
CONTRIBUTED RESEARCH ARTICLE 145

PINstimation: An R Package for
Estimating Probability of Informed
Trading Models
by Montasser Ghachem and Oguz Ersan

Abstract The purpose of this paper is to introduce the R package PINstimation. The package is
designed for fast and accurate estimation of the probability of informed trading models through
the implementation of well-established estimation methods. The models covered are the original
PIN model (Easley and O’Hara 1992; Easley et al. 1996), the multilayer PIN model (Ersan 2016),
the adjusted PIN model (Duarte and Young 2009), and the volume- synchronized PIN (Easley, De
Prado, and O’Hara 2011; Easley, López De Prado, and O’Hara 2012). These core functionalities of
the package are supplemented with utilities for data simulation, aggregation and classification tools.
In addition to a detailed overview of the package functions, we provide a brief theoretical review of
the main methods implemented in the package. Further, we provide examples of use of the package
on trade-level data for 58 Swedish stocks, and report straightforward, comparative and intriguing
findings on informed trading. These examples aim to highlight the capabilities of the package in
tackling relevant research questions and illustrate the wide usage possibilities of PINstimation for
both academics and practitioners.

1 Introduction

Informed trading indicates the presence of information asymmetry in a given market, and is usually
attributed to trading with better-quality information and/or more sophisticated tools for analyzing
available information (see Ahn et al., 2008). Given its impact on prices and liquidity, researchers have
dedicated considerable effort to the measurement of informed trading, and to the characterization of
its relevant aspects (Berkman et al., 2014; Chang et al., 2014; Bongaerts et al., 2014; Hsieh and He, 2014;
Yin and Zhao, 2015; Guo and Qiu, 2016). The growth in informed trading measures has been made
possible thanks to the availability of rich datasets, and as a response to the continuously evolving
nature of trading in financial markets.

Despite the plethora of alternative and more recent measures, "fundamental" measures developed
by the pioneering works are still widely used in academic research. Some prominent measures include:
relative trade informativeness measure (Hasbrouck, 1991), percentage-price-impact measure (Huang
and Stoll, 1996), adverse selection component (Huang and Stoll, 1997) and the adverse information
parameter (Madhavan et al., 1997). Above the rest, the probability of informed trading (PIN; Easley
and O’Hara, 1992; Easley et al., 1996) has probably been the most widely used measure of informed
trading in the literature. Easley and O’Hara, beginning with their foundational work in 1987 and
continuing through subsequent studies in the 1990s and 2000s, developed, tested and refined the
PIN measure to quantify informed trading in financial markets. A major factor behind the persistent
wide use (prominence) of the PIN model lies in the branch of studies addressing the limitations of
the model, remedying to the challenges of its estimation; and extending the original model. Due
to the rapid evolution of trading in financial markets, the estimation of the original PIN model has
become vulnerable to errors; and the model – and its assumptions – as it was first suggested has faced
difficulties in matching the real world. Over the years, many extensions and improvements to the PIN
model have been developed, addressing various shortcomings of the original model and estimation
challenges. However, because of their more complex theoretical underpinnings and implementation
details, most of these models have not been adopted by the wider academic and practitioner audience.
To address these issues, the PINstimation package seeks to provide easy and convenient access to
these extensions of the PIN model. To this end, the package is designed in a compact structure allowing
users to directly obtain informed-trading estimates solely by the use of an intraday trading data. The
package includes easy-to-use functions, that accurately implement preexisting, and novel remedial
solutions to estimation challenges as suggested in the literature. Besides, it provides a rich toolbox for
simulating datasets, something that can help researchers conduct robust, and reliable comparative
analyses. By the introduction of the package, we hope to contribute to further use of the PIN models
in academic research, to improve the validity, and quality of scientific findings within the field, and
eventually to heighten the interest of practitioners in these models.

To our knowledge, there are two packages available for the estimation of PIN models: pinbasic
(Recktenwald, 2018, 2019) and InfoTrad (Celik and Tiniç, 2017, 2018). Both packages have limited scope
as they solely focus on the original PIN model (Easley et al., 1996). In addition to scope differences,

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=PINstimation
https://CRAN.R-project.org/package=InfoTrad

CONTRIBUTED RESEARCH ARTICLE 146

other motivations for users to shift to PINstimation are that (1) the package pinbasic has recently been
placed in the archive by CRAN (2) the package InfoTrad in its current version (V.1.2) is not error-free.1

PINstimation contains functions to estimate probability of informed trading (PIN) as introduced
by Easley and O’Hara (1992), and Easley et al. (1996). The estimation procedures implemented in these
functions help to avoid floating point errors, boundary solutions, and convergence to local maxima.
Besides, the package provides a comprehensive treatment of two important extensions of the PIN
model. The multilayer probability of informed trading model (MPIN model; Ersan, 2016), in contrast
to the original PIN model, allows for multiple information types, and assumes that information
events cluster in layers with uniform informed trading intensity. Relaxing the assumption of a unique
information type allows for a more realistic, and accurate treatment of informed trading. However, it
poses, at least, two additional challenges: (1) the larger parameter space of the MPIN model makes it
more likely that the maximum likelihood estimate may lie on the parameter boundary, and (2) An
accurate determination of the number of information layers is crucial to produce reliable estimations of
the probability of informed trading. PINstimation tackles these two issues by including a function to
generate strategic2 initial parameter sets, and three functions for estimating the number of information
layers in datasets. The second extension is the adjusted probability of informed trading model (AdjPIN
model; Duarte and Young, 2009). This model challenges the assumption that trading is only performed
by uninformed liquidity traders and informed traders, and accounts for the possibility of liquidity
shocks to both the buy and sell side. PINstimation provides functions to estimate the AdjPIN measure
and the PSOS (probability of a symmetric order flow shock), as well as three functions to generate
initial sets of parameters for maximum-likelihood estimation. In addition to the standard maximum-
likelihood method, the package provides a novel implementation of the estimation of PIN models via
the expectation-conditional maximization algorithm. The speed, and accuracy of this algorithm has
been recently documented in Ghachem and Ersan (2022). As for informed trading in high-frequency
settings, PINstimation enables users to estimate the volume-synchronized probability of informed
trading (VPIN; Easley et al., 2011, 2012). This measure is an adaptation of the PIN measure to the
high-frequency trading, and aims to capture the order flow toxicity in a trading data. Finally, the
package offers two supporting utilities: (1) a rich simulation toolbox to simulate data according to
the assumptions of the different PIN models and, thereby, test the accuracy of estimation algorithms,
and (2) a fast implementation of the prominent trade classification algorithms that allow users to
generate daily sequences of buyer-initiated, and seller-initiated trades from raw trading level data.
Such sequences are to be used later as inputs for the estimations of PIN, MPIN, and AdjPIN models.

The remainder of this paper is organized as follows. Next section provides a brief introduction to
the theoretical background of PIN models. Third section presents a detailed description of the package
and illustrates its applications through several examples. Fourth section reports and discusses the
results of two empirical investigations conducted using the package. The last section concludes with a
summary of the package capabilities and a discussion of its potential extensions.

2 Theoretical background

2.1 PIN model

Easley and O’Hara (1992) developed a model where the change in the order imbalance is associated to
the presence of informed trading. The information can be either positive, leading to excess trading
on the buy side, or negative, leading to excess trading on the sell side. On days with no information
event, there are only uninformed traders in the market. On the days with a good-information (bad-
information) event, informed buyers (sellers) join uninformed buyers and sellers to trade on the
information. Statistically, Easley et al. (1996) model total trades by a finite Poisson mixture model,
where the numbers of buyer-initiated and seller-initiated trades; follow each a Poisson distribution.

1In fact, two of the five functions suffer from implementation errors. The function EA() implements the algorithm
of Ersan and Alıcı (2016), but performs the clustering process inaccurately: the days within the information-event
cluster are distributed into good-event and bad-event days via a clustering step based on order imbalance rather
than the actual step of grouping them into two based on the sign of order imbalance. The function YZ() of the same
package implements the algorithm of Yan and Zhang (2012). It, however, contains an error in the denominator of
the PIN formula. The correct formula should be PIN = αµ/(αµ + εb + εs). This error might impact the results in
research papers using the package (See, for instance, Figure 12 in Griffin et al. (2021) – very poor performance of
PIN estimates using YZ()). Our comparative tests confirm those observations, as the mean absolute errors in PIN
estimates of InfoTrad and PINstimation implementations are 0.02476, and 0.00014 respectively for Yan and Zhang
(2012); and 0.00777 and 0.00014 respectively for Ersan and Alıcı (2016).

2Strategic initial parameter sets stand in contrast to those obtained through random selection or grid-search
methods, as they are derived from the characteristics of the dataset used for the estimation. They are typically
limited in number and meticulously selected to cover relevant areas in the parameter space, ensuring a more
accurate and efficient optimization process.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 147

The likelihood of observing B buyer-initiated trades (or buys) and S seller-initiated trades (or sells) on
a trading day is stated as:

L (B, S|Θ) = α(1 − δ)e−(µ+εb) (µ+εb)
B

B! e−εs εS
s

S! + αδe−εb εB
b

B! e−(µ+εs) (µ+εs)
S

S! + (1 − α) e−εb εB
b

B! e−εs εS
s

S!
(1)

where Θ = (α, δ, µ, εb, εs) is the set of parameters to be estimated: α is the probability of occurrence of
information events, δ is the conditional probability that the information event is a bad event, µ is the
informed trading intensity, and εb and εs are uninformed trading intensities on the buy and sell sides,
respectively. For a time period of N days, the joint likelihood of observing a set of daily buys and sells,
M = (Bi, Si)

N
i=1 is presented as:

L (M|Θ) =
N

∏
i=1

L (Bi, Si|Θ) (2)

Typically, the estimation of the five parameters is performed via maximum likelihood estimation
(MLE). Once the parameter set Θ is estimated, the probability of informed trading (PIN) is calculated
as:

PIN =
αµ

αµ + εb + εs
(3)

The PIN model relies on several assumptions. First, trading days are assumed to be independent
of each other, an assumption that leads to the joint likelihood in Eq.(2). Tests on the validity of
independence assumption provide supportive evidence and sample results are reported in Easley et al.
(1997). Second, information events are assumed to occur outside trading hours. Third, at most one
information event can occur in any given trading day. Finally, information events are assumed to be of
a single type, i.e., leading to the same magnitude of informed trading µ, whenever they occur.

2.2 MPIN model

The MPIN model (Ersan, 2016) is a generalization of PIN model that allows for multiple information
event types (information layers). When the number of layers J equals to 1, then the model is simplified
to the original PIN model. The model relaxes several assumptions of the PIN model. First, information
events can be of different types, i.e., generate different magnitudes of informed trading. Second, more
than one information event can occur at any given day. Third, the model allows for the occurrence of
information events within trading hours. The model’s ability to handle multiple information types
enables these two last features. It can aggregate the effects of multiple events or identify instances of
partially disseminated informed trading on any given day by introducing an additional layer.

The parameter set of an MPIN model with J layers Θm =
(
α1, . . . , αJ , δ1, . . . , δJ , µ1, . . . , µJ , εb, εs

)
has length 3J + 2, where (αj)j=1...J is the probability of occurrence for an information event in layer j,
(δj)j=1...J is the (conditional) probability the event in layer j is a bad-information event, (µj)j=1...J is the
informed trading intensity in layer j, εb and εs are the uninformed trading intensities. Similar to the
PIN model, the multilayer probability of informed trading (MPIN) is the ratio of expected informed
trading intensity to the expected total trading intensity as:

MPIN =
∑J

j=1 αjµj

∑J
j=1 αjµj + εb + εs

(4)

The estimation of the MPIN model using the standard maximum-likelihood estimation requires
a prior estimation of the number of information layers in the data. An algorithm for detecting the
number of layers in a dataset has already been suggested by Ersan (2016). Ersan and Ghachem (2022a)
improved this algorithm by refining the correction for the order imbalance.

2.3 AdjPIN model

Duarte and Young (2009) suggest an alternative, extended informed trading model, to address two
main concerns. First, for many stocks, there is a well-documented positive correlation between the
numbers of buyer- and seller-initiated trades (Duarte and Young, 2009). This fact cannot be modelled by
the original PIN model. Second, it is difficult to capture the large variance of buys and sells by the use
of PIN model, if investors are restricted to be of two types: informed and liquidity traders. Accordingly,
the authors introduce an extended model, in which a symmetric order-flow shock to both buy and sell
sides is introduced. On any given day, in addition to information events, a positive liquidity shock,
symmetric in buys and sells, can occur. In addition to the adjusted PIN measure (AdjPIN) capturing

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 148

the probability of informed trading, the model introduces the probability of symmetric order flow
shock (PSOS) that measures the probability of a trade to occur due to a symmetric liquidity shock.
The parameter set of the original AdjPIN model Θa = (α, δ, θ, θ′, µb, µs, εb, εs, ∆b, ∆s) has 10 elements:
α is the probability of occurrence of an information event; δ is the probability that the information
event is a bad event; µb (µs) is the informed trading intensity on the buy (sell) side; εb (εs) is the
uninformed trading intensity on the buy (sell) side. θ (θ

′
) is the probability of a symmetric order flow

shock occurrence in the absence (presence) of an information event. ∆b (∆s) is the additional arrival
rate of buys (sells) caused by symmetric liquidity shocks. Once the parameter set Θa is estimated,
typically through MLE, AdjPIN and PSOS are calculated as follows:

AdjPIN =
α (δµs + (1 − δ) µb)

α (δµs + (1 − δ) µb) + (∆b + ∆s)
(
αθ

′ + (1 − α) θ
)
+ εb + εs

(5)

PSOS =
(∆b + ∆s)

(
αθ

′
+ (1 − α) θ

)
α (δµs + (1 − δ) µb) + (∆b + ∆s)

(
αθ

′ + (1 − α) θ
)
+ εb + εs

(6)

2.4 Computation issues for PIN, MPIN, and AdjPIN estimations

PIN estimation is prone to two main sources of numerical errors. First, large numbers of trades (buys
and sells) in the power terms (Eq 2) can lead to floating point exception problem.3 While this was not a
problem in 1990’s, most stocks in developed markets today are traded tens of thousands of times a day,
rendering the likelihood function in Eq (2) numerically intractable. Consequently, several logarithmic
transformations (factorizations) of the likelihood function have been suggested to address this problem.
Easley et al. (2008) were the first authors to suggest a factorization of the likelihood function, however
their transformation is shown to generate non-negligible biases (Lin and Ke, 2011; Yan and Zhang,
2012). Lin and Ke (2011) provide another factorization leading to more accurate estimates. Finally,
Ersan (2016) suggests a similar, yet simpler factorization that leads to the same results as with Lin
and Ke (2011), yet in shorter estimation times. More importantly, the Ersan (2016) factorization is
easily generalized for the MPIN model. In line with previous efforts, Ersan and Ghachem (2022b) have
suggested a factorization of the likelihood function of the AdjPIN model.

Second issue related to the estimation of PIN, MPIN, and AdjPIN models is that the estimation
procedure may not reach the global maximum of the (factorized) likelihood function. Several papers
document that the ML estimation of the PIN model frequently yields boundary solutions, not the
global maxima (Yan and Zhang, 2012; Gan et al., 2015; Ersan and Alıcı, 2016). As a remedial solution,
Gan et al. (2015) suggests the use of a single strategic parameter set generated by their hierarchical
clustering algorithm. In contrast, Yan and Zhang (2012) recommend that the MLE procedure is started
up to 125 (5 × 5 × 5) times using the initial parameter sets from their grid search algorithm and that
the highest likelihood estimates are picked. Similarly, Ersan and Alıcı (2016) settle for multiple MLE
runs, but recommend five sets of parameters determined by their clustering algorithm, and show them
to be sufficient to reach the global maxima. When compared to PIN model, achieving global maxima
in MPIN model is harder given the larger dimension of the parameter set (3J + 2 parameters). The
generalization of Yan and Zhang (2012) grid search algorithm would require up to 59 runs of MLE. In
contrast, the clustering algorithm of Ersan and Alıcı (2016) is easily generalized, and in its basic setting,
produces (J+5

J) initial parameter sets. As for the AdjPIN model, generating initial parameter sets
turned out to be challenging, given its large parameter set, and that preexisting generation algorithms
do not allow a straightforward adaptation to the model. Therefore, a large number of studies relied
on a limited number of randomly generated initial parameter sets (see e.g. Duarte and Young, 2009).
Recently, Cheng and Lai (2021) suggested an extension of the grid-search algorithm of Yan and Zhang
(2012), while Ersan and Ghachem (2022b) suggested a novel method loosely based on the algorithm of
Ersan and Alıcı (2016).

2.5 The expectation-maximization algorithm

The estimation of PIN models has typically been performed through a direct maximization of the
corresponding factorization of the likelihood function. The use of alternative estimation methods
such as the Gibbs sampler has also been recently suggested (Griffin et al., 2021). More recently,
Ghachem and Ersan (2022) have suggested the use of a variant of the expectation-maximization (EM)
algorithm to estimate PIN models. In statistics, the EM algorithm is an iterative method for finding
maximum likelihood estimates of parameters in finite-mixture models, where the model may depend
on unobserved latent variables (Ng et al., 2012). In finite mixture models, each data observation is

3Statistical software make calculations in limited ranges. R calculates, e.g., between exp(−745) and exp(709).

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 149

associated with an unobserved cluster label, i.e. a reference to the cluster it belongs to. In this respect,
PIN models can be considered as a Poisson mixture model with a finite number of clusters (Lin and
Lee, 2015; Ghachem and Ersan, 2022). Ghachem and Ersan (2022) considered a variant of the EM
algorithm, the Expectation-Conditional Maximization algorithm (ECM algorithm), for the estimation
of the PIN models, and provided a detailed implementation and an empirical assessment of it. They
show that the ECM algorithm yields faster and more accurate estimates than alternative methods.

2.6 VPIN measure

Volume-synchronized probability of informed trading (VPIN) metric is introduced by Easley et al.
(2011), and Easley et al. (2012). VPIN aims at detecting order flow toxicity in high-frequency financial
markets. As Easley et al. (2012) define, “order flow is toxic when it adversely selects market makers, who
may be unaware they are providing liquidity at a loss". It is shown that order flow becomes toxic prior
to intraday shocks, such as the 2010 Flash Crash (Easley et al., 2011). VPIN metric proceeds with
the volume of trades that arrive to the market, rather than number of trades. In a high-frequency
framework, VPIN uses volume clock rather than time clock, forming equal sized volume buckets
intraday. A new trade classification algorithm - bulk volume classification - is suggested by the authors.
Accordingly, trades are aggregated in short time intervals (e.g., 1 minute) and standardized price
changes are used in distributing trades into buys and sells. As shown in Easley et al. (2008), informed
trading probability from the PIN model can be proxied by the ratio of expected trade imbalance to the
expected total volume of trades. In line with that, VPIN is calculated as follows:

VPIN =
E
[∣∣∣VSell

τ − VBuy
τ

∣∣∣]
E
[
VSell

τ + VBuy
τ

] =
∑n

τ=1 OIτ

n × V
(7)

where V is the predetermined volume bucket size and equals to VSell
τ + VBuy

τ in that bucket. OI is the
order imbalance. In Easley et al. (2012), volume bucket size is determined by dividing the average
daily volume by 50. Each volume is filled by aggregating the short time bars. In addition to the time
bar (t) and volume bucket size (V), third parameter in VPIN calculation is the sample length (n) that
determines how many volume buckets to be included. Thus, VPIN at any time is calculated based on
the last n volume buckets. It is updated with each new volume bucket in a rolling window process.

3 The PINstimation package

The R package PINstimation provides utilities for the estimation of PIN models, partitioned into six
categories:

• The standard PIN model (Easley and O’Hara, 1992; Easley et al., 1996), including various tools
that remedy to floating-point exception, provide efficient algorithms for initial parameter sets
and treat boundary solutions (Lin and Ke, 2011; Yan and Zhang, 2012; Gan et al., 2015; Ersan
and Alıcı, 2016; Ke et al., 2019);

• Multilayer probability of informed trading or MPIN (Ersan, 2016) and tools for respective
computational issues;

• Adjusted probability of informed trading or AdjPIN (Duarte and Young, 2009) and tools for
respective computational issues;

• Volume-synchronized probability of informed trading or VPIN (Easley et al., 2011, 2012);

• Simulation utilities that generate datasets for testing and benchmarking the different PIN model
estimation methods;

• Trade classification via commonly used algorithms and daily aggregation of buyer-initiated and
seller-initiated trades.

3.1 Standard PIN model functions

The different factorizations of the likelihood function can be specified using the family of functions
of the form fact_pin_*, where the suffix (*) can be one of ("eho","lk","e"), corresponding to the
factorization of Easley et al. (2010), Lin and Ke (2011), and Ersan (2016) respectively. The different
algorithms for the generation of initial parameter sets are implemented in the family of functions
of the form initials_pin_*, where the suffix (*) can be one of ("yz","gwj","ea"), corresponding
to the algorithm of Yan and Zhang (2012), Gan et al. (2015), and Ersan and Alıcı (2016) respectively.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 150

The family of functions of the form pin_* allows the estimation of the PIN model using the afore-
mentioned algorithms for the generation of initial parameter sets, where the suffix (*) can be one of
("yz","gwj","ea"). The function pin() estimates the PIN model using custom initial parameter sets.

These functions take the two arguments: data, and factorization. The data argument is a data
frame that contains daily data of buyer-initiated trades or buys in the first column, and seller-initiated
trades or sells in the second column. The argument data is usually a dataset with around 60 (250)
rows as representative of a quarterly (yearly) data while any custom length can be determined by
the user. The factorization argument referring to the likelihood function factorization used for the
maximum likelihood maximization. It can be one of ("none","EHO","LK","E").

Estimation output

The output of the estimation functions pin(), pin_yz(), pin_gwj() and pin_ea() is an S4 object of class
estimate.pin. The slots of this object are presented in Table S1.

Examples

We estimate the PIN model using a preloaded dataset called dailytrades.

[1] Estimate the PIN model using the function pin_ea()

library("PINstimation")
model_ea <- pin_ea(dailytrades)
show(model_ea)

PIN estimation completed successfully

Initial parameter sets : Ersan and Alici (2016)
Likelihood factorization : Ersan (2016)

5 initial set(s) are used for estimation
Type object@initialsets to see the initial parameter sets used
##
PIN model
##
========== ===========
Variables Estimates
========== ===========
alpha 0.749997
delta 0.133334
mu 1193.52
eps.b 357.27
eps.s 328.63

Likelihood (3226.469)
PIN 0.566172
========== ===========

[2] Display the optimal parameter estimates and the PIN value

model_ea@parameters
alpha delta mu eps.b eps.s
0.7499975 0.1333342 1193.5179655 357.2659099 328.6291793

model_ea@pin
[1] 0.5661721

3.2 MPIN model functions

The factorization of the likelihood function of the MPIN model can be evaluated using the function
fact_mpin(). The initial sets of parameters can be obtained using a generalization of the clustering
algorithm developed by Ersan (2016) via the function initials_mpin(). The number of layers in

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 151

datasets can be detected using the family of functions of the form detectlayers_*, where the suffix
(*) can be one of ("e","eg","ecm"), corresponding to the layer detection algorithm of Ersan (2016),
Ersan and Ghachem (2022a), and Ghachem and Ersan (2022) respectively.

The function mpin_ml() estimates this probability using the standard maximum likelihood esti-
mation method, the factorization of Ersan (2016), and the initial parameter sets in Ersan and Alıcı
(2016). The function mpin_ml() takes as an argument layers that specifies the number of information
layers assumed to be present in the data. If the user omits this argument, the number of layers is
detected using the algorithm referred to in the argument detectlayers. This number is then used to
generate the initial parameter sets, before proceeding to compute the maximum likelihood estimates
of the MPIN model. The function mpin_ecm() estimates the MPIN model via the ECM algorithm.
The function mpin_ecm() takes as an argument the number of information layers layers assumed
to be present in the data. If this number is provided by the user, the function finds the optimal
estimates for each of the initial parameter sets, and then selects the parameter estimates that give the
highest likelihood. If the argument layers is omitted, then the function performs the aforementioned
estimation for each number of layers in the integer set from 1 to 8, and then select the optimal model
having the lowest model selection criterion. The default criterion is the Bayesian Information Criterion
or BIC. The function selectModel() allows to change the selection criterion.

Estimation output

The outputs of the functions mpin_ml() and mpin_ecm() are two S4 objects of class estimate.mpin, and
estimate.mpin.ecm respectively. The latter object inherits all slots of the former, with a few additional
slots: Three slots for information criteria (@AIC, @BIC, and @AWE), one slot for the hyperparameters
(@hyperparams), one slot stating whether the information criterion is used (@optimal), and one slot for
the active information criterion (@criterion). Common slots of both objects are presented in Table S2.
Additional slots of estimate.mpin.ecm objects are described in Table S3.

Examples

We estimate the MPIN model using the preloaded dataset dailytrades.

[1] Estimate the MPIN model using the function 'mpin_ml()'

model_mpin <- mpin_ml(dailytrades, verbose = FALSE)
show(model_mpin)

MPIN estimation completed successfully

Likelihood factorization : Ersan (2016)
Estimation Algorithm : Maximum Likelihood Estimation
Initial parameter sets : Ersan (2016), Ersan and Alici (2016)
Info. layers detected : using Ersan and Ghachem (2022a)

35 initial set(s) are used in the estimation
##
========== ============================
Variables Estimates
========== ============================
alpha 0.216664, 0.050001, 0.483339
delta 0.230769, 0.666673, 0.034481
mu 602.86, 986.44, 1506.81
eps.b 336.91
eps.s 335.89

Likelihood (643.458)
mpin(j) 0.082615, 0.031196, 0.460647
mpin 0.574458
========== ============================

[2] Estimate the MPIN model using the function 'mpin_ecm()'

model_empin <- mpin_ecm(dailytrades, verbose = FALSE)
show(model_empin)

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 152

MPIN estimation completed successfully

Likelihood factorization : Ersan (2016)
Estimation Algorithm : Expectation Conditional Maximization
Initial parameter sets : Ersan (2016), Ersan and Alici (2016)
Info. layers detected : using Ghachem and Ersan (2022) [ECM]
Selection criterion : Bayes Information Criterion (BIC)

525 initial set(s) are used for all 8 estimations
##
=============== ============================
Variables Estimates
=============== ============================
alpha 0.216667, 0.050000, 0.483333
delta 0.230769, 0.666667, 0.034483
mu 602.88, 986.45, 1506.84
eps.b 336.91
eps.s 335.89

Likelihood (643.458)
mpin(j) 0.082619, 0.031196, 0.460648
mpin 0.574463

AIC | BIC | AWE 1308.92, 1331.95, 1409.99
=============== ============================
##
Table: Summary of 8 MPIN estimations by ECM algorithm
##
BIC AIC AWE layers #Sets time
--------- ------- ------- ------- ------ ----- ----
model.1 6473.41 6462.94 6508.88 1 5 0.06
model.2 1633.51 1616.76 1690.27 2 15 0.49
model.3 1331.95 1308.92 1409.99 3 35 0.98
model.4** 1331.95 1308.92 1409.99 3 70 1.78
model.5 1331.95 1308.92 1409.99 3 100 2.55
model.6 1331.95 1308.92 1409.99 3 100 2.62
model.7 1342.58 1313.26 1441.9 4 100 3.31
model.8 1342.58 1313.26 1441.9 4 100 2.83

model_empin@mpinJ
layer.1 layer.2 layer.3
0.08261897 0.03119604 0.46064817

model_empin@parameters\$alpha
layer.1 layer.2 layer.3
0.2166667 0.0500000 0.4833333

3.3 AdjPIN model functions

The factorization of the likelihood function of the AdjPIN model can be specified using the function
fact_adjpin(). Three functions are provided to generate initial parameter sets for the estimation
of the AdjPIN model. First, initials_adjpin() implements the algorithm suggested in Ersan and
Ghachem (2022b). Second, initials_adjpin_rnd() randomly generates initial parameter sets as
follows: The buy rate parameters {εb, µb, ∆b} are randomly generated from the interval (minB,maxB),
where minB (maxB) is the smallest (largest) value of buys in the dataset, under the condition that
εb + µb + ∆b < maxB. Analogously, the sell rate parameters {εs, µs, ∆s}are randomly generated from
the interval (minS,maxS), where minS (maxS) is the smallest(largest) value of sells in the dataset, under
the condition that εs + µs + ∆s < maxS. Third, initials_adjpin_cl() generates initial parameter sets
using an extension of the algorithm derived in Cheng and Lai (2021). In their paper, the authors
assume that the probability of liquidity shock is the same in no-information, and information days, i.e.,
θ = θ′, and use a procedure similar to that of Yan and Zhang (2012) to generate 64 initial parameter
sets. The function implements an extension of their algorithm, by relaxing the assumption of equality

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 153

of liquidity shock probabilities, and generates thereby 256 initial parameter sets for the unrestricted
AdjPIN model.

The estimation of the AdjPIN model is performed using the function adjpin(). The argument
method specifies the estimation method used: "ML" for the standard maximum-likelihood estimation,
and "ECM" for the ECM algorithm. The standard maximum-likelihood method writes a factorization of
the likelihood function and find its maxima using Nelder–Mead method. The expectation-conditional
maximization (ECM) algorithm is suggested and detailed in Ghachem and Ersan (2022). The function
allows for the estimation of the AdjPIN model (Duarte and Young, 2009), as well as related restricted
models. Restricted models are models where pairs of parameters are assumed to be equal. The
choice of a restricted model can be specified via the argument restricted. For instance, calling the
function adjpin() with the argument restricted = list(mu = TRUE) correspond the estimation of
the restricted AdjPIN model where µb = µs.

Estimation output

The output of the estimation function adjpin() is an S4 object of class estimate.adjpin. The slots of
the estimate.adjpin object are presented in Table S4.

Examples

We estimate unrestricted, and restricted AdjPIN models using a preloaded dataset called dailytrades.

[1] Generate initial parameter sets for the estimation of the AdjPIN model and use it
to estimate the model using the ECM algorithm (default)

init.sets <- initials_adjpin(dailytrades)
model <- adjpin(data = dailytrades, initialsets = init.sets)
show(model)

AdjPIN estimation completed successfully

Likelihood factorization : Ersan and Ghachem (2022b)
Estimation Algorithm : Expectation-Conditional Maximization
Initial parameter sets : Custom initial sets
Model Restrictions : Unrestricted model

49 initial set(s) are used in the estimation
Type object@initialsets to see the initial parameter sets used
##
AdjPIN model
##
=========== ==============
Variables Estimates
=========== ==============
alpha 0.733333
delta 0.136364
theta 0.0625
theta' 0.636364

eps.b 337.17
eps.s 336.19
mu.b 599.12
mu.s 870.98
d.b 912.75
d.s 0

Likelihood (893.025)
adjPIN 0.295083
PSOS 0.27903
=========== ==============

[2] Display probability estimates, trading intensity estimates, adjpin, and psos.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 154

model@parameters[1:4]
alpha delta theta thetap
0.7333333 0.1363636 0.0625000 0.6363636

model@parameters[5:10]
eps.b eps.s mu.b mu.s d.b d.s
337.161195 334.770146 599.144502 872.396521 912.749207 2.671429

model@adjpin
[1] 0.2951761

model@psos
[1] 0.279842

[3] Estimate a restricted AdjPIN model where the liquidity shock rates are assumed equal on
the buy and sell side, i.e., d.b = d.s.

model <- adjpin(data = dailytrades, method = "ML", restricted = list(d = TRUE))

3.4 Volume-synchronized probability of informed trading - VPIN

The Volume-Synchronized Probability of Informed Trading or VPIN is developed by Easley et al. (2011)
and Easley et al. (2012), and refers to the adaptation of the original PIN model to the high frequency
environment.

The function vpin()

The package provides the function vpin() that computes VPIN using a dataset of high-frequency
transactions containing three variables timestamp, price, volume. The three essential arguments of the
function are: (1) timebarsize, the size of timebars in seconds with a default value of 60, (2) buckets,
the number of buckets per volume of bucket size (VBS) with a default value of 50, (3) samplength, the
sample length or window of buckets to calculate VPIN, with a default value of 50. Following Easley
et al. (2011, 2012), the default value for the argument timebarsize is 1 minute (60 seconds). Recall that
the unit of the argument timebarsize is in seconds, enabling the user to use shorter time bar sizes as
well.

Estimation output

The output of the estimation function vpin() is an S4 object of class estimate.vpin. The slots of the
estimate.vpin object are presented in Table S5.

Examples

We use a dataset called hfdata included in the package, which is a simulated dataset containing
sample timestamp, price, volume, bid and ask for 100.000 high-frequency transactions. The function
automatically selects the first 3 columns of the provided data, thus ignores the last two columns (bid
and ask). When the function vpin() is run without arguments, it uses the default parameters: a time
bar size of 60 seconds, 50 buckets per daily average volume, and a sample length of 50 buckets.

[1] Estimate the volume-synchronized probability of informed trading (vpin)

model_vpin <- vpin(hfdata)

[2] Show selected information details about buckets

tail(model_vpin@bucketdata[, c(1,4:7)], 3)
bucket aoi starttime endtime vpin
3596 3596 2240.3600 2019-01-11 05:11:33 2019-01-11 05:14:33 0.2512113
3597 3597 1386.5201 2019-01-11 05:14:33 2019-01-11 05:17:33 0.2521648
3598 3598 655.7131 2019-01-11 05:17:33 2019-01-11 05:21:33 0.2554926

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 155

[3] Display summary statistics of and plot the daily vpin vector

summary(model_vpin@dailyvpin$dvpin)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1364 0.1776 0.1952 0.2050 0.2336 0.4041

3.5 Data simulation functions

We provide utilities to generate simulated data for the PIN, MPIN and AdjPIN models, via the
functions generatedata_mpin() and generatedata_adjpin().

The function generatedata_mpin() generates datasets according to the assumptions of the gener-
alized PIN model of Easley and O’Hara (1992), and Easley et al. (1996) as derived by Ersan (2016). The
main arguments of the function are as follows: series, which represents the number of datasets to
be generated; days, specifying the number of days in each dataset; layers, denoting the number of
information layers to be generated in the data; parameters, defining the parameters Θ = (α, δ, µ, εb, εs)
used in data generation; ranges, a list containing the ranges for some or all parameters; and maxlayers,
representing the maximum number of layers in the generated datasets. If the user omits the argument
parameters, the function checks the ranges of simulation parameters as present in the argument
ranges. If the user provides a range for a given parameter, it is used in simulating the parameter
value. Otherwise, a default range is used. The function generatedata_mpin() has three additional
arguments that control the relationship between the theoretical values of the simulation parameters:
eps_ratio, mu_ratio, and confidence. For more information about these arguments, and default
parameter ranges, we refer the reader to the package documentation.

The function generatedata_adjpin() generates datasets according to the assumptions of the
Adjusted PIN model (Duarte and Young, 2009). The arguments of the function are as follows: series,
representing the number of datasets; days, specifying the number of days in each dataset; parameters,
defining the parameters Θ = (α, δ, θ, θ′, εb, εs, µb, µs, ∆b, ∆s) used in data generation; restricted, a
list of binary variables specifying whether two analogous model parameters are assumed equal;
and ranges, an alternative to parameters, determining the range for each parameter. The argument
restricted can be specified as a vector with four elements: (theta,eps,mu,d). Each of the four
elements, when set to TRUE, corresponds to a given restriction on the AdjPIN model. For instance,
theta = TRUE corresponds to the AdjPIN model where θ = θ′. If the user omits the argument
restricted, then no restrictions are applied, and the simulated data is generated to fit the unrestricted
model. If the user omits the argument parameters, the function checks the ranges of the different
simulation parameters contained in the argument ranges. If the user provides a range for a given
parameter, it is considered in simulating the value of that parameter. Otherwise, a default range is
used. For more information about the function, and the default parameter ranges, we refer the reader
to the package documentation.

Simulation output

The output of the data generation functions generatedata_∗(), where the suffix (*) can be one of
("mpin","adjpin"), depends on the value of the argument series. If series=1, the output is of class
dataset; otherwise the output is of class dataseries. The slot @datasets of the latter object contains
the simulated data in the form of a list of dataset objects. The slots of the objects dataset, and
dataseries are presented in Table S6, and Table S7 respectively.

Examples

We generate several data series using the functions generatedata_mpin() and generatedata_adjpin()
by using different values for the arguments. Note that your results might differ from ours as the data
is randomly generated.

[1] Generate a series of 100 simulated semi-annually datasets, having 3 layers
and 125 days each

dataseries <- generatedata_mpin(series = 100, days = 125, layers = 3)

[2] Generate, in two ways, a single MPIN dataset with one information layer and the
simulation parameters (alpha ,delta ,mu ,eb, es) = (0.3, 0.7, 8000, 1500, 2000).

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 156

(1) Using the argument 'parameters'
sdata <- generatedata_mpin(parameters = c(0.3,0.7,8000,1500,2000))

(2) Using the argument 'ranges'
sdata <- generatedata_mpin(layers = 1,
ranges = list(alpha=0.3, delta=0.7, eps.b=1500, eps.s=1800, mu=8000))

[3] Generate a series of 500 datasets with 2 layers where each layer has a minimum
share of 0.1, eps.b is equal to 5000; and mu is between 5000 and 25000.

dataseries <- generatedata_mpin(series = 500, layers = 2,
ranges = list(alpha = c(0.1,1), eps.b = 5000, mu = c(5000, 25000)))

[4] Generate a collection of 100 datasets, whose data sequences span 60 days, and
contain 3 layers, and use it to check the accuracy of the MPIN estimation.

collection <- generatedata_mpin(series = 100, layers = 3)
accuracy <- devmpin <- 0
for (i in 1:100) {

sdata <- collection@datasets[[i]]
model <- mpin_ml(sdata@data, xtraclusters = 3, verbose=FALSE)
accuracy <- accuracy + (sdata@layers == model@layers)
devmpin <- devmpin + abs(sdata@emp.pin - model@mpin)

}
cat("The accuracy of layer detection: ”, paste0(accuracy,"%.\n"), sep="")
cat("The average error in MPIN estimates: ", devmpin/100, ".\n", sep="")

The accuracy of layer detection: 96%.
The average error in MPIN estimates: 0.00234024.

[5] Generate a dataset of 60 days for the adjusted PIN model (default settings).

sdata <- generatedata_adjpin()

[6] Using a dataset of 10 000 000 days, check that the empirical parameters indeed
converge to the theoretical parameters – in virtue of the weak law of large numbers.

simdata <- generatedata_mpin(days = 10000000, layers = 1)
...
=========== ============== =============== ===============
Variables Theoretical. Empirical. Aggregates.
=========== ============== =============== ===============
alpha 0.750919 0.750961 0.750961
delta 0.730749 0.730886 0.730886
mu 215 214.99 214.99
eps.b 446 446 446
eps.s 461 460.99 460.99

Likelihood - (100973934.705) (100973934.705)
mpin - 0.151106 0.151106
=========== ============== =============== ===============

3.6 Trade aggregation function

The PIN model and its extensions use daily numbers of buyer-initiated and seller-initiated trades.
Thus, the estimation of the probability of informed trading requires two initial tasks. First is the
determination of trade initiator in each trade (trade classification), and second is the aggregation of
buys and sells on daily basis.4 The function aggregate_trades() performs both tasks. Among the
trade classification algorithms, PINstimation implements four algorithms, which are "Tick", "Quote",

4In case the data already attaches buy, and sell labels to the individual trades, there is no need to use the
algorithms. Besides, when the detailed order book reflecting the arrival times of each electronic message is
accessible, high-precision Odders-White (2000) chronological method is preferred. For other kinds of data, trade
classification algorithms remain in use, despite non-negligible errors (see e.g., Lee and Ready, 1991; Piwowar and
Wei, 2006; Aktas and Kryzanowski, 2014).

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 157

"LR", and "EMO". Table 1 gives the definition of each of these algorithms, as taken from Aktas and
Kryzanowski (2014). "LR" refers to the Lee and Ready (1991) algorithm, and "EMO" refers to the Ellis
et al. (2000) algorithm.

The trade classification algorithms are implemented in a single function aggregate_trades() that
takes four main arguments: (1) data, a dataframe with four variables in the following order (timestamp,
price, bid, ask), (2) algorithm, specifying the algorithm used to determine the trade initiator, accepting
one of four possible values: ("Tick","Quote","LR","EMO"), (3) timelag, representing the time lag in
milliseconds used to calculate the lagged mid-quote for the methods "Quote", "EMO", and "LR", with a
default value of 0 milliseconds, and (4) fullreport, determining whether the day variable is returned.
The default value is FALSE. The default value for the time lag to be used in the algorithms is set to 0
– chosen mainly for speed considerations. There are studies also suggesting the better performance
of 5-seconds time-lag (Lee and Ready, 1991) and 1-second time-lag (Piwowar and Wei, 2006; Aktas
and Kryzanowski, 2014). Given today’s high-speed financial markets, a much shorter time-lag of, for
example, 100 milliseconds can also be considered.

Table 1: Definition of trade classification algorithms

Tick A trade is classified as a buy (sell) if the price of the trade to be classified is above
(below) the closest different price of a previous trade

Quote Classifies a trade as a buy (sell) if the trade price of the trade to be classified is above
(below) the mid-point of the bid and ask spread. Trades executed at the mid –spread
are not classified.

LR Classifies a trade as a buy (sell) if its price is above (below) the mid-spread (quote
algorithm), and uses the tick algorithm if the trade price is at the mid-spread.

EMO Classifies trades at the bid (ask) as sells (buys) and uses the tick algorithm to classify
trades within the then prevailing bid-ask spread.

Estimation output

The output of the function aggregate_trades() is a dataframe of two (or three) variables. If the
argument fullreport is omitted, or set to FALSE, the output is a dataframe composed of two variables
(b,s). Otherwise, the dataframe consists of 3 variables (day,b,s).

Examples

We use the preloaded dataset hfdata to create a raw high-frequency dataset to aggregate.

[1] Create a high-frequency dataset 'xdata'
xdata <- hfdata
xdata[, "volume"] <- NULL

[2] Aggregate data using the EMO algorithm with 'timelag' of 50 milliseconds.

aggtrades <- aggregate_trades(xdata, algorithm = "EMO", timelag = 50)

[3] Aggregate all observations using the 'LR' algorithm with timelag set to 1 second

aggtrades <- aggregate_trades(xdata, algorithm = "LR", timelag = 1000)

3.7 More on the PINstimation package

Optimization algorithms: The maximum-likelihood estimation relies on the maximization of the fac-
torized likelihood function over a feasible parameter space. For all instances of MLE throughout
the package, this constrained maximization is performed using the Nelder-Mead Simplex algorithm
(Nelder and Mead, 1965), as implemented in the function neldermead() of the package nloptr (John-
son, 2022). In contrast, the expectation-conditional maximization (ECM) algorithm does not require
multi-dimensional non-linear optimization. Thanks to the use of conditional maximization in the max-
imization step, the search for the optimal parameters in the maximization step of the complete-data
log-likelihood is reduced to the search for the roots of polynomials using the algorithm of Jenkins

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=nloptr

CONTRIBUTED RESEARCH ARTICLE 158

and Traub (1972), which can be implemented, for example, via the function polyroot(). In the docu-
mentation of the function, it is stated that "numerical stability may be an issue for all but low-degree
polynomials." Luckily, the highest degree of maximands (polynomials) for the AdjPIN (MPIN) model
estimation via the ECM algorithm is 4 (J + 1), where J — the number of information layers in the
MPIN model — often takes a low value, usually less than 5 (Ersan, 2016).

Parallel processing: The search for global maxima of the log-likelihood function, either through standard
MLE, or via ECM algorithm, is performed through running the method for several initial parameter
sets to obtain, for each dataset, an optimal estimate, then out of these estimates, the one with the
highest log-likelihood is selected. Since the search for local optimum for any given initial set is
independent of the search for other initial sets, then parallel processing can be used to speed up the
execution. Similarly, the trade aggregation — as implemented in the function aggregate_trades() —
takes an argument timelag, and if this argument is positive, it assigns for each high-frequency trade
a lagged mid-quote computed using bid and ask registered a timelag earlier. The computation of
lagged midquote can be independently performed for all trades, and therefore can be parallelized.
Consequently, the package supports parallel processing for these two main tasks, in particular when
these tasks take considerably long time. This concerns namely: (1) estimation of the MPIN model
when the number of initial parameter sets is large, (2) data aggregation of high-frequency data when
a time-lag is used. The parallel processing is enabled using the argument is_parallel available for
the functions mpin_ml(), mpin_ecm(), and aggregate_trades(). The default value for this argument
is TRUE for the data aggregation, and FALSE for the MPIN model estimation. The parallel processing
depends on two additional options: (1) the number of cores used by the functions, (2) the threshold
of initial parameter sets needed to activate parallel processing for MPIN estimations. By default, the
number of CPU cores used in the parallel processing is 2. The option is stored in, and accessed through
the R option pinstimation.parallel.cores. As for the MPIN estimation, parallel processing will not
be activated unless the number of initial sets exceeds a threshold, by default 100 sets. The option
is stored in, and accessed through the R option pinstimation.parallel.threshold. Information on
how to change these options are available on the package website or the package vignette "parallel
processing". The parallel processing feature in the package relies on the future framework available
through the R package future (Bengtsson, 2021). The actual mapping of functions via futures is
performed through the function future_map() of the package furrr (Vaughan and Dancho, 2022).

Empirical time complexity We have performed an empirical investigation into the time complexity of
the algorithms associated with the PIN, MPIN, and ADJPIN models, but chose not to report the
results. This decision is motivated by theoretical considerations, as these algorithms are designed to
be used with small datasets, typically consisting of 60 to 250 observations5. For such small datasets,
the algorithms typically execute quite efficiently on a fairly average computer. In contrast, the package
contains two functions that can be used with larger datasets, namely the data aggregation function
aggregate_trades() and the function vpin(). To inspect the empirical time complexity of these
functions, we obtain a real dataset containing two millions high-frequency trades (sampledata), run the
functions on subsets of increasing size and inspect at what rate the execution time grows with the size.
For the function aggregate_trades(), we perform the procedure for both the sequential and parallel
processing. For each value of size in the set (100000,200000,. . . ,2000000), we run the following
lines of code (1) aggregate_trades(sampledata[1:size,],algorithm = "LR",timelag = 1000) , (2)
aggregate_trades(sampledata[1:size,],algorithm = "LR",timelag = 1000,is_parallel=FALSE),
and (3) vpin(sampledata[1:size,]). For each run, we record the pair consisting of the dataset size,
and the execution time. Figure S1 displays the behavior of execution time as a function of the number
of high-frequency trades in the dataset for the functions aggregate_trades() and vpin() respectively.
Figure S1(a) shows clearly that the function aggregate_trades() displays a linear time complexity,
both for sequential, and parallel processing. Similarly, Figure S1(b) shows that the function vpin()
does also have a linear time complexity.

Convergence of the ECM algorithm: In theory, the ECM algorithm may fail to converge, and if it does, it
may do so slowly (large number of iterations), or converge to a local optimum. To avoid long running
times due to non-convergence, Ghachem and Ersan (2022) set an upper bound of 100 iterations per
initial set, and report that between 93% and 99% of initial sets lead to convergence in fewer than 100
iterations. To avoid local optima, they use limited number of strategic initial sets, and show that the
average bias of AdjPIN(PSOS) is as low as of 0.07% (0.101%); while it is roughly 0.01% for MPIN. Raising
the bound on iterations and/or the number of initial sets may further enhance convergence and reduce
estimation bias, while keeping running times reasonably low thanks to the fast ECM estimation. Users

5A 60-day dataset corresponds to approximately three months of trading days, and typically captures the
quarterly information flow, such as earnings announcements and other periodic disclosures. A 250-day dataset
approximates a year of trading days, and captures annual cycles of information flow, including yearly financial
disclosures and seasonal market variations. Using datasets with more than 250 daily observations in the PIN model
estimation risks (1) overfitting, (2) incorporating outdated or less relevant information, and (3) compromising
model accuracy due to the influence of multiple seasonal and cyclical factors.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=furrr

CONTRIBUTED RESEARCH ARTICLE 159

may adjust these parameters using the arguments hyperparams and xtraclusters of mpin_ecm(), or
hyperparams and num_init of adjpin(...,method = "ECM").

Sample datasets: The functions included in the package accept datasets in two different formats.
Therefore, and for the sake of compactness, we have only included two sample datasets. This is
justified by the fact that package enables users to easily generate simulated datasets that fit their
preferences and needs (e.g. number of days, any feasible combination of model parameters) using the
functions generatedata_mpin(), and generatedata_adjpin(). More information on these functions,
and their arguments can be found in the package documentation.

Clustering algorithm: A large number of algorithms implemented in the package, namely those for
layer detection (Ersan, 2016; Ersan and Ghachem, 2022a), or for generating initial parameter sets (Gan
et al., 2015; Ersan and Alıcı, 2016; Ersan, 2016; Ersan and Ghachem, 2022b), rely on the hierarchical
agglomerative clustering (HAC) in one or more of its steps. The function used in the implementation
of HAC throughout the package is hclust().

Custom initial parameter sets: The package provides several functions for generating initial parameter
sets for the different PIN models, to be fed in the different estimation functions. These latter functions
also allow for the use of custom initial parameter sets. This enables researchers to develop, and
experiment with eventually more efficient algorithms for generating initial parameter sets. There-
fore, an argument initialsets is included in the estimation functions of the PIN models (pin(),
mpin_ml(), mpin_ecm(), and adjpin()) that allows researchers/users to use the estimation method
while providing their own initial parameter sets.

4 Applications

In this section, we showcase the different capabilities of the package by describing in sufficient detail
two usage examples analyzing real-world datasets. The purpose of these examples is to show that
the package can be used to answer typical research questions, and also to serve as a complementary
check – our empirical results corroborate well-established findings in the literature, mainly that small
stocks have higher informed trading than large stocks, and VPIN values vary around firm-specific
announcements.

In the first example, we use different measures of informed trading (implemented in the package)
to conduct descriptive and comparative analyses of informed trading activity in large and small stocks.
More specifically, we collect and compare the probability of informed trading obtained by estimating
the three major models using a sequence of daily buyer-initiated and seller-initiated trades. These
models are PIN (Easley and O’Hara, 1992; Easley et al., 1996), MPIN (Ersan, 2016), and AdjPIN (Duarte
and Young, 2009). The research strategy consists of three steps. First, we aggregate the high-frequency
transaction datasets into datasets of daily trades using the function aggregate_trades() using Lee
and Ready (1991) algorithm (algorithm="LR") with zero-second time lag (timelag=0). Second, we
estimate each of the three models with various methods and specifications suggested in the literature.
Finally, we compare the estimates of informed trading in large and small cap stocks, and test the
well-established hypothesis that small stocks experience larger probability of informed trading (see
e.g. Easley et al., 2002; Aslan et al., 2011).

In the second example, we conduct an intraday analysis of informed trading, using the same
dataset, but different variations of the volume-synchronized probability of informed trading or VPIN
(Easley et al., 2011, 2012). First, we provide summary statistics for the different VPIN estimates. Next,
we provide modified versions of the two tables in Easley et al. (2011) showing the distribution of VPIN
and absolute post-returns conditional on each other. Additionally, we investigate the distributions of
positive and negative returns separately. Finally, we examine whether order-flow toxicity changes
around firm-specific announcements for the examined stocks and during the study period.6

4.1 Data

Our main dataset is a stock-level intraday dataset, consisting of all trading transactions for 58 Swedish
stocks listed in NASDAQ Stockholm, which took place within the last quarter of 2020 (59 days).
The data is a collection of reconstructed order books, based on the NASDAQ OMX Historical ITCH
files, and obtained from the website of Swedish House of Finance, National Research Data Center.
Reconstructed order books contain extensive information about the different order book entries, such
as the instrument symbol, date and timestamp in nanoseconds, first and second-best prices and

6Few studies examine VPIN around announcements. For example, Bjursell et al. (2017) examine VPIN around
inventory announcements and price jumps in crude oil and natural gas futures markets. Bugeja et al. (2015) study
VPIN around takeover announcements.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 160

associated volume at both bid and ask sides, transaction price and volume. The main motivation
behind the selection of 58 stocks in the sample is to conduct comparative analyses of informed trading
between large and small stocks. The 29 large cap stocks are selected in a straightforward manner
from among the 30 large-cap stocks listed in OMX Stockholm 30 Index (OMXS30). Of these 30 stocks,
one stock (ATCO A) is excluded because of data unavailability. As for the 30 small-cap stocks, we
consider the stocks listed in NASDAQ OMX Small Cap Sweden GI (NOMXSCSEGI), which are not
listed in neither the mid-cap, nor the large-cap indices (OMXSMCGI, OMXSLCGI). At the time of the
study, 219 stocks are listed in the Small Cap index, among which, 39 are not listed in neither of the
aforementioned indices. We select the first 30 stocks of these 39 stocks, chronologically. Of these 30
stocks, one small stock (EGTX) is excluded as it only has six days with any trading records. In sum,
we have 29 large and 29 small stocks with 5, 410, 411 associated transactions.

Our second dataset consists of firm-level announcements pertaining to the selected 58 stocks and
occurring within the 59 trading days of the first dataset. The announcements’ data were manually
collected from company news, available on the website of NASDAQ NORDIC and amount to a total
of 546 announcements. We apply several filtering steps on the collected raw data before obtaining the
final sample of announcements. For instance, we exclude 353 announcements occurring outside of
the trading hours, or within the first and last 10 minutes of the trading day. To avoid ambiguity from
combined effects of multiple announcements, we exclude all announcements for any stock-day pair
having more than one announcement. The final sample consists of 96 announcements, out of which 41
concern large stocks and 55 concern small stocks.

4.2 Example 1 – PIN estimation

We estimate the standard PIN model (Easley et al., 1996), the MPIN model (Ersan, 2016), and the
AdjPIN model, (Duarte and Young, 2009) using a dataset of high frequency trades on a sample of
58 stocks (29 large and 29 small stocks) during the last quarter of 2020. We perform a comparative
study of the estimates of different specifications for each of these models, and provide evidence for the
existence of significant differences in informed trading between small and large stocks. Technically, we
estimate the original PIN model using 8 different specifications, MPIN model using 5 specifications,
and ADJPIN model and its restricted versions using 7 specifications. We, however, report a selection
of these specifications. Unreported specifications are variations of the reported models with different
factorizations, initial sets, and/or restrictions on parameters. Table 2 defines the ten specifications we
report and provides the corresponding code to implement each of them.

Table 2: Definition, and implementation code for a selection of model specifications

The factorization, and initial sets for MPIN and AdjPIN models are presented in Ersan (2016), and Ersan and
Ghachem (2022b) respectively. Estimations using the ECM algorithm are detailed in Ghachem and Ersan (2022).

Models Name Code

PIN
Models

PIN_EA pin_ea(data)
EA initial sets (Ersan and Alıcı, 2016) and E factorization (Ersan, 2016)

PIN_GWJ pin_gwj(data)
GWJ initial sets (Gan et al., 2015) and E factorization (Ersan, 2016)

PIN_YZ pin_yz(data)
YZ initial sets (Yan and Zhang, 2012), and E factorization (Ersan, 2016)

MPIN
Models

MPIN.ML_EG mpin_ml(data)
ML estimation method, Layer detection algorithm in Ersan and Ghachem (2022a).

MPIN.ML_E mpin_ml(data,detectlayers = "E")
ML estimation method, Layer detection algorithm in Ersan (2016).

MPIN.ECM mpin_ecm(data,hyperparams = list(maxinit=100))
ECM algorithm with up to 100 initial sets per model.

ADJPIN
Models

ADJPIN_GE adjpin(data,method = "ML")
ML estimation method with GE initial sets (Ersan and Ghachem, 2022b)

ADJPIN_RND adjpin(data,method = "ML",initialsets = "random")
ML estimation method with random initial sets.

ADJPIN.ECM_GE adjpin(data,method = "ECM")
ECM algorithm with GE initial sets (Ersan and Ghachem, 2022b).

ADJPIN.ECM_RND adjpin(data,method = "ECM",initialsets = "random")
ECM algorithm with random initial sets.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 161

Table 3 presents the mean estimates of the probability of informed trading (PIN) as well as five
parameters for the 58 examined stocks. In summary, Table 3 suggest that variation of estimates from
different specifications of the same model is of limited scope, while the variation of estimates across
models might be quite significant. The MPIN model yields the highest PIN estimates, mainly due to
higher probability of information events. Interestingly, the PIN and ADJPIN models produce very
similar PIN estimates, even though all their model parameters differ significantly from each other.
These results are in line with the assumptions of the different models.

Table 3: Mean estimates of PIN and five parameters in PIN, MPIN, and ADJPIN models

Probability terms, PIN, α, and δ are in percentage. The average running time (Time) is in seconds.

Models Name PIN α δ µ εb εs Time

PIN
Models

PIN_EA 13.316 17.871 29.45 984.833 727.163 709.545 1.344
PIN_GWJ 13.385 18.352 30.171 960.139 731.366 706.103 0.291
PIN_YZ 13.316 17.871 29.45 984.833 727.163 709.545 25.098

MPIN
Models

MPIN.ML_EG 23.910 58.537 23.081 534.789 581.911 684.098 49.641
MPIN.ML_E 20.972 47.633 21.701 528.856 619.009 695.322 23.84
MPIN.ECM 22.461 54.513 24.563 515.325 665.626 689.832 67.179

ADJPIN
Models

ADJPIN_GE 12.658 40.836 48.91 642.788 610.051 554.048 12.449
ADJPIN_RND 13.484 42.805 50.232 661.256 610.924 549.872 12.49
ADJPIN.ECM_GE 12.282 40.641 47.496 627.301 632.203 564.216 2.589
ADJPIN.ECM_RND 12.506 41.023 51.562 601.549 636.203 555.151 2.836

Table 4 reports the mean estimates on the probability of informed trading for large and small stocks
separately, their difference, and its statistical significance. For all specifications, the mean PIN estimate
is significantly larger for small stocks in comparison to large stocks. For instance, the PIN model mean
estimate is around 8.7% for large stocks, while it is almost 18% for small stocks. Similarly, MPIN mean
model estimates are larger than those of the PIN model, both for large and small stocks, and can reach
up to 30% for small stocks. This finding is in line with previous findings in the market microstructure
literature that document larger probabilities of informed trading for small stocks (Easley et al., 2002;
Aslan et al., 2011; Chen and Zhao, 2012). In the bottom row of Table 4, mean number of layers detected
using the different specifications of the MPIN model are reported. The average number of layers for
large stocks is consistently higher than that for small stocks. For instance, for the MPIN.ML_EG, mean
number of layers detected in the 2020 last-quarter datasets of large stocks is 4.172. This number is
significantly higher than its counterpart for small stocks (around 2.9) for the same period, suggesting
that large stocks are more likely to witness different types of information events.

Table 4: Mean PIN estimates and number of layers for large and small stocks

∗∗∗, ∗∗, and ∗ represent significance from a one-sided t-test at 1%, 5% and 10% levels, respectively. PIN values
and their differences are in percentages.

Models Name PIN - Large PIN - Small Difference

PIN
Models

PIN_EA 8.658 17.975 9.317***
PIN_GWJ 8.679 18.091 9.412***
PIN_YZ 8.658 17.975 9.317***

MPIN
Models

MPIN.ML_EG 19.931 27.889 7.958***
MPIN.ML_E 16.749 25.196 8.447***
MPIN.ECM 14.574 30.348 15.775***

ADJPIN
Models

ADJPIN_GE 10.211 15.105 4.894***
ADJPIN_RND 10.35 16.618 6.269***
ADJPIN.ECM_GE 9.591 14.973 5.381***
ADJPIN.ECM_RND 9.637 15.375 5.737***

Layers (MPIN)
MPIN.ML_EG_layer 4.172 2.931 -1.241***
MPIN.ML_E_layer 2.897 2.207 -0.69***
MPIN.ECM_layer 4.207 3.724 -0.483

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 162

Next, we focus on one selected implementation for each of three models (PIN_EA, MPIN_ML_EG,
ADJPIN_GE). Figure 1 shows stock-level PIN and alpha estimates for each of the three selected specifi-
cations. Left (right) hand side of each panel reports estimates for 29 large (small) stocks. Figure 1a
displays the PIN estimates for each of the PIN, MPIN and ADJPIN models. While PIN and ADJPIN
models produce relatively close PIN estimates, MPIN model estimates are consistently higher. In
particular, the difference between MPIN, and PIN estimates is positive, and can reach up to 25%. In
contrast, the difference between the estimates from ADJPIN and PIN models does not have a stable
sign, and tends to fluctuate around 0.

(a) PIN for large and small stocks (b) Alpha for large and small stocks

Figure 1: Stock-level model comparisons for PIN and Alpha for the different models: PIN (red), MPIN
(green), ADJPIN (blue)

Figure 1a also shows relatively higher estimates in the right side of the panel (small stocks), as well
as high stock-based variations, e.g., for the MPIN model PIN estimates range from 10% to around 40%
for the examined stocks. Figure 1b replicates Figure 1a for alpha parameter estimates (information
event occurrence probability). It shows that PIN model consistently has lower alpha estimates than
MPIN and ADJPIN models, but with higher variability, ranging from 2% to 42%. Significant differences
in alpha estimates are observed among the three models and across stocks. Therefore, a careful analysis
of each model’s assumptions is necessary to draw any conclusions.

4.3 Example 2 – VPIN and announcements

Using over 5.4 million trades on 58 Swedish stocks spanning 59 trading days during the last quarter of
2020, we estimate VPIN with three different parameter sets, i.e., 1-50-50, 1-1-5, and 5-1-5 7.

In each parameter set ‘a-b-c’, a represents the length of time bars in minutes, b stands for the
number of buckets per a day with average trading volume, c is the number of previous buckets used
in the calculation of VPIN at any bucket. In line with Easley et al. (2011, 2012), we select the parameter
set 1-50-50 as our main setting.

Table 5 presents the summary statistics for VPIN estimates for the three settings, and this for both
the whole sample, and for the large and small stocks separately. Mean (median) VPIN with 1-50-50
is 27.6% (25.3%) for the whole sample. Number of VPIN observations is 166, 875, almost equally
composed of observations on small and large cap stocks. Mean VPIN is slightly larger for the small
stocks (28.1% and 27.2%, respectively).

Under the basic setting, the difference between mean VPIN measures of small and large stocks,
while in line with our expectations, it is not as large as previous studies suggest. For instance, Abad
and Yagüe (2012) report mean VPIN values of 25% and 53% for the Spanish large and small stocks,
respectively. We too obtain positive difference between the mean VPIN values for small and large
stocks for all parameter sets. The VPIN value for small stocks is substantially larger than for large
stocks (almost twofold) for settings, for which an average trading day contains a single bucket, and
five buckets are used in calculating the VPIN (parameter sets 1-1-5 and 5-1-5). The excess informed
trading of small stocks is not restricted to average values. For instance, under our basic setting, first
and third quartiles of VPIN for the whole sample are around 20% and 34%. This range as well as the
standard deviation for small stocks are relatively larger than those of large stocks.

7The first parameter set 1-50-50 is the main setting used in several studies (see e.g. Easley et al., 2011, 2012;
Abad and Yagüe, 2012). The parameter sets 1-1-5, and 5-1-5 are two of the several sets previously used for
comparative purposes (see e.g. Abad and Yagüe, 2012).

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 163

Table 5: Descriptive statistics for three settings of VPIN - for large, small, and all stocks.

N refers to the number of observations; min and max refer to the minimum, and maximum values respectively. SD
corresponds to the standard deviation, while Qx is the xth quantile.

Setting Sample N mean min Q25 Q50 Q75 max SD
1-50-50 Large 84131 27.2 10.7 21.4 25.1 30 92.9 9.2
1-50-50 Small 82744 28.1 0 14.1 25.8 39 100 18.2
1-50-50 All 166875 27.6 0 19.5 25.3 33.6 100 14.4
1-1-5 Large 1595 6.9 1.2 4.7 6.3 8.5 22.8 3.1
1-1-5 Small 1568 13.5 0.7 8.2 12.5 17.1 62.5 7.5
1-1-5 All 3163 10.1 0.7 5.6 8.3 13 62.5 6.6
5-1-5 Large 1595 9 1.2 6.2 8.2 10.6 33.2 4.3
5-1-5 Small 1568 18.3 0.6 11.3 16.2 23.2 89.1 10.3
5-1-5 All 3163 13.6 0.6 7.5 10.8 17.2 89.1 9.1

We turn now to investigate whether the correlation observed between the VPIN distribution and
the absolute post returns distribution for the S&P 500 E-mini index, as reported by Easley et al. (2011),
can be generalized to (1) individual stocks, (2) another (non-US) market, i.e. NASDAQ Stockholm,
(3) more recent data, (4) positive and negative post-returns. To do this, we replicate the two tables
(Exhibit 7 and 8) as they appear in Easley et al. (2011) for individual stocks, for absolute post-returns
initially, before differentiating between positive and negative post-returns. Table 6 reports, in Panel
A, the distribution of the absolute post-returns conditional on VPIN. Each of the 3 rows represents
the distribution in percentage for the 0 − 5th, 45th − 50th, 95th − 100th quantiles of the VPIN values.
Respective quantile values are given in the first column (e.g., 0.062 is the 5th quantile of VPINs in our
data).

The results in Table 6 (Panel A) are significantly similar to the results in Easley et al. (2011), both
qualitatively, and even quantitatively. For instance, the share of large absolute post-returns is highest
in the highest VPIN quantile, and substantially higher than the same share in other quantiles. The
share of large absolute post-returns (exceeding 2%) associated with the highest VPIN quantile is
2.16%, while it is below 0.44% for the 45th to 50th VPIN quantiles. The highest levels of VPIN (in the
highest quantile) have 4.5 times higher likelihood to be followed by large absolute post-returns than
intermediate levels of VPIN (in the median quantile) (2.16% and 0.44%). This ratio is strikingly similar
to the one found in the referenced paper (0.22% and 0.05%). However, the likelihood of large absolute
post-returns is higher in our study (2.16% vs 0.22%), which is likely due to our use of individual stocks
rather than an index. For each of the absolute return intervals larger than 0.5%, the share of VPIN
values in the highest quantile is at least twice as large as the ones in lower quantiles. The share of
VPINs within the highest quantile (last row of Table 6 - Panel B) is noteworthy: Absolute returns larger
than 1% are highly likely to be preceded by a high VPIN value. In our unreported results, for over
40% of intraday periods with absolute returns larger than 2%, the (preceding) VPIN is at its highest
quantile.

Table 6: Conditional distributions of VPIN and absolute post-returns

Panel A provides the distribution of absolute post returns (leading VPIN bucket return) conditional on VPIN
values, while Panel B provides the distribution of VPIN values conditional on the absolute post returns. For brevity,
only the 5th, 50th and 100th quantiles are reported in each panel. Numbers are given in percentages.

Panel A: Absolute post-returns conditional on VPIN

0.25 0.5 0.75 1 1.25 1.5 1.75 2 >2.00
0.062 80.67 10.1 4.68 2.33 0.97 0.53 0.2 0.2 0.32
0.253 80.65 13.11 3.15 1.14 0.71 0.43 0.25 0.12 0.44
1 74.94 10.09 5.03 2.7 1.82 1.5 1.08 0.68 2.16

Panel B: VPIN conditional on absolute post-returns

0.25 0.5 0.75 1 1.25 1.5 1.75 2 >2.00
0.062 5.19 3.83 5.54 6.21 4.82 4.11 2.62 4.06 2.28
0.253 5.19 4.97 3.74 3.04 3.51 3.36 3.24 2.39 3.12
1 4.82 3.83 5.97 7.2 9.05 11.68 13.87 13.6 15.19

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 164

We now turn to investigate whether the distribution patterns for absolute returns hold true when
returns are split into positive and negative and analyzed separately. Table S8 summarizes the results
across four panels showing only the lowest, median, and highest 5th VPIN quantiles. The distribution
patterns of preceding VPINs remain consistent for positive and negative returns, except for the return
interval (−0.5%, 0.5%). When VPIN values are within the highest quantile and post return is positive
(negative), the likelihood of return in the next volume bucket exceeding 2% (−2%) is as high as 3.87%
(4.31%). These probabilities are more than seven times that of the median quantile. Note that we
excluded zero-return observations before analyzing positive and negative returns separately. This
might explain why the findings in Table S8 are more pronounced than those in Table 6.

Finally, we investigate VPIN around firm-specific announcements. Using 96 firm-specific an-
nouncements taking place within the last quarter of 2020, and pertaining to the selected stocks, we
investigate whether VPIN values change prior to, and following the announcements, and whether
the behavior of VPIN around announcements is similar for the large and smalls stocks. Figure 2 plot
the mean VPIN for the (−100,+100) volume buckets where 0 refers to the announcement bucket, i.e.,
the bucket, during which the announcement took place. It represents VPIN values around announce-
ments for the whole sample, and for both large, and small stocks separately. The main finding of our
analysis on the whole sample is that, mean VPIN starts to increase shortly prior to announcements,
and continues to increase post-announcement, reaches a maximum, before starting to decrease to
pre-announcement levels.

As shown in Figure 2a, mean VPIN starts to increase at bucket (−13) from a level 25.7%, monoton-
ically increases for around 50 buckets, reaching a level of 30.81%, before reverting gradually to around
its pre-announcement levels. Mean VPIN of small stocks, in Figure 2b, starts rising at bucket (−13)
from a level of 25.6%, and keeps increasing until bucket (+29) reaching a level of 32.4% before starting
to gradually decrease. It, then, reaches its lowest post-announcement level at bucket (+81), before
starting to rise again. As for large stocks in Figure 2b, mean VPIN starts rising at bucket (−7) from a
level of 25.2%, and keep increasing until reaching a level of 30.3% at bucket (+50), before gradually
decreasing afterwards.

(a) Whole sample of stocks (b) Large and small stocks

Figure 2: Average VPIN around announcements for small, large, and all stocks

Interestingly, VPIN starts to react relatively earlier for small stocks than for large stocks. Never-
theless, the presence of early warning property of VPIN is evident for both small and large Swedish
stocks. This corroborates with the findings of Easley et al. (2011, 2012), where they suggest VPIN
as a metric providing an early warning signal for intraday events, such as crashes. Bjursell et al.
(2017) document an increase in VPIN prior to news events, and price jumps in the crude oil market.
Similarly, Bugeja et al. (2015) examining takeover announcements in the Australian markets, find out
that VPIN significantly increases for target firms in the four days prior to the takeover announcements.
Our findings suggest the potential of VPIN as an early warning signal might well extend to regular
firm-specific events. These VPIN patterns could be further investigated, in light of recent findings
on price discovery around announcements in today’s financial markets with large HFT prevalence
(Beschwitz et al., 2020; Ersan et al., 2021).

5 Conclusion

PINstimation is an attempt to centralize, and implement in a rigorous manner, the main estimation
methods suggested in the literature. In addition to efficiency, we aim that PINstimation be (1) all-

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 165

encompassing, i.e. it includes the main model treating the probability of informed trading and its most
relevant extensions, (2) complete, i.e it includes not only the tools required to estimate PIN models,
but also algorithms to generate initial parameter sets, tools to simulate datasets, and algorithms to
aggregate high-frequency trades into daily trading data, and (3) up-to-date, as the current version of
PINstimation package is highly up to date including several methods suggested in 2020-2022.

Future work on the package aims at continuous extension of the package with the most up-to-date
estimation methods available. For instance, we have recently added function pin_bayes() which
implements a Bayesian approach for the estimation of the original PIN model as suggested by Griffin
et al. (2021). Even though the PINstimation package aims to be all-encompassing, it remains primarily
dedicated to the estimation of probability of informed trading (PIN) models. Thus, other informed
trading measures suggested in the literature are, and shall remain, beyond the scope of the package.
By the introduction of the package, we hope to contribute to widen the user base of PIN models both
in academic circles, and among practitioners; as well as improve the validity, and the comparability of
scientific findings within the field.

References

D. Abad and J. Yagüe. From pin to vpin: An introduction to order flow toxicity. Spanish Review of
Financial Economics, 10(2):74–83, 7 2012. ISSN 21731268. doi: 10.1016/j.srfe.2012.10.002. [p162]

H.-J. Ahn, J. Kang, and D. Ryu. Informed trading in the index option market: The case of kospi 200
options. Journal of Futures Markets, 28(12):1118–1146, 12 2008. ISSN 1096-9934. doi: 10.1002/FUT.
20369. [p145]

O. U. Aktas and L. Kryzanowski. Trade classification accuracy for the bist. Journal of International
Financial Markets, Institutions and Money, 33:259–282, 8 2014. ISSN 10424431. doi: 10.1016/j.intfin.
2014.08.003. [p156, 157]

H. Aslan, D. Easley, S. Hvidkjaer, and M. O’Hara. The characteristics of informed trading: Implications
for asset pricing. Journal of Empirical Finance, 18(5):782–801, 12 2011. ISSN 0927-5398. doi: 10.1016/J.
JEMPFIN.2011.08.001. [p159, 161]

H. Bengtsson. A unifying framework for parallel and distributed processing in r using futures. The R
Journal, 13(2):208–227, 2021. doi: 10.32614/RJ-2021-048. URL https://doi.org/10.32614/RJ-2021-
048. [p158]

H. Berkman, P. D. Koch, and P. J. Westerholm. Informed trading through the accounts of children.
Journal of Finance, 69(1):363–404, 2 2014. ISSN 00221082. doi: 10.1111/jofi.12043. [p145]

V. B. Beschwitz, D. B. Keim, and M. Massa. First to "read" the news: News analytics and algorithmic
trading. Review of Asset Pricing Studies, 10(1):122–178, 2 2020. ISSN 20459939. doi: 10.1093/RAPSTU/
RAZ007. [p164]

J. Bjursell, G. H. Wang, and H. Zheng. Vpin, jump dynamics and inventory announcements in
energy futures markets. Journal of Futures Markets, 37(6):542–577, 6 2017. ISSN 10969934. doi:
10.1002/fut.21839. [p159, 164]

D. Bongaerts, D. Rösch, and M. A. Van Dijk. Cross-sectional identification of informed trading. SSRN
Electronic Journal, 12 2014. ISSN 1556-5068. doi: 10.2139/ssrn.2532128. [p145]

M. Bugeja, V. Patel, and T. Walter. The microstructure of australian takeover announcements. Australian
Journal of Management, 40(1):161–188, 2 2015. ISSN 13272020. doi: 10.1177/0312896213517247. [p159,
164]

D. Celik and M. Tiniç. InfoTrad: Calculates the Probability of Informed Trading (PIN), 2017. URL https:
//CRAN.R-project.org/package=InfoTrad. R package version 1.2. [p145]

D. Celik and M. Tiniç. Infotrad: An r package for estimating the probability of informed trading. R
Journal, 10(1):31–42, 2018. [p145]

S. S. Chang, V. L. Chang, and F. A. Wang. A dynamic intraday measure of the probability of informed
trading and firm-specific return variation. Journal of Empirical Finance, 29:80–94, 12 2014. ISSN
09275398. doi: 10.1016/j.jempfin.2014.02.003. [p145]

Y. Chen and H. Zhao. Informed trading, information uncertainty, and price momentum. Journal of
Banking and Finance, 36(7):2095–2109, 7 2012. ISSN 0378-4266. doi: 10.1016/J.JBANKFIN.2012.03.016.
[p161]

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://doi.org/10.32614/RJ-2021-048
https://doi.org/10.32614/RJ-2021-048
https://CRAN.R-project.org/package=InfoTrad
https://CRAN.R-project.org/package=InfoTrad

CONTRIBUTED RESEARCH ARTICLE 166

T. C. Cheng and H. N. Lai. Improvements in estimating the probability of informed trading models.
Quantitative Finance, 21(5):771–796, 2021. ISSN 14697696. doi: 10.1080/14697688.2020.1800805. [p148,
152]

J. Duarte and L. Young. Why is pin priced? Journal of Financial Economics, 91(2):119–138, 2009. ISSN
0304405X. doi: 10.1016/j.jfineco.2007.10.008. [p146, 147, 148, 149, 153, 155, 159, 160]

D. Easley and M. O’Hara. Time and the process of security price adjustment. Journal of Finance, 47(2):
577–605, 1992. [p145, 146, 149, 155, 159]

D. Easley, N. M. Kiefer, M. O’Hara, and J. B. Paperman. Liquidity, information, and infrequently
traded stocks. The Journal of Finance, 51(4):1405, 9 1996. ISSN 00221082. doi: 10.2307/2329399. [p145,
146, 149, 155, 159, 160]

D. Easley, N. M. Kiefer, and M. O’Hara. The information content of the trading process. Journal of
Empirical Finance, 4(2-3):159–186, 6 1997. ISSN 09275398. doi: 10.1016/S0927-5398(97)00005-4. [p147]

D. Easley, S. Hvidkjaer, and M. O’Hara. Is information risk a determinant of asset returns? The Journal
of Finance, 57(5):2185–2221, 10 2002. ISSN 1540-6261. doi: 10.1111/1540-6261.00493. [p159, 161]

D. Easley, R. F. Engle, M. O’hara, and L. Wu. Time-varying arrival rates of informed and uninformed
trades. Journal of Financial Econometrics, 6(2):171–207, 3 2008. ISSN 14798409. doi: 10.1093/jjfinec/
nbn003. [p148, 149]

D. Easley, S. Hvidkjaer, and M. O’Hara. Factoring information into returns. Journal of Financial and
Quantitative Analysis, 45(2):293–309, 4 2010. ISSN 00221090. doi: 10.1017/S0022109010000074. [p149]

D. Easley, M. M. De Prado, and M. O’Hara. The microstructure of the "flash crash": Flow toxicity,
liquidity crashes, and the probability of informed trading. Journal of Portfolio Management, 37(2):
118–128, 12 2011. ISSN 00954918. doi: 10.3905/jpm.2011.37.2.118. [p146, 149, 154, 159, 162, 163, 164]

D. Easley, M. M. López De Prado, and M. O’Hara. Flow toxicity and liquidity in a high-frequency
world. Review of Financial Studies, 25(5):1457–1493, 5 2012. ISSN 08939454. doi: 10.1093/rfs/hhs053.
[p146, 149, 154, 159, 162, 164]

K. Ellis, R. Michaely, and M. O’Hara. The accuracy of trade classification rules: Evidence from
nasdaq. The Journal of Financial and Quantitative Analysis, 35(4):529, 12 2000. ISSN 00221090. doi:
10.2307/2676254. [p157]

O. Ersan. Multilayer probability of informed trading. SSRN Electronic Journal, 11 2016. ISSN 1556-5068.
doi: 10.2139/ssrn.2874420. [p146, 147, 148, 149, 150, 151, 155, 158, 159, 160]

O. Ersan and A. Alıcı. An unbiased computation methodology for estimating the probability of
informed trading (pin). Journal of International Financial Markets, Institutions and Money, 43:74–94,
2016. ISSN 10424431. doi: 10.1016/j.intfin.2016.04.001. [p146, 148, 149, 151, 159, 160]

O. Ersan and M. Ghachem. Identifying information types in probability of informed trading (pin)
models: An improved algorithm. SSRN Electronic Journal, 2022a. [p147, 151, 159, 160]

O. Ersan and M. Ghachem. A methodological approach to the computational problems in the estima-
tion of adjusted pin model. SSRN Electronic Journal, 2022b. [p148, 152, 159, 160]

O. Ersan, S. A. Simsir, K. D. Simsek, and A. Hasan. The speed of stock price adjustment to corporate
announcements: Insights from turkey. Emerging Markets Review, 47:100778, 6 2021. ISSN 18736173.
doi: 10.1016/j.ememar.2020.100778. [p164]

Q. Gan, W. C. Wei, and D. Johnstone. A faster estimation method for the probability of informed
trading using hierarchical agglomerative clustering. Quantitative Finance, 15(11):1805–1821, 2015.
ISSN 14697696. doi: 10.1080/14697688.2015.1023336. [p148, 149, 159, 160]

M. Ghachem and O. Ersan. Estimation of the probability of informed trading models via an expectation
maximization algorithm. SSRN Electronic Journal, 2022. [p146, 148, 149, 151, 153, 158, 160]

J. Griffin, J. Oberoi, and S. D. Oduro. Estimating the probability of informed trading: A bayesian
approach. Journal of Banking and Finance, 125, 2021. ISSN 0378-4266. doi: https://doi.org/10.1016/j.
jbankfin.2021.106045. [p146, 148, 165]

H. Guo and B. Qiu. A better measure of institutional informed trading. Contemporary Accounting
Research, 33(2):815–850, 6 2016. ISSN 19113846. doi: 10.1111/1911-3846.12160. [p145]

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 167

J. Hasbrouck. Measuring the information content of stock trades. The Journal of Finance, 46(1):179–207,
3 1991. ISSN 15406261. doi: 10.1111/j.1540-6261.1991.tb03749.x. [p145]

W. l. G. Hsieh and H. R. He. Informed trading, trading strategies and the information content of trading
volume: Evidence from the taiwan index options market. Journal of International Financial Markets,
Institutions and Money, 31(1):187–215, 7 2014. ISSN 10424431. doi: 10.1016/j.intfin.2014.03.012. [p145]

R. D. Huang and H. R. Stoll. Dealer versus auction markets: A paired comparison of execution costs
on nasdaq and the nyse. Journal of Financial Economics, 41(3):313–357, 7 1996. ISSN 0304405X. doi:
10.1016/0304-405X(95)00867-E. [p145]

R. D. Huang and H. R. Stoll. The components of the bid-ask spread: A general approach. Review of
Financial Studies, 10(4):995–1034, 10 1997. ISSN 08939454. doi: 10.1093/rfs/10.4.995. [p145]

M. A. Jenkins and J. F. Traub. Algorithm 419: zeros of a complex polynomial [c2]. Communications of
the ACM, 15(2):97–99, 1972. [p157]

S. G. Johnson. The nlopt nonlinear-optimization package, 2022. [p157]

W. C. Ke, H. Chen, and H. W. W. Lin. A note of techniques that mitigate floating-point errors in
pin estimation. Finance Research Letters, 31(December 2018):458–464, 12 2019. ISSN 15446123. doi:
10.1016/j.frl.2018.12.017. [p149]

C. M. Lee and M. J. Ready. Inferring trade direction from intraday data. The Journal of Finance, 46(2):
733–746, 6 1991. ISSN 15406261. doi: 10.1111/j.1540-6261.1991.tb02683.x. [p156, 157, 159]

E. Lin and C.-F. Lee. Application of poisson mixtures in the estimation of probability of informed
trading. In Handbook of Financial Econometrics and Statistics, pages 2601–2619. Springer, 2015. [p149]

W. Lin and W. Ke. A computing bias in estimating the probability of informed trading. Journal of
Financial Markets, 14(4):625–640, 2011. doi: 10.1016/j.finmar.2011.03.001. [p148, 149]

A. Madhavan, M. Richardson, and M. Roomans. Why do security prices change? a transaction-level
analysis of nyse stocks. Review of Financial Studies, 10(4):1035–1064, 2 1997. ISSN 08939454. doi:
10.1093/rfs/10.4.1035. [p145]

J. A. Nelder and R. Mead. A simplex method for function minimization. The computer journal, 7(4):
308–313, 1965. [p157]

S. K. Ng, T. Krishnan, and G. J. McLachlan. The em algorithm. In Handbook of computational statistics,
pages 139–172. Springer, 2012. [p148]

E. R. Odders-White. On the occurrence and consequences of inaccurate trade classification. Journal of
Financial Markets, 3(3):259–286, 8 2000. ISSN 13864181. doi: 10.1016/S1386-4181(00)00006-9. [p156]

M. Piwowar and L. Wei. The sensitivity of effective spread estimates to trade–quote matching
algorithms. Electronic Markets, 16(2):112–129, 5 2006. doi: 10.1080/10196780600643803. [p156, 157]

A. Recktenwald. pinbasic: Fast and Stable Estimation of the Probability of Informed Trading (PIN), 2018.
URL https://CRAN.R-project.org/package=pinbasic. R package version 1.2.2. [p145]

A. Recktenwald. Advanced methods for estimating the probability of informed trading. Saarländische
Universitäts-und Landesbibliothek, 2019. doi: http://dx.doi.org/10.22028/D291-31254. [p145]

D. Vaughan and M. Dancho. furrr: Apply Mapping Functions in Parallel using Futures, 2022.
https://github.com/DavisVaughan/furrr, https://furrr.futureverse.org/. [p158]

Y. Yan and S. Zhang. An improved estimation method and empirical properties of the probability
of informed trading. Journal of Banking and Finance, 36(2):454–467, 2 2012. ISSN 03784266. doi:
10.1016/j.jbankfin.2011.08.003. [p146, 148, 149, 152, 160]

X. Yin and J. Zhao. A hidden markov model approach to information-based trading: Theory and
applications. Journal of Applied Econometrics, 30(7):1210–1234, 11 2015. ISSN 10991255. doi: 10.1002/
jae.2412. [p145]

Montasser Ghachem
Department of Economics, Stockholm University
Stockholm, 106 91, Sweden
Sweden

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=pinbasic

CONTRIBUTED RESEARCH ARTICLE 168

(0000-0001-6991-3316)
montassar.ghachem@su.se

Oguz Ersan
International Trade and Finance Department, Kadir Has University
Istanbul, 34083
Turkey
(0000-0003-3135-5317)
oguzersan@khas.edu.tr

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

mailto:montassar.ghachem@su.se
mailto:oguzersan@khas.edu.tr

	PINstimation: An R Package for Estimating Probability of Informed Trading Models
	Introduction
	Theoretical background
	PIN model
	MPIN model
	AdjPIN model
	Computation issues for PIN, MPIN, and AdjPIN estimations
	The expectation-maximization algorithm
	VPIN measure

	The PINstimation package
	Standard PIN model functions
	MPIN model functions
	AdjPIN model functions
	Volume-synchronized probability of informed trading - VPIN
	Data simulation functions
	Trade aggregation function
	More on the PINstimation package

	Applications
	Data
	Example 1 – PIN estimation
	Example 2 – VPIN and announcements

	Conclusion

