
https://doi.org/10.1080/0094965031000097782.
M. C. Pardo. An empirical investigation of cressie and read tests for the hypothesis of independence in three-way contingency tables.
Kybernetika, 32: 175–183, 1996. URL
http://hdl.handle.net/10338.dmlcz/124180.
J. C. W. Rayner and E. J. Beh. Towards a better understanding of correlation.
Statistica Neerlandica, 63: 324–333, 2009. URL
https://doi.org/10.1111/j.1467-9574.2009.00425.x.
W. Revelle. : Procedures for psychological, psychometric, and personality research., 2018. URL
https://CRAN.R-project.org/package=psych [online; last accessed September 29, 2022].
T. J. Ringrose. Alternative confidence regions for canonical variate analysis.
Biometrika, 83: 575–587, 1996. URL
https://doi.org/10.1093/biomet/83.3.575.
T. J. Ringrose. Bootstrap confidence regions for correspondence analysis.
Journal of Statistical Computation and Simulation, 82: 1397–1413, 2012. URL
https://doi.org/10.1080/00949655.2011.579968.
A. Statnikov. : Algebra for tensors., 2018. URL
https://CRAN.R-project.org/package=tensorA. R package version 0.36.2 [online; last accessed November 19, 2020].
Y. Takane and S. Jung. Regularized partial and/or constrained redundancy analysis.
Psychometrika, 73: 671–690, 2008. URL
https://doi.org/10.1007/s11336-008-9067-y.
M. Timmerman and H. A. L. Kiers. Three-mode principal component analysis: Choosing the numbers of components and sensitivity to local optima.
British Journal of Mathematical and Statistical Psychology, 53: 1–16, 2000. URL
https://doi.org/10.1348/000711000159132.
L. R. Tucker. Implications of factor analysis of three-way matrices for measurement of change. In Problems in measuring change, Ed C. W. Harris pages. 122–137 1963. University of Wisconsin Press.
M. van de Velden, A. I. D’Enza and F. Palumbo. Cluster correspondence analysis.
Psychometrika, 82: 158–185, 2017. URL
https://doi.org/10.1007/s11336-016-9514-0.
X. Zhou. : Multivariate outlier detection., 2019. URL
https://CRAN.R-project.org/package=mvoutlier. R package version 2.1.1 [online; last accessed July 30, 2021].