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langevitour: Smooth Interactive Touring of
High Dimensions, Demonstrated with
scRNA-Seq Data
by Paul Harrison

Abstract langevitour displays interactive animated 2D projections of high-dimensional datasets.
Langevin Dynamics is used to produce a smooth path of projections. Projections are initially explored
at random. A “guide” can be activated to look for an informative projection, or variables can be
manually positioned. After a projection of particular interest has been found, continuing small
motions provide a channel of visual information not present in a static scatter plot. langevitour is
implemented in Javascript, allowing for a high frame rate and responsive interaction, and can be used
directly from the R environment or embedded in HTML documents produced using R. Single cell
RNA-sequencing (scRNA-Seq) data is used to demonstrate the widget. langevitour’s linear projections
provide a less distorted view of this data than commonly used non-linear dimensionality reductions
such as UMAP.

1 Introduction

Understanding high-dimensional data is difficult. High-dimensional data is data where many variables
have been measured at once. There may be complex relationships between variables, and the data
may contain clusters and other features with complex shapes. This article introduces a new interactive
tool that may be helpful for visualizing and understanding high-dimensional data using animated 2D
projections.

High-dimensional data is produced in fields across the breadth of science. This article will focus on
a motivating example from biology. Single cell RNA-sequencing (scRNA-Seq) typically measures the
expression levels of thousands of genes in tens of thousands of biological cells. We can think of cells as
points in a gene-expression space with thousands of dimensions. There is a complex high-dimensional
geometry due to differences between biological cell types, variation in expression within cell types,
cell developmental trajectories, and treatment responses. Principal Components Analysis (PCA) can
find a set of directions in which the data is most variable, allowing scRNA-Seq data to be summarized
down to perhaps tens of dimensions while still capturing most of the important geometry. However
even a ten-dimensional space is difficult to comprehend.

One way to explore high-dimensional data is using a “tour.” A tour is a sequence of projections
of the dataset, most commonly into two dimensions. A Grand Tour (Asimov 1985) is a tour that will
eventually visit as close as we like to every possible projection of the data, typically using a sequence
of random projections. A Guided Tour, on the other hand, seeks an “interesting” projection by moving
toward the maximum of some index function (Cook et al. 1995). The sequence of projections is
animated, with smooth interpolation between each successive pair of projections. The software XGobi
and GGobi (Swayne, Cook, and Buja 1998) provide an interactive graphical application incorporating
tours for exploring high-dimensional data. The more recent R package tourr (Wickham et al. 2011)
provides a framework for creating and displaying tours in the R language. Displaying animations
directly in R usually does not achieve a high frame rate. It is also not possible to interact with the
display as with GGobi. To get around these problems, a recent R package called detourr (Hart and
Wang 2022) computes a tour path in R using tourr and then displays it using a Javascript widget (using
htmlwidgets) (Vaidyanathan et al. 2021). The widget then provides a high frame rate display and
interactive features. However, the projection path itself can not be modified interactively.

This article introduces a new R package, langevitour, that differs from previous tour software
by using Langevin Dynamics, a method from physics, to produce a continuous path of projections.
This path can be directly used for animation, eliminating the need to interpolate between distinct
projections to animate the tour. The package is htmlwidgets-based, with interaction, calculations, and
animation performed in Javascript. The projection can be controlled interactively, with the user able to
switch between Grand and Guided Tours while also interactively focusing in on particular dimensions
of interest.

The methods section describes Langevin Dynamics mathematically, but I will outline its important
features here using two physical examples. First, consider modelling the position and velocity of a
large particle over time. Many small particles continuously jostle the large particle. This is the original
Brownian motion scenario studied by Langevin in 1908 (see translation by Lemons and Gythiel 1997).
Rather than modelling every particle, Langevin Dynamics simulates the jostling as small random
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forces. Langevin’s model includes these random forces and damping of momentum, and we can also
add a force field acting on the particle. The particle explores the space it is in, and the force field may
cause the particle to spend more time near certain locations.

langevitour applies Langevin Dynamics to an orthonormal projection matrix rather than to
a particle’s position. As a second physical example, imagine a two-dimensional disk in a high-
dimensional space. The disk represents a projection plane for a high-dimensional dataset. It has a
fixed center but can rotate freely. Tiny unseen particles continuously jostle the disk, causing it to spin
first one way and then another. The motion of the disk provides the path for a Grand Tour of the
dataset. A force field may also draw it toward particular orientations. The force field is specified
using a potential energy function. It is used to seek interesting data projections, similar to the index
functions used in previous tour software, providing a Guided Tour.

This article begins by demonstrating the widget using data from the palmerpenguins package.
The method and implementation are then described in detail. Finally, an extended demonstration
using scRNA-Seq data is presented.

2 Palmer Penguins example

The R data package palmerpenguins (Horst, Hill, and Gorman 2020) provides body measurements of
penguins of three different species from the Palmer Archipelago, Antarctica. The langevitour based
visualization is shown in Figure 2. R code to produce this figure is:

library(langevitour)
library(palmerpenguins)

completePenguins <- na.omit(penguins[,c(1,3,4,5,6)])
scale <- apply(completePenguins[,-1], 2, sd)*4

langevitour(completePenguins[,-1], completePenguins$species,
scale=scale, pointSize=2)

The widget displays a moving projection of high-dimensional points onto a two-dimensional
plane. The current projection is indicated using a collection of axis lines, with the axes labelled by their
respective variable names. A second set of variable and group labels appear to the right of the plot
area when interacting with the plot. These can be dragged on to the plot to control the projection. Let
us now step through some manipulations the langevitour widget allows.

• Setting a “guide” using the drop-down list. This causes langevitour to pursue projections near
the minimum of an energy function. For example, the PCA guide seeks projections with large
variance in both the x and y directions.

• Hiding particular groups by unchecking their checkbox in order to focus on other groups.
For example by hiding Gentoo penguins, we can focus on the difference between Adelie and
Chinstrap penguins. The guide is also only applied to the visible groups.

• Hiding particular axes by unchecking their checkbox. For example, without bill length Adelie
and Chinstrap penguins can no longer be distinguished.

• Dragging labels onto the plot to concentrate on particular axes or try to separate a partic-
ular group. The projection may not exactly match the label positions since it must still be
orthonormal.

• Adjusting the damping slider. High damping produces jerky Brownian motion. Less damping
produces smoother, less random motion. An intermediate damping level is the fastest way to
explore the space of projections thoroughly.

• Adjusting the heat slider. More heat makes the projection move faster, and stray further from
the optimum projection defined by a guide or any labels dragged onto the plot.

• When the mouse is over a group label the group is highlighted.

• When the mouse is over an axis label a scale and rug are displayed, and points are colored
according to their position on that axis.

Unchecking all but two or three axes can make the relationship between those particular axes clear.
With three axes checked, the eye interprets the display as three-dimensional. A systematic way to
examine a dataset is to proceed through all possible combinations of two or three axes.
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Figure 1: palmerpenguins data visualized using langevitour. Each dot is a penguin, and the axes
are four different penguin measurements. An interactive version of this figure is available in the
supplemental file figures-page.html. (A) The widget initially spins at random. (B) The user has
selected the PCA guide, and the widget has rotated to an informative projection using this guide. (C)
The user has moused over a label, causing points to be colored by that variable. (D) The user has
dragged a label onto the plot to concentrate on a particular variable.
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If a particular interesting projection is found using langevitour it can be brought back into R by
pressing the “?” button and copying and pasting R code that is shown. The “?” button also shows
a JSON record of the current settings of the widget, including form inputs and label positions. All
or some of these settings can be specified to a future call to langevitour(), or applied to a running
widget using Javascript code. Example code to control the widget using HTML buttons and Javascript
is given in the supplemental file figures-page.Rmd.

3 Method

Say we have a set of n p-dimensional data points. A 2 × p projection matrix from p to 2 dimensions
will be denoted X. The two rows of X are called a 2-frame. These rows must be unit vectors and
orthogonal to each other. The set of all 2-frames in p dimensions is a Stiefel manifold.

It will often be necessary to consider all of the elements of the projection matrix concatenated
together into a single vector (“melted”), which will be denoted x. We will think of x as a simulated
physical system’s “position” vector. With x in use as the position of the system, the data points will
be called the vectors yi. The projection of point i into two dimensions is calculated with the matrix
product Xyi.

3.1 Langevin Dynamics overview

Projections are generated using a numerical simulation of Langevin Dynamics but with projections
constrained to lie on the Stiefel manifold. This section briefly summarizes Langevin Dynamics. The
next section will describe the numerical simulation method and how the constraint is applied.

The description of Langevin Dynamics given here follows Leimkuhler and Matthews (2015), but
for simplicity I set the Boltzmann constant to 1 and all masses to 1. We define a system with a position
vector x and a velocity vector v. We must specify a temperature T, a damping rate γ, and a potential
energy function U(x). The behavior of the system is then defined by a pair of Stochastic Differential
Equations (SDEs):

dv = −γvdt +
√

2γTdW −∇U(x)dt (1)

dx = vdt (2)

Here W is a vector of Wiener processes. For any positive time-step ∆t:

W(t + ∆t)− W(t) ∼
√

∆tN (0, I)

The total energy of the system, kinetic energy plus potential energy, is called the Hamiltonian:

H(x, v) =
1
2
|v|2 + U(x)

In Equation (1) in a physical system, the first two terms would describe the exchange of kinetic
energy with the surrounding environment. In the first term, kinetic energy is lost (damping), while
the second term adds randomness to the velocity, increasing the kinetic energy again. The third term
applies acceleration according to the gradient of the potential energy function.

If we were to set γ = 0, we would be doing Hamiltonian Dynamics, and the system’s total
energy would remain constant. If γ > 0 the total energy can fluctuate, and in the long run the
process is ergodic (Leimkuhler and Matthews 2015 in section 6.4.4), producing samples with the
Gibbs-Boltzmann probability density:

ρ(x, v) ∝ e−H(x,v)/T

From this density, it can be seen that each component of the velocity is normally distributed with
variance T and that the position has probability density

ρ(x) ∝ e−U(x)/T

The potential energy function completely controls the distribution of positions being produced,
providing a great deal of freedom. Here, we will use this to craft suitable potential energy functions to
allow the user to control the explored projections.
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3.2 Langevin Tour numerical simulation

We are to generate a sequence of animation frames i = 1, 2, ..., each with a projection matrix Xi (written
xi when viewed as a vector). Each frame will also have a velocity vector vi. The time-step between
frames can vary depending on the computational load from langevitour and other things happening
in the web browser. Call the time-step from frame i − 1 to frame i ∆ti.

The Position Based Dynamics method (PBD, Müller et al. 2007) is used to perform the numerical
simulation while constraining the system to produce orthonormal projection matrices. PBD is simple
to implement and emphasizes stability over accuracy when enforcing constraints, which is appropriate
and adequate for this application. Using PBD, in each iteration we will:

1. Update the velocity.
2. Update the position based on the velocity.
3. Fix the updated position to be an orthonormal projection matrix.
4. Fix the velocity to be consistent with the fixed position.

Step 1. Update the velocity

We will write v′
i and x′i for the initially proposed velocity and position of the current frame. These will

be adjusted in steps 3 and 4 to produce the final position and velocity, xi and vi. The first step is to
calculate

v′
i = e−γ∆ti vi−1 +

√
T
(
1 − e−2γ∆ti

)
ri − ∆ti ∇U(xi−1) (3)

where the components of ri follow a standard normal distribution.

In the limit for ∆ti → 0, Equation (3) matches the rate of change of the mean and rate of added
variance in equation (1). Equation (3) has also been carefully chosen to have stable behavior for large
∆t or γ or both. The first term decays the existing velocity by a factor of e−γ∆ti . If Equation (1) only
contained the first term, this would be the exact solution. This decay reduces the variance of the

velocity by a factor of
(
e−γ∆ti

)2. The second term re-injects variance sufficient to restore the variance
of the velocity in every direction (orthogonal to constraints) as T.

A small refinement is made to avoid random rotation in the plane of projection, as this can be
unsettling to view. Any part of the random noise ri within the plane of the projection is subtracted out
before the noise is added to the velocity. More precisely, considering the noise in matrix form Ri in
the same way as the projection matrix Xi−1, the projection of each row of Ri onto each row of Xi−1 is
subtracted from that row of Ri. Previous tour software has also avoided this type of rotation, but in a
different way, by using a “geodesic interpolation” method that operates between planes rather than
frames (see Buja et al. 2005).

Step 2. Update the position based on the velocity

The position is advanced according to the velocity and the size of the time-step.

x′i = xi−1 + ∆tiv
′
i

Step 3. Fix the updated position to be an orthonormal projection matrix

Position Based Dynamics requires the proposed position x′i be projected back to a constraint-satisfying
position xi. Here, the constraint is xi represents an orthonormal projection matrix. Doing this arbitrarily
might cause unexpected spinning in the projection plane. We must find the nearest valid xi to x′i .

Considering the proposed position vector as a projection matrix, we take the singular value
decomposition and set the singular values to 1.

USV⊤ = X′
i (4)

Xi = UV⊤ (5)

Here, U is a 2 × 2 orthonormal matrix, S is a 2 × 2 diagonal matrix, and V is a p × 2 matrix with
orthonormal columns. Let sj be the values along the diagonal of S, the singular values, all of which
are non-negative.
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Equation (5) chooses the closest orthonormal projection matrix in terms of Euclidean distance
to x′ i. Stated another way, this is the matrix X that minimizes the Frobenius norm ∥X′ − X∥ with
the proposed projection matrix X′. To see this, consider first the problem of finding the nearest
orthonormal projection matrix to U⊤X′.

U⊤X′ = U⊤USV⊤ = SV⊤

For each row in U⊤X′,
(

U⊤X′
)

j,·
= sjV⊤

j,·, the nearest unit vector will be parallel to this vector,

namely V⊤
j,·. We know that the rows of V⊤ are orthogonal, so V⊤ is the nearest orthonormal projection

matrix to U⊤X′. Multiplying both matrices by an orthonormal matrix does not change the Frobenius
norm of their difference, so the nearest orthonormal projection matrix to UU⊤X′ = X′ is UV⊤.

Step 4. Fix the velocity to be consistent with the fixed position

Position Based Dynamics requires the velocity to match the actual update made to the position, rather
than the initially proposed update.

vi =
xi − xi−1

∆ti

3.3 Guiding projections using the potential energy function

We can use any function we like for the potential energy U(x), so long as we can calculate its gradient.
This is used in langevitour to provide a set of automatic guides and also as a method of interaction.

When an energy function is being used, the temperature T plays a role analogous to variance in
the normal distribution. When the temperature is very low, the system seeks the minimum of the
energy function. As the temperature is raised, projections further and further from the minimum are
produced.

Linear energy function for interaction

For some choice of vector a, we can set the energy function to be the dot product

U(x) = −ax

This encourages the projection to have a large component parallel to a. In langevitour this is
used when labels are dragged onto the plot area to control the placement of particular axes of the
high-dimensional space or to control the position of the mean of a group of points.

Central force energy function

The Box-Cox power transformation (Box and Cox 1964) provides a useful building block for energy
functions.

f (x; λ1, λ2) =


(x + λ2)

λ1 − 1
λ1

if λ1 ̸= 0,

ln(x + λ2) if λ1 = 0

An energy function creating forces away from or toward the center can be defined using:

Ucentral(x; c, λ1, λ2) =
c
n

n

∑
i=1

f
(
|Xyi|2; λ1, λ2

)
langevitour offers a central “push” guide (c < 0, λ1 = 0.5, λ2 = 0.0001) and a central “pull”

guide (c > 0, λ1 = 0.5, λ2 = 0.0001). These cone-shaped energy functions result in a nearly constant
magnitude outward or inward force on points, except for a small region close to the center.
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Layout by point-point repulsion

It was found that repulsion forces between pairs of points can be used to produce an informative
layout. Let S be a set of pairs of points (i, j). Ideally we would make this the set of all possible pairs of
points but, for computational efficiency, langevitour uses a random mini-batch of 5,000 pairs of points
per iteration, with a different mini-batch used each time. Using random mini-batches to approximate
the gradient injects extra noise into the system (see Mandt, Hoffman, and Blei 2017). The effect is
similar to increasing the temperature slightly.

Ulayout(x; λ1, λ2) =
c
|S| ∑

(i,j)∈S
f
(
|Xyj − Xyi|2; λ1, λ2

)
The power parameter λ1 determines whether the layout is governed by long-range or short-range

forces. langevitour offers “ultra-local” (c < 0, λ1 = −1, λ2 = 0.0025), “local” (c < 0, λ1 = 0, λ2 =
0.0001), “PCA” (c < 0, λ1 = 1, λ2 = 0), and “outlier” (c < 0, λ1 = 2, λ2 = 0) guides. The “local” guide
is the preferred default. With this guide, pairs of points that are near to each other exert more force
than pairs of points that are far apart. The “ultra-local” guide potentially produces better layouts but
is somewhat unstable. The “PCA” guide is equivalent to PCA. The “outlier” guide seeks projections
where there are some points that are very far from other points.

Blending energy functions

A sum of energy functions such as the above can be used to produce behavior that blends the behaviors
from the individual functions. For example, there could be an active guide and also one or more labels
dragged onto the plot.

4 Implementation

langevitour uses the htmlwidgets framework. It was an important design goal that using langevitour
be no more difficult than any other plotting function in R. htmlwidgets allows Javascript widgets to be
used in most places that conventional R graphical output can be used. The widget may be displayed
during an interactive R session or included in a knitted document with a call to the langevitour
function. The only required argument is a matrix (or data frame) of numerical data. A grouping
of rows is often also given, allowing points to be distinguished by color. There are further optional
arguments providing adjustments to the scaling, appearance, and further optional features.

The htmlwidgets scaffoldWidget function was used to scaffold the package, including functions
to create the widget (langevitour) and to use the widget in shiny applications (langevitourOutput,
renderLangevitour).

langevitour operates without a server, so the R portion of langevitour is limited to sanity-checking
all the inputs and ensuring htmlwidgets will translate the data to JSON consistently. In particular,
vectors convert to lists, which ensures vectors of length 1 are not unboxed. A Javascript class performs
calculation, plotting, and interaction. The D3 Javascript package is used to perform drag-and-drop
interaction, color operations, scale operations, and some DOM element manipulation. The SVD-JS
Javascript package is used for the singular value decomposition calculation. The jStat Javascript pack-
age is used to produce normally distributed random numbers. Besides these packages, calculations
are performed using plain Javascript code, following the steps in the previous section.

Gradients need to be calculated in order to use potential energy functions as a guides or for
interaction. The necessary partial derivatives were found by hand, and used to implement a collection
of gradient functions. To add a new guide, a function to calculate the required gradient can be written,
and the source code edited to make it available in the widget interface.

In Javascript, animation frames are scheduled using requestAnimationFrame, allowing the browser
to manage the frame rate, co-ordinate multiple animations within a document, and pause animation
when the document is not on screen. A typical frame rate for the browser to aim for is 60 frames per
second. The frame rate may drop if there is too much calculation and drawing required, such as when
there are many points to display. Multiple widgets may be active in a document at once, and even
if the document is visible, not all widgets may be visible. To minimize CPU usage the animation is
paused if a widget scrolls off-screen or is otherwise hidden. Canvas-based rendering was used.
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5 scRNA-Seq example

A dataset by Kang et al. (2018) demonstrates many of the complex high-dimensional features that are
found in scRNA-Seq data. In this dataset, peripheral blood mononuclear cells (PBMCs) from eight
patients with lupus were pooled. PBMCs are cells from the immune system that circulate in blood,
including monocytes, B cells, T cells, and natural killer (NK) cells. These cells were then stimulated
with a cytokine, recombinant interferon beta, causing a change in the gene expression of the cells. The
dataset contains a sample of unstimulated cells (U), and a separate sample of stimulated cells (S).

Single cell sequencing produces a small proportion of doublets, where two cells end up in a
single micro-droplet and appear in the final data as a single cell. A nice feature of this dataset is that
doublets containing cells from two different individuals can be identified with certainty due to genetic
differences between the individuals.

5.1 Processing steps

Sequencing data was produced using a 10x Chromium Single Cell instrument and an Illumina HiSeq
2500 sequencer. Kang et al. (2018) then processed sequencing reads using the 10x Genomics CellRanger
software and provided the resulting RNA molecule count data in the Gene Expression Omnibus (GEO)
database as accession number GSE96583. They also provided their annotation of the cells into different
types, and doublet detection based on genetic differences between individuals. Slightly simplified
annotations are shown in this article. There are 29,065 cells in total. 3,169 of these are identified as
doublets.

In the processed data for each of the two samples, there is a matrix giving the number of molecules
of RNA associated with each gene within each cell. Normalization by total count per cell, log
transformation, and PCA were carried out using the Seurat package (Hoffman 2022). As per Seurat
defaults, only the top 2,000 highly variable genes are used. Each resulting Principal Component (PC)
has a score for each cell and a loading for each gene.

The top PCs capture as much variation in the data as possible but are not necessarily individually
interpretable. To aid biological interpretation, it would be better if each component represented
changes in the expression of a distinct set of genes. Each differentially expressed gene should have
loadings that are mostly concentrated in a single component, and we prefer the loadings to be positive
if possible. With these goals in mind, the varimax rotation of the gene loadings was found using the
varimax() function in the built-in stats package, with Kaiser normalization disabled. Both the gene
loadings and the cell scores are rotated. Then, for each component, if the loadings have negative skew
both the loadings and scores are negated.

Genetic differences can not identify doublets containing cells from the same individual, so Bio-
conductor package scDblFinder (Germain et al. 2022) was used to impute further doublets using the
recoverDoublets() function. This only works between cells of different types, but doublets containing
cells of the same type are not a problem. A further 595 doublets were identified this way.

The dataset was sub-sampled down to 10,000 cells to allow a smooth frame rate in langevitour,

The R code used to process the scRNA-Seq data is given in the supplemental file processing.R.
Code for figure generation from the processed data is given in figures.R.

5.2 Cell scores

Results from analysis with Seurat are shown in Figure 2. The scree plot has a fat tail with no clear
elbow. A large number of PCs potentially contain useful information. The top 10 PCs will be used
simply as a manageable number with which to interact. Common practice is to visualize cells using a
2D UMAP layout computed from the PCs, as shown in Figure 2B, to see what clusters exist in the data
and try to understand their relationships.

UMAP (McInnes, Healy, and Melville 2018) is a non-linear dimensionality reduction technique.
Ironically, UMAP may give a curvy biological appearance to linear structures in the original data!
Problems with UMAP are discussed by Coenen and Pearce (2019). They are similar to the problems
with t-SNE (Wattenberg, Viégas, and Johnson 2016), an earlier method that UMAP has largely sup-
planted for scRNA-Seq analysis. Problems include that UMAP may arbitrarily change the distances
between clusters and that UMAP will hide whether clusters are more or less spread-out by design.

Figure 3 shows the langevitour visualization of the cell scores. Components have been varimax
rotated to improve interpretability (see previous section). With langevitour, we only ever see linear
projections of the data. Straight lines remain straight, and parallelograms remain parallelograms.
Distances may be decreased but will not be increased by the projection.
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Figure 2: scRNA-Seq analysis using Seurat. (A) A scree plot showing variance accounted for by each
PC. The scree plot has a fat tail, indicating that variation in the data can not be summarized with only
a few PCs. (B) UMAP layout based on the cell scores of the first 10 PCs. U are unstimulated and S are
stimulated cells.
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Figure 3: scRNA-Seq cell scores visualized using langevitour. An interactive version of this figure is
available in the supplemental file figures-page.html. The “local” guide is active. (A) Unstimulated
cells. (B) All cells. (C) Colored by component 3. (D) Doublets hidden.
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Figure 4: Noise reduction of scRNA-Seq cell scores. Original and denoised positions of 1,000 cells
are shown, joined by lines. An interactive version of this figure is available in the supplemental file
figures-page.html.

This is a moderately complex dataset. We will step through some manipulations of the widget in
Figure 3 to try to understand it better.

• To simplify the dataset, hide the stimulated cells by unticking the checkbox on all the “S” labels.

• To find a projection giving a good overview of the relationships between unstimulated PBMC
cells, activate the “local” guide from the drop-down list. The guided layout may not be able to
perfectly separate all the clusters as UMAP can. However, small relative motions make clear
where clusters are overlapping by accident rather than real proximity. For example, B cells and
T cells are distinct.

• Examine the scale by mousing over the labels for particular axes. The scale for each component
is meaningful, representing distance along a certain direction in scaled gene expression space.
The direction is specified by the gene loadings, which are examined in a section below.

• Mouse over the “U Doublet” and “S Doublet” labels to highlight doublets. Doublets located
between two clusters may be interpreted as a mixture of a pair of cells with different cell types.
Hiding the doublets by unchecking their checkboxes makes the clusters more distinct.

Let us compare this data view to the UMAP layout (Figure 2B). In the linear view provided by
langevitour, the monocytes are more spread out than other cell clusters. This isn’t visible in UMAP
which, as a deliberate feature, erases differences in scale. The whiskers extending from various clusters
in the UMAP correspond to components at right angles to other components in the data, i.e., a subset of
cells in which certain genes are active. For example, the thin whiskers extending from the unstimulated
and stimulated monocytes extend in the same direction, along C7, but in the UMAP they extend in
different directions. Doublets in the UMAP tend to form clumps near the edges of clusters or between
clusters. In the linear data view, they are spread out between clusters.

k-nearest neighbor denoising

The fuzziness of the clusters in Figure 3 is an honest depiction of the data. However, to interpret the
geometry of the data, it may be helpful to reduce the amount of noise. We want to do so with minimal
distortion. A suggested method is implemented in langevitour in the function knnDenoise(), based
on the k-nearest neighbor graph. The k-nearest neighbors to each point are first found. Then, each

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=langevitour


CONTRIBUTED RESEARCH ARTICLE 216

Figure 5: Noise reduced scRNA-Seq cell scores.

point is updated to be the average of the set of points reachable within a certain number of steps along
the directed k-nearest neighbors graph. Here k = 30 and two steps were used. This method is loosely
inspired by the k-nearest neighbors smoothing method of Wagner, Yan, and Yanai (2018) and the use
of the nearest neighbor graph in UMAP.

A comparison of the original and denoised cell positions is shown in Figure 4 for a sample of 1,000
cells. The effect has been to make clusters thinner and smaller but not to move them in space. The full
result is shown in Figure 5.

We will again step through some widget manipulations, to understand the relationships between
clusters and components.

• To provide an overview of the data, the “local” guide has already been activated.

• Doublets still lie between clusters in this denoised version. Compare this to the UMAP layout,
where the doublets tend to be attached to one or other clusters. To make the clusters cleaner,
hide the doublets by unticking the checkboxes on the doublet labels.

• To examine component C1, drag the C1 label on to the plot. This pulls out the monocyte cluster.
It appears monocytes are associated with C1.

• To undo this action, drag the C1 label to the right to remove it from the plot area.

Similarly C5 pulls out CD8 T cells and NK cells, and C6 pulls out B cells. The response to the
cytokine is mostly contained in C3 with a further monocyte specific response in C2.

5.3 Gene loadings

Each component examined in the preceding sections represents a certain pattern of gene expression.
These patterns of gene expression are represented by the gene loadings. Within each component,
each gene has a loading. As will be seen, the tendency is for large loadings to be concentrated in a
relatively small set of genes for each component. Genes with large loadings may provide insights into
the biology represented by each component based on their known function or involvement in known
biological pathways.

The gene loadings may also be examined using langevitour, as shown in Figure 6. In this figure,
the points are genes, and the variables are the loading for each component.
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A B

Figure 6: scRNA-Seq gene loadings visualized using langevitour. The points are genes and the
variables are the loading for each component. An interactive version of this figure is available in the
supplemental file figures-page.html. (A) Genes involved in component 3. (B) Genes involved in
components 1 and 2.

• Observe the widget spinning freely for a while. The overall geometry is of a spiky ball. The
spikes generally represent sets of genes with large loadings in one component.

• Drag particular component labels onto the plot to examine them. Biological phenomena such as
different cell types (C5, C6) or responses to the cytokine (C3) often involve distinct sets of genes.
Furthermore, cell types are defined more by genes’ activation than genes’ deactivation. Varimax
rotation was able to align these distinct sets of genes into specific components. An exception is
genes used by monocytes and the monocyte response to stimulation (C1 and C2). These two
components show a broad fan of genes, which can be interpreted as the genes involved in being
a monocyte also being involved to varying degrees in the monocyte response to stimulation.

• Mouse near points to see the specific genes they represent.

6 Discussion

Langevin Dynamics produces samples from a specified probability distribution and produces a path
suitable for animation. Besides tours, a possible future application would be to use this to visualize
uncertainty in the posterior distribution of a Bayesian statistical model while placing details of the
model directly under interactive control. Visualization of samples from a distribution has been
previously investigated by Hullman, Resnick, and Adar (2015), as the Hypothetical Outcome Plots
(HOPs) method. HOPs displays a graphical representation of samples from a multivariate distribution
one after the other. An appealing feature of HOPs is that any visualization may be used. The viewer
can perceive the uncertainty in the distribution, and how the variables relate to each other in the values
they might take. However the display of HOPs simply hops from one sample to the next. There is also
earlier work in geospatial applications, such as by Ehlschlaeger, Shortridge, and Goodchild (1997) in
which a smooth animation was produced by interpolating between a sequence of samples. They note
that interpolated frames may no longer follow the original distribution, and propose a method that
preserves the correct variance in interpolated frames for their specific application. By using Langevin
Dynamics, a smooth animation could be produced in which each individual frame is naturally drawn
from the correct distribution.

Langevin Dynamics is similar to the Hamiltonian Monte Carlo method (HMC, see Neal 2011) used
for example by the Stan software package (Carpenter et al. 2017). Usually HMC alternates steps of
completely randomizing the velocity and relatively long runs of Hamiltonian Dynamics simulation.
This would produce a continuous path, but with occasional sharp turns. Neal (2011) describes a
version of HMC with frequent partial velocity refreshment that more closely resembles Langevin
Dynamics. An accept/reject step can make the sampling precisely accurate even with discrete time-
steps. Another possibility, for large datasets, is to use mini-batch gradients for computational efficiency
(Mandt, Hoffman, and Blei 2017). Mini-batch gradients provide a noisy estimate of the full gradient
and, with careful tuning, the level of noise required for Langevin Dynamics will be injected into the
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velocity. It may be possible to animate sampling from complex models in real-time smoothly.

Motion provides a channel of visual information not possible in static images. We are not accus-
tomed to visualizing objects in more than three dimensions, but things that move together in the
natural environment are usually physically connected, and this seems to be how our eyes interpret the
small rotations in more than three dimensions displayed by langevitour.

A Javascript widget has been introduced for interactively exploring high-dimensional data. It
is readily usable from the R environment, Shiny websites, or HTML documents generated using R
Markdown, including static HTML reports, slideshows, and journal articles.
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