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ggdensity: Improved Bivariate Density
Visualization in R
by James Otto and David Kahle

Abstract The ggdensity R package extends the functionality of ggplot2 by providing more inter-
pretable visualizations of bivariate density estimates using highest density regions (HDRs). The
visualizations are created via drop-in replacements for the standard ggplot2 functions used for this
purpose: geom_hdr() for geom_density_2d_filled() and geom_hdr_lines() for geom_density_2d().
These new geoms improve on those of ggplot2 by communicating the probabilities associated with
the displayed regions. Various statistically rigorous estimators are available, as well as convenience
functions geom_hdr_fun() and geom_hdr_fun_lines() for plotting HDRs of user-specified probability
density functions. Associated geoms for rug plots and pointdensity scatterplots are also presented.

1 Introduction

Density estimation is foundational to modern statistics. Not only does it provide a theoretical basis
for maximum likelihood estimation (Scott, 1992), it is also an important tool in exploratory data
analysis. This is especially true for univariate data: histograms, frequency polygons, and kernel
density estimates (KDEs) all visualize an estimated density.

With bivariate data, the situation is more complicated as the estimated density is a 3D surface, and
there is a tendency to avoid 3D visualization in static graphics due to visual perception biases. A more
common strategy is to represent the surface using other geometric objects or aesthetics in a 2D plot,
most commonly via contours of the density’s level sets. Typically the density is estimated with a KDE
and the contours correspond to the level sets of an equally spaced mesh over (0, M], where M is the
maximum of the estimated density’s height (usually rounded to the closest "pretty" value). We will
refer to these contours as ordinate mesh density contours (OMDCs), and the corresponding graphics
as traditional density contour plots or OMDC plots. By ordinate, we mean the variable z = f (x, y), or
in general the last element of the graph of a function f (x), which in this context represents density.

For example, the MASS package documentation suggests using MASS::kde2d() with
graphics::contour(), which selects its level sets by calling base::pretty() on 10 such breaks over
the (0, M] ordinate range, and ggplot2’s geom_density_2d() and geom_density_2d_filled() do the
same (Venables and Ripley, 2002; Wickham, 2009; Wilkinson, 2005). Unfortunately, the resulting
regions—those bounded by the OMDCs—cannot be immediately identified with corresponding
probabilities, and are challenging to interpret in the best of cases.

Following Hyndman (1996), we propose the use of highest density regions (HDRs) as replacements
for density visualization based on OMDCs. In a sense made rigorous in the next section, an HDR is
the smallest region containing a certain percentage of the estimated distribution, e.g. 90%. An HDR
contour is the boundary of this region. HDRs are constructed by determining "good" cutoff values for
the density, whereby cutoff values of the density we mean the ordinate values corresponding to the
HDR contours (i.e. the HDR contours are the level sets of these "good" cutoff values). Unlike OMDCs,
HDR contours’ ordinate values are almost never equally spaced in the ordinate range, and computing
them presents a number of practical and technical challenges.

In this article we introduce ggdensity, a new R package intended to address these challenges in
facilitating the visualization of bivariate HDRs and related topics in the ggplot2 framework. ggdensity
extends ggplot2 with a tight integration: instead of wrapping ggplot2 calls to return ggplot objects
that are hard to modify, ggdensity uses ggplot2’s API to provide new extensible (geom, stat) pairs
that behave in the way ggplot2 users have come to expect. These new stats provide a range of density
estimation options, as we describe in the next sections.

2 Motivating example

We begin with a motivating example to show how traditional density contour plots can be misleading
when exploring bivariate distributions. The top left plot in Figure 1 is a scatterplot of simulated
bivariate standard normal data whose distribution we want to visualize. On the bottom left, we
present the traditional way of visualizing the data’s 2d distribution: a contour plot of slices of its
estimated density (OMDCs). The function that created this graphic, geom_density2d() (alternatively
geom_density_2d()), has been in ggplot2 since its inception. It was modeled after a similar graphic
made with base graphics using MASS::kde2d() with contour(). In the top right is the filled contour
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version of the same plot, made with geom_density_2d_filled(). This type of plot was introduced in
2020 with ggplot2 version 3.3.2, which leveraged ggplot2’s new dependency on isoband that came in
ggplot2 version 3.3.0 (Wilke and Pedersen, 2021).

In the bottom right is our proposed alternative, ggdensity::geom_hdr(). Each of the three contour
plots show contours from the same estimated density surface, but the contours plotted by geom_hdr()
are HDR contours and are chosen to be inferentially relevant. By default these are the smallest regions
containing 50%, 80%, 95%, and 99% of the estimated density.

Plotting the HDRs results in a significantly more interpretable graphic that conveys more infor-
mation than equally spaced density contours. To make a more direct comparison, in Figure 2 we
superimpose the HDR contours onto the filled traditional density contour plot in the top right of
Figure 1. The result reveals that nearly 20% of the estimated distribution is outside the lowest OMDC.
Consequently, we would expect almost 1 out of every 5 observations to fall outside the traditional
density contour plot.

This is somewhat of a cautionary tale: while the contours seen in the bottom left and top right plots
of Figure 1 do seem to communicate some information to the viewer, it’s hard to say exactly what that
information is. And worse: it seems surprisingly easy to draw wrong conclusions. Upon scrutiny, the
overall OMDC strategy seems suspect as a general purpose tool for visualizing where the probability
mass of a bivariate distribution resides as it focuses exclusively on the density and ignores the region
over which that density extends. On the other hand, with HDRs one immediately understands where
the majority of the observed data lie and roughly how much data lies in each region. It is not possible
to achieve these insights with traditional density contour plots, since equivalent interpretations require
double integrals of the estimated density.

Figure 1: Comparing various geoms on a bivariate standard normal sample of size n = 2500.
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Figure 2: geom_density_2d_filled() and geom_hdr() (white) from Figure 1, showing that the tradi-
tional density contour plots can mislead: nearly 20% of the estimated distribution falls outside the
lowest OMDC. Labels generated with geomtextpath (Cameron and van den Brand, 2022).

3 Highest density regions

More formally, following Hyndman (1996) we adopt the following definition of highest density regions
(HDRs):

Definition 1 Let f (x) be the probability density function (PDF) of a random vector X ∈ Rp and α ∈ (0, 1).
For any constant c ∈ R define R f (c) = {x ∈ Rp : f (x) ≥ c} to be the subset of the sample space of X with
density at least c. The 100(1 − α)% HDR of X is the subset R f ( fα), where fα is the largest constant c such

that p f (c) := Pf

[
X ∈ R f (c)

]
≥ 1 − α. When f (x) is clear, we will simplify this to Rα = R f ( fα).

Note that p f (c) is non-increasing in c. Intuitively, we see that as c gets bigger the region where
f (x) ≥ c shrinks (or possibly remains unchanged), and so the probability of the region gets corre-
spondingly smaller (or at least can’t get bigger). fα is the largest point at which this probability is at
least 1 − α. We revisit this in the next section.

Of course, in practice we are given data x1, . . . , xn, ideally a random sample from f (x), and we
need to estimate the population HDRs. The problem of estimating HDRs, and more generally density
contour estimation, has been widely studied and several estimators have been proposed. Estimators
generally fall in one of three classes: plug-in estimators (Rigollet and Vert, 2009; Cadre, 2006), excess
mass estimators (Muller and Sawitzki, 1991; Polonik, 1995), and convex contour estimators (Hartigan,
1987). In this work we focus exclusively on plug-in estimators of HDRs due to their straightforward
interpretation and implementation. These estimators are of the form R̂α = R̂ f ( fα) := R f̂ ( f̂α) for some

PDF estimate f̂ (x) of f (x), where f̂α is the largest value c such that p̂ f (c) := p f̂ (c) = Pf̂

[
X ∈ R f̂ (c)

]
≥

1 − α.

Thus, plug-in HDR estimators estimate population HDRs with the HDRs of estimated densities. As
there are many ways to estimate a density, both parametric and nonparametric, one can arrive at many
different HDR estimates with the same data and probability mass 1 − α, and different choices confer
advantages and disadvantages. We revisit this notion in HDRs using different density estimators
using ggdensity after explaining how such estimates can be computed.

Before addressing that topic, it is worth reflecting on another aspect that makes HDRs so special:
their size. While HDRs are primarily of interest because their corresponding probabilities are immedi-
ately interpretable, they are also important because they are the smallest such sets that contain their
probabilities.

For any continuous distribution, there are an infinite number of different regions in its support
that contain probability at least 1 − α. The standard normal distribution provides a simple univariate
example. If Φ−1(x) is the quantile function of the standard normal distribution and 0 ≤ l < u ≤ 1 with
u − l = 1 − α, any interval of the form [Φ−1(l), Φ−1(u)] contains probability exactly 1 − α, and indeed
these are all such intervals that do. This is because P

[
Φ−1(l) ≤ Z ≤ Φ−1(u)

]
= P

[
Z ≤ Φ−1(u)

]
−

P
[
Φ−1(l) ≤ Z

]
= Φ(Φ−1(u)) − Φ(Φ−1(l)) = u − l = 1 − α. Setting 1 − α = .95, we can choose

l = 0, u = .95 yielding the interval (−∞, 1.645]. We can find similar intervals with other choices of l, u:
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[−2.326, 1.751]; [−2.054, 1.881]; [−1.881, 2.054]; [−1.751, 2.326]; and [−1.645, ∞), all of which contain
95% probability.

However, all intervals are typically not equally preferable: if we are interested in summarizing
the normal distribution with a set of probability 1 − α, we typically want to provide the smallest
such set. The intervals above have lengths ∞, 4.08, 3.93, 3.93, 4.08, and ∞. As is well-known, if we
want the smallest interval, we use [Φ−1(α/2), Φ−1(1 − α/2)] = [−1.96, 1.96] as the interval bounds,
with the interval length of 3.92. This interval corresponds to the region where the density exceeds
fα = ϕ(Φ−1(α/2)); and as such meets the definition of an HDR.

This is a general feature of HDRs: whether in one or many dimensions, they constitute the smallest
regions containing their corresponding probabilities, a fact seen from the following measure-theoretic
argument. For some f (x), α ∈ [0, 1], and an associated HDR Rα, let η = P [X ∈ Rα]. While η may
be equal to 1 − α, in some cases it may be more, for instance in the case of the uniform distribution.
Suppose A is a subset of the sample space of X with probability ξ ≥ η such that A \Rα is non-null, i.e.
A and Rα are not the same set. Then

η = P [X ∈ Rα] =
∫
Rα

f (x)dx =
∫
Rα∩A

f (x)dx +
∫
Rα\A

f (x)dx.

Similarly,

ξ = P [X ∈ A] =
∫
Rα∩A

f (x)dx +
∫
A\Rα

f (x)dx.

Since ξ ≥ η, ∫
A\Rα

f (x)dx ≥
∫
Rα\A

f (x)dx

By the definition of Rα, fα > f (x) over A \Rα and f (x) ≥ fα over Rα. Thus,

fαm(A \Rα) =
∫
A\Rα

fαdx >
∫
A\Rα

f (x)dx ≥
∫
Rα\A

f (x)dx ≥
∫
Rα\A

fαdx = fαm(Rα \ A),

where m denotes the Lebesgue measure of the given set, its size. Thus m(A \Rα) > m(Rα \ A) and
consequently m(A) > m(Rα).

The minimality of HDRs comes with a few trade-offs. First, there may be other regions of the
sample space with probability between 1 − α and η, the nominal and actual probabilities of the HDRs
respectively, that are smaller than the HDR. This can happen in cases where the PDF is constant on
some set of positive measure so that p f (c) jumps discontinuously over 1− α. The 100(1− α)% quantile
interval of the Unif(0, 1) distribution, [α/2, 1− α/2], illustrates this, for instance; it contains probability
exactly 1 − α and is of length 1 − α. By contrast, the 100(1 − α)% HDR for the uniform distribution
is Rα = [0, 1] for any α, contains 100% of the distribution, and is of length 1. While this is a rare
circumstance when using density estimators, it does occur when constructing HDRs from histogram
density estimates – they always contain more than nominal probability. The second trade-off is that
HDRs are only connected sets for all α if the distribution is unimodal. This is rarely the case for density
estimators, so it is common for the lowest probability HDRs, the smallest sets, to be disconnected: two
or more intervals in 1D and unions of blobs in 2D. A third challenge is that HDRs are non-trivial to
compute. It is to this challenge that we now turn.

4 Computing highest density regions

ggdensity enables the computation and visualization of 2D HDRs based on various plug-in estimators,
extending the functionality of ggplot2. In order to understand how HDRs are computed in two
dimensions, we find it helpful to first illustrate the process in one dimension.

4.1 Computing HDRs in one dimension

Consider the challenge of computing the 95% HDR of the standard normal distribution with PDF
f (x) = ϕ(x). One way to do this might be to fix a c, determine the interval [l, u] over which ϕ(x) ≥ c,
integrate ϕ(x) over [l, u], and move c up or down depending on whether the interval contains too
much or too little probability. l and u, the boundaries of the interval where ϕ(x) ≥ c, can be determined
numerically or algebraically from ϕ(x) = c, and the integral can be done via numerical integration. fα,
the special c that provides 1 − α probability, can also be determined numerically in many ways.

Unfortunately, this method doesn’t scale well. In general, the set R f (c) will not be a simple
interval as in the normal case. It will instead be a union of an unknown number of intervals whose
boundaries are unknown and hard to determine. Once known, numerical integration can be relied
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upon to determine the integral, but only easily in one dimension. In two or more dimensions, the
situation is significantly more complex. The region R f (c) is implicitly described, and therefore some
form of grid-based approximation would be required before numerical integration could be applied.
Notice that there are essentially two hard problems here: computing R f (c), in the sense of determining
a useful description of it, and computing p f (c).

The basic idea used by ggdensity is simple: discretize and compute. In the univariate case, the
fundamental algorithm is this:

1. Evaluate f (x) on a regular mesh {xi : i = 1, . . . N} to obtain fi = f (xi) over some interval
nominally larger than the support of the data to create a table with rows (xi, fi) for i = 1, . . . , N.

2. Normalize the points into a discrete distribution pi = fi/ ∑i fi to create the table (xi, fi, pi).

3. Sort the N rows of the table (xi, fi, pi) by pi in decreasing order to obtain (x(i), f(i), p(i)).
1

4. Compute the cumulative sum a(k) = ∑k
i=1 p(i) to create the table (x(i), f(i), p(i), a(i)).

5. Estimate fα with the first f(i) such that a(i) ≥ 1 − α.

The point masses pi of the discrete approximation are in fact the areas of the rectangles of a Riemann
(i.e. piecewise constant) approximation to f (x) collapsed to individual points: they approximate the
probability over a range such as [xi − δ/2, xi + δ/2], where δ is the resolution of the mesh. Just as
Riemann approximations converge to the true value of the integral under very minor conditions on
f (x), arbitrarily accurate approximations to fα can be obtained by setting N suitably large. Because of
this, we will refer to approximating fα as “computing” fα instead of estimating it, and our notation
will not reflect the fact that it is an approximated quantity.

With fα in hand, the HDR can be approximated in any of a number of ways that are practically
equivalent for sufficiently large N. The easiest is to simply union of intervals [xi − δ/2, xi + δ/2] such
that fi ≥ fα. Figure 3 provides an illustration of the process using a very coarse mesh to emphasize
the process.
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Figure 3: p f (c) and R f (c) are computed by discretizing the density f (x), determining the probabilities
with densities above c, and constructing HDRs as unions of intervals. In this illustration, c = .23,
yielding p f (c) = .763.

1This is actually the opposite of order statistics notation: here p(1) is the largest probability of the discretized
distribution, and x(1) is the corresponding xi value.
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Figure 4: As the mesh size N grows, the HDR approximation improves for any f (x). Here N = 100
and the 90% HDR is illustrated.

N governs the accuracy of the approximation of p f (c) and the accuracy and resolution of R f (c)
in the resulting plot. Consequently, a reasonably large number is desired: ggdensity defaults this
parameter to N = 512 in geom_hdr_rug(). Figure 4 illustrates a more complicated example with a
bimodal f where N = 100 is used so that it is still possible to see the approximation.

Two adjustments are needed to fully operationalize 1D HDRs for data: using an approximation
f̂ (x) in place of f (x) and plotting several HDRs. Fortunately, both of these are easy. In practice density
estimator implementations usually return their estimates as values of the function f̂i = f̂ (xi) on a
mesh, not as some analytic expression. Such is the case for stats::density(), for example, which
accepts a univariate vector and returns its estimated density at N = 512 points on a regular mesh a
little larger than the data. Similarly, computing several HDRs at once requires virtually no added
computational expense: HDRs are nested regions, so to find several HDRs simply continue looking
down the list of accumulated probabilities a(i) until the desired probabilities are reached. This is
illustrated in Figure 5.

Figure 5: Computing several HDRs can be done with no added computational complexity, since the
regions are nested. Here the 50%, 80%, and 90% HDRs R̂α are illustrated using an estimated density
based on n = 1000 draws.
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4.2 Finding HDRs in two dimensions

The procedure for finding Rα for bivariate data is very similar to the univariate case. The basic idea
behind the computation of HDRs in ggdensity is again to discretize f (x) = f (x, y) and compute. The
fundamental algorithm is this:

1. Evaluate f (x, y) on a fine mesh {(xi, yj) : i = 1, . . . Nx, j = 1, . . . Ny} to obtain fij = f (xi, yj)
over some rectangular region nominally larger than the support of the data to create a table
(xi, yj, fij) for i = 1, . . . , Nx and j = 1, . . . , Ny. In practice, we usually use N = Nx = Ny.

2. Normalize the points into a discrete distribution pij = fij/ ∑i,j fij to obtain the table (xi, yj, fij, pij).

3. Sort the rows of the table by pij in decreasing order to obtain (x(k), y(k), f(k), p(k)), where k =
1, . . . , Nx × Ny and the parenthetical notation is used for consistency with the univariate case.
The original order is immaterial to the algorithm.

4. Compute and append the cumulative sum a(k) = ∑k
i=1 p(i) to the table to obtain the table

(x(k), y(k), f(k), p(k), a(k)).

5. Estimate fα with the first f(k) such that a(k) ≥ 1 − α.

Similar to the univariate case, the point masses pij of the discrete approximation can be thought of
as the volumes of the rectangular prisms representing a Riemann approximation to f (x, y) collapsed
to individual points. And again, just as Riemann approximations converge to the true value of the
integral, arbitrarily accurate approximations to fα can be obtained by setting Nx and Ny suitably
large for any reasonable f (x, y). We illustrate this in Figure 6. In practice, N = Nx = Ny governs the
resolution of the HDRs in the resulting plot and is set to a suitably large number, ggdensity defaults
this parameter to 100. Note, too, that this same approach will work in three dimensions and more,
however, the computational complexity does not scale into higher dimensions well, and ggdensity
does not support 3D graphics, so we do not pursue this further here.

In one dimension, the HDR corresponding to the points for which f (x) ≥ fα is naturally described
by union of the corresponding rectangular regions of the Riemann approximation. The same could be
done in two dimensions, too, as illustrated in Figure 6, however, any contour generating algorithm
would work. ggdensity uses an implementation of marching squares provided by the isoband
package (Wilke and Pedersen, 2021). Given a rectangular array of zeros and ones, the basic function
implementing the algorithm results in parametrically-described polygonal regions whose interior
contains only the points corresponding to the 1’s. In the present setting, such an array is provided by
the table with fij ≥ fα. This is illustrated in Figure 7.

Figure 6: In two dimensions and by analogy with Figure 3, fα is computed by discretizing the density
f (x, y), and HDRs are constructed from points (xi, yj) where f (xi, yj) ≥ fα. Here α = .05 was used.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ggdensity
https://CRAN.R-project.org/package=ggdensity
https://CRAN.R-project.org/package=ggdensity
https://CRAN.R-project.org/package=ggdensity
https://CRAN.R-project.org/package=isoband


CONTRIBUTED RESEARCH ARTICLE 227

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

Figure 7: Figure 6 from the plane perspective. ggdensity constructs HDRS by applying the marching
squares contouring algorithm to binary grid where fij ≥ fα provided by isolines() and isobands().

An alternative approach is worth mentioning at this point. The method described above is
essentially what Hyndman (1996) refers to as the “numerical integration approach”. However, al-
ternative approaches exist. Hyndman (1996) suggests using the simple, consistent quantile estimate
f̂α = f̂(j), where f̂(j) is the (j/n) sample quantile of { f̂ (xi, yi)} and j = ⌊αn⌋. Presented with data
(x1, y1), . . . , (xn, yn), if f (x, y) is known, any estimate of the 1 − α quantile of f (X, Y) is an estimate of
fα; this is referred to as the “density quantile approach”. Notice that this requires contours intersect at
least one data point and forces a certain proportion of observed values outside of the HDRs, regardless
of sample size. Unavailable in ggdensity, this method2 is implemented in both hdrcde (Hyndman
et al., 2021) and gghdr (O’Hara-Wild et al., 2022).

2There are many valid choices of f̂α, hdrcde and gghdr make use of stats::quantile() with type = 7 which
estimates a continuous sample quantile function with linear interpolation, a slight modification of the strategy
outlined in Hyndman (1996).
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4.3 HDRs using different density estimators

As we noted previously, sample HDRs can be computed using many density estimation methods.
Figure 8 illustrates how 95% HDRs are calculated for histogram estimators and KDEs on a sample of
size n = 1, 000 from the standard bivariate normal distribution. These use the exact same method as
previously described.
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Figure 8: ggdensity facilitates using different density estimators to determine HDRs, including
histograms (top, 11 bins in each dimension) and kernel density estimators (bottom), the default. Here
95% HDRs are illustrated using N = 25 and n = 1, 000 draws from the standard bivariate normal
distribution. The illustration refects the method of construction, not output of geom_hdr().

Figure 9 displays the output of geom_hdr() using the full range of methods available for three differ-
ent simulated data sets with different features. By default, geom_hdr() and geom_hdr_lines() plot the
50%, 80%, 90% and 95% HDRs. The methods are available in both geom_hdr() and geom_hdr_lines()
through the method argument, which allows for the specification of various nonparametric and para-
metric estimators, each offering advantages in certain contexts. For example, histogram estimators
result in HDRs that obey constrained supports. Normal estimators, i.e. the best-fit bivariate normal
estimator, can be helpful in providing simplified visuals that give the viewer a sense of where the
distributions are, potentially at the expense of over-simplifying and removing important features of
how the variables co-vary.
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Figure 9: Comparing HDRs obtained with different method arguments to geom_hdr().
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4.4 HDRs from known density functions

The same method can be used to determine the HDRs of a given density function. This is implemented
for bivariate densities in ggdensity as geom_hdr_fun() and geom_hdr_lines_fun(), both accepting
a PDF via the fun argument. Figure 10 illustrates this by plotting the HDRs of bivariate random
vector X = (X1, X2) with X1 ⊥ X2, X1 ∼ N (0, 1) and X2 ∼ Gamma(5, 3) (left), and Y ∼ fY(y1, y2) ∝

exp
{
− 1

2(.20)2 (y2
1 + y2

2 − 1)2
}

(right), which concentrates its probability along the unit circle S1. In
this case we make use of the fact that geom_hdr_fun() can find the HDRs of unnormalized PDFs. It
does so by leveraging the fact that over a given window, the discretization is not affected by whether
or not the density is normalized.

f_X <- function(x1, x2) dnorm(x1) * dgamma(x2, 5, 3)
ggplot() + geom_hdr_fun(fun = f_X, xlim = c(-4, 4), ylim = c(0, 5))

f_Y <- function(y1, y2) exp(-1/(2 * .20^2) * (y1^2 + y2^2 - 1)^2)
ggplot() +
geom_hdr_fun(fun = f_Y, normalized = FALSE, xlim = c(-4, 4), ylim = c(-4, 4)) +
coord_equal()
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Figure 10: geom_hdr_fun() can be used to plot HDRs of normalized and un-normalized known PDFs.

In both of these examples, determining the exact contours is a nontrivial proposition. However, we
have not had to derive any results regarding the distributions of X or Y to plot them or find the values
of fα – this is all been numerically approximated by ggdensity via the previously discussed “numerical
integration” method. This represents a simple, powerful tool for visualizing and understanding the
probabilistic behavior of arbitrary densities, so long as their support is roughly known.

Beyond the utility of visualizing HDRs of theoretical densities, geom_hdr_fun() and geom_hdr_lines_fun()
can be used to plot HDRs for arbitrary parametric estimates of f . We discuss this at the end of the
following section.
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5 Further examples

We conclude with a series of more advanced examples that illustrate the flexibility and power of
ggdensity through more complicated use-cases.

5.1 Comparing populations

Since geom_hdr() and geom_hdr_lines() use transparency (the alpha aesthetic) to communicate
probability, color remains available to communicate group membership in the context of more than
one population via either the fill or color aesthetics. This allows for easy comparison of multiple
bivariate populations via their HDRs. In Figure 11, we use this strategy to compare the relationship
between flipper length and bill length for different species of penguins using the popular Palmer
penguins dataset (Horst et al., 2020). In this case geom_hdr_lines() is used to reduce overplotting.

As discussed previously, ggdensity provides several nonparametric and parametric estimators to
compute the HDRs. Figure 11 assumes a bivariate normal distribution, expressed by setting method =
"mvnorm" in geom_hdr_lines(). This implies that each group’s HDRs are elliptical and the resulting
visualization is a useful approximation of the true distributions. With it we can easily see the general
location of each of the groups and that all have similar covariance structures. These details can be
obscured when more flexible non-parametric HDR estimators are used, especially when sample sizes
are small.

ggplot(penguins, aes(flipper_length_mm, bill_length_mm, fill = species)) +
geom_hdr_lines(aes(color = species), method = "mvnorm") +
geom_jitter(shape = 21)
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Figure 11: Using geom_hdr_lines() with a color aesthetic can be used to reduce overplotting when
visualizing the HDRs for different subgroups of data.

5.2 HDRs and goodness of fit

It can be useful to combine geom_hdr() and geom_hdr_lines() to compare different estimators of f . A
powerful example is plotting elliptical contour lines corresponding to an estimated normal model on
top of filled contours of the KDE, facilitating a visual exploration of goodness of fit. We have included
two examples of this strategy in Figure 12. The left graphic illustrates bill length versus flipper length
for the Chinstrap penguins from Figure 11. Notice that the filled contours generally match the contour
lines, providing visual evidence towards the validity of an assumption of normality. By contrast, the
right graphic explores the relationship between two measurements from a dataset comparing 178
wines from Forina et al. (1986) exported as wines in sn (Azzalini, 2022). The filled contours do not
coincide with the contour lines – the nonparametric estimate of the density is visibly more skewed –
indicating that a normal approximation might not be appropriate for this data.
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penguins |>
filter(species == "Chinstrap") |>
ggplot(aes(flipper_length_mm, bill_length_mm)) +
geom_hdr() +
geom_hdr_lines(color = "red", method = "mvnorm") +
geom_jitter(color = "red")

ggplot(wines, aes(uronic, malic)) +
geom_hdr() +
geom_hdr_lines(method = "mvnorm", color = "red") +
geom_jitter(color = "red")
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Figure 12: Normality can be visually assessed by layering the HDRs of a KDE (black) with that of a
parametrically estimated bivariate normal (red), here illustrated with Palmer penguin data (left) and
wines data (right). The points in each plot have been jittered due to rounding in the data, notice that
this leads to small inconsistencies between the plotted data and HDRs.

This strategy can be extended to evaluating goodness of fit for arbitrary parametric models
via combining geom_hdr() and geom_hdr_lines_fun(), following the strategy outlined in HDRs for
arbitrary parametric models.

5.3 Other related geoms

ggdensity also includes functions geom_hdr_points() and geom_hdr_rug() for alternative methods of
visualizing HDRs3. These are illustrated in Figure 13, in which we visualize the old faithful dataset
(Azzalini and Bowman, 1990). The left image displays the standard visualization of HDRs from
geom_hdr(). The graphic in the middle, created by geom_hdr_points(), displays the data itself with
points colored by their HDR membership–this can be useful in situations where overplotting is a
concern. The plot on the right presents the original data with the estimated marginal HDRs via
geom_hdr_rug(). Note that the scale is the same across all of the plots, with the 50%, 80%, 95%, and
99% HDRs being visualized by default.

p <- ggplot(faithful, aes(eruptions, waiting))

p + geom_hdr()
p + geom_hdr_points()
p + geom_hdr_rug()

3The previously mentioned gghdr includes similar tools, we discuss this further in Discussion and future
directions.
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Figure 13: geom_hdr_points() and geom_hdr_rug() can provide more insight into bivariate scatter-
plots, as seen here with the faithful dataset.

It is important to note that geom_hdr_rug() can also be used when only an x or y aesthetic is
provided. This is illustrated in Figure 14 where the KDE of eruption duration is visualized alongside
its estimated HDRs. In this graphic we have chosen to communicate the HDRs via colors – in some
cases we have found this to be preferable when using geom_hdr_rug().

ggplot(faithful, aes(eruptions)) +
geom_density() +
geom_hdr_rug(aes(fill = after_stat(probs)), length = unit(.05, "npc"), alpha = 1) +
scale_fill_viridis_d(option = "magma", begin = .8, end = 0)

Figure 14: geom_hdr_rug() can also improve the visualization of univariate densities.

5.4 HDRs for arbitrary parametric models

Historically, there has been much focus on contour estimation based on non-parametric estimates of
f , typically KDEs. To our knowledge, there has been relatively little focus on parametric estimation
of HDRs. If a probability model is specified, estimated HDRs are simple to derive from f̂MLE, the
density’s maximum likelihood estimator (MLE). This allows for the visualization of a much larger
class of HDR estimators than those built into geom_hdr(); users can specify and estimate arbitrary
parametric models and provide the resulting density estimate to geom_hdr_fun().

We include an example of HDRs corresponding to a custom estimated parametric density in
Figure 15. Here we generated n = 100 draws from a bivariate exponential distribution (X, Y) ∼
f (x, y|θ) = Exp(θ), estimated θ with its MLE, and passed the resulting estimate f̂ (x, y) = f (x, y|θ̂) to
geom_hdr_fun() via the fun argument.
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set.seed(1)

df <- data.frame(x = rexp(100, 1), y = rexp(100, 1))

# pdf for parametric density estimate
f <- function(x, y, lambda) dexp(x, lambda[1]) * dexp(y, lambda[2])

# estimate parameters governing joint pdf
lambda_hat <- apply(df, 2, mean)

ggplot(df, aes(x, y)) +
geom_hdr_fun(fun = f, args = list(lambda = lambda_hat)) +
geom_point(fill = "lightgreen", shape = 21) +
coord_fixed() +
scale_x_continuous(limits = c(0, 7)) +
scale_y_continuous(limits = c(0, 7))
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Figure 15: Plotting HDRs of specified distributions can be achieved with geom_hdr_fun().

6 Discussion and future directions

As described in Finding HDRs in two dimensions, ggdensity approximates sample HDRs via the
numerical integration approach, unlike other software such as hdrcde and gghdr that both rely on
the quantile approach (Hyndman, 1996). In practice the two approaches perform similarly, although
there are several technical ways in which they differ. One example is that HDRs estimated via sample
quantiles are not guaranteed to contain a certain proportion of estimated density, even if p f̂ (c) is strictly

decreasing. In other words, there is no guarantee that
∫
R̂α

f̂ (x) dx = 1 − α when R̂α is determined
using f̂α computed via the quantile method. Additionally, as the quantile method requires a sample
from f it is not possible to calculate HDRs from arbitrary densities as in geom_hdr_fun(). Historically,
the density quantile approach has been favored due to computational limitations associated with
numerical integration (Hyndman, 1996). However, with modern computing power, this is not a
concern anymore – we have found ggdensity to be very performant.

With both ggdensity and gghdr being extensions to ggplot2 for visualizing HDRs there is overlap
in their capabilities. There are analogs to geom_hdr_rug() and geom_hdr_points() implemented as
gghdr::geom_hdr_rug() and the helper function gghdr::hdr_bin(), respectively. From the user’s
perspective these implementations are similar, with ggdensity offering HDRs estimated via different
methods. A more serious distinction between the two is that gghdr does not provide a way to plot
bivariate HDRs in a way similar to geom_hdr() or geom_hdr_lines(). At present, ggdensity is the only
package that facilitates the visualization of bivariate HDR contours with ggplot2.

Another important difference is that both gghdr and hdrcde implement visualizations of con-
ditional HDRs, something we plan on implementing in ggdensity in the future. These allow users
to make visuals similar to regression-style modeling bands. We also plan on extending ggdensity’s
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capabilities to plot univariate HDRs, implementing something similar to ggdensity::geom_hdr_rug()
for the main plotting window; this will result in a tool similar to gghdr::geom_hdr_boxplot(). This
future feature also bears resemblance to the stat_slabinterval() family from ggdist, another ggplot2
extension for visualizing densities and their estimates (Kay, 2023). Finally, we also look to implement
more density estimators available via the method argument, for example skew-normal and mixture
models.
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