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Gaussian Mixture Models in R
by Bastien Chassagnol, Antoine Bichat, Cheïma Boudjeniba, Pierre-Henri Wuillemin, Mickaël Guedj,
David Gohel, Gregory Nuel, and Etienne Becht

Abstract Gaussian mixture models (GMMs) are widely used for modelling stochastic problems. Indeed,
a wide diversity of packages have been developed in R. However, no recent review describing the
main features offered by these packages and comparing their performances has been performed.
In this article, we first introduce GMMs and the EM algorithm used to retrieve the parameters of
the model and analyse the main features implemented among seven of the most widely used R
packages. We then empirically compare their statistical and computational performances in relation
with the choice of the initialisation algorithm and the complexity of the mixture. We demonstrate
that the best estimation with well-separated components or with a small number of components
with distinguishable modes is obtained with REBMIX initialisation, implemented in the rebmix
package, while the best estimation with highly overlapping components is obtained with k-means
or random initialisation. Importantly, we show that implementation details in the EM algorithm
yield differences in the parameters’ estimation. Especially, packages mixtools (Young et al. 2020) and
Rmixmod (Langrognet et al. 2021) estimate the parameters of the mixture with smaller bias, while
the RMSE and variability of the estimates is smaller with packages bgmm (Ewa Szczurek 2021) ,
EMCluster (W.-C. Chen and Maitra 2022) , GMKMcharlie (Liu 2021), flexmix (Gruen and Leisch 2022)
and mclust (Fraley, Raftery, and Scrucca 2022). The comparison of these packages provides R users
with useful recommendations for improving the computational and statistical performance of their
clustering and for identifying common deficiencies. Additionally, we propose several improvements
in the development of a future, unified mixture model package.

1 Introduction to Mixture modelling

Formally, let’s consider a pair of random variables (X, S) with S ∈ {1, . . . , k} a discrete variable and
designing the component identity of each observation. When observed, S is generally denoted as
the labels of the individual observations. k is the number of mixture components. Then, the density
distribution of X is given in Equation (1):

fθ(X) = ∑
S

fθ(X, S)

=
k

∑
j=1

pj fζ j(X), X ∈ R

(1)

where θ = (p, ζ) = (p1, . . . , pk, ζ1, . . . , ζk) denotes the parameters of the model: pj is the proportion
of component j and ζ j represents the parameters of the density distribution followed by component j.
In addition, since S is a categorical variable parametrized by p, the prior weights must enforce the unit
simplex constraint (Equation (2)): {

pj ≥ 0 ∀j ∈ {1, . . . , k}
∑k

j=1 pj = 1
(2)

In terms of applications, mixture models can be used to achieve the following goals:

• Clustering: hard clustering consists in determining a complete partition of the n observations x1:n
into k disjoint non-empty subsets. In the context of mixture model-based clustering, this is done
by assigning each observation i to the cluster ŝi = arg maxj ηi(j) that maximises the posterior
distribution (MAP) (see Equation (3)):

ηi(j) := Pθ(Si = j|Xi = xi) (3)

• Prediction: the purpose is to predict a response variable Y from an explanatory variable X. The
dependent variable Y can either be discrete, taking values in classes {1, . . . , G} (classification
task) or continuous (regression task). In this paper, we do not extensively discuss application of
mixture models to regression purposes but refer the reader to Bouveyron and Girard (2009) for
mixture classification and Shimizu and Kaneko (2020) for mixtures of regression models.
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In section Univariate and multivariate Gaussian distributions in the context of mixture models,
we describe the most commonly used family, the Gaussian Mixture Model (GMM). We then present
the MLE estimation of the parameters of a GMM, introducing the classic EM algorithm in section
Parameter estimation in finite mixtures models. Finally, we introduce bootstrap methods used to
evaluate the quality of the estimation and metrics used for the selection of the best model in respectively
appendices Derivation of confidence intervals in GMMs and Model selection.

1.1 Univariate and multivariate Gaussian distributions in the context of mixture models

We focus our study on the finite Gaussian mixture models (GMM) in which we suppose that each of
the k components follows a Gaussian distribution.

We recall below the definition of the Gaussian distribution in both univariate and multivariate
context. In the finite univariate Gaussian mixture model, the distribution of each component fζ j(X) is
given by the following univariate Gaussian p.d.f. (probability density function) (Equation (4)):

fζ j(X = x) = φζ j (x|µj, σj) :=
1√

2πσj
exp

−
(x−µj )

2

2σ2
j (4)

which we note: X ∼ N (µj, σj).

In the univariate case, the parameters to be inferred from each component, ζ j, are: µj, the location
parameter (equal to the mean of the distribution) and σj, the scale parameter (equal to the standard
deviation of the distribution with a Gaussian distribution).

Following parsimonious parametrisations with respect to univariate GMMs are often considered:

• homoscedascity: variance is considered equal for all components, σj = σ, ∀j ∈ {1, . . . , k}, as
opposed to heteroscedascity where each sub-population has its unique variability.

• equi-proportion among all mixtures: pj =
1
k j ∈ {1, . . . , k} 1

In the finite multivariate Gaussian mixture model, the distribution fζ j(X) of each component j,
where X ∈ RD = (X1, . . . , XD)

⊤ is a multivariate random variable of dimension D, is given by the
following multivariate Gaussian p.d.f. (Equation (5)):

fζ j(X = x) = det(2πΣj)
− 1

2 exp
(
−1

2
(x − µj)Σ

−1
j (x − µj)

⊤
)

(5)

which we note X ∼ ND(µj, Σj). The parameters to be estimated for each component can be
decomposed into:

• µj =

µ1j
...

µDj

 ∈ RD, the D-dimensional mean vector.

• Σj, the MD(R) positive-definite 2covariance matrix, whose diagonal terms are the individual
variances of each feature and the off-diagonal terms are the pairwise covariance terms.

Three families of multivariate GMMs are often considered:

• the spherical family, Σj = σ2
j ID, with σj ∈ R∗

+, refers to GMMs whose covariance matrix is
diagonal with an unique standard deviation term. The corresponding volume representation is
a D−hypersphere of radius σj.

1A rarer constraint considered implies to enforce a linear constraint over the clusters’ means, of the following
general form: ∑k

j=1 ajµj = 0, with {a1, . . . , ak}. For instance, the R package epigenomix considers a k = 3
component mixture in the context of transcriptomic (differential analyses) and epigenetic (histone modification)
to automatically identify undifferentiated, over and under-expressed genes between case and control samples.
A common constraint then is to enforce the distribution of fold changes corresponding to the undifferentiated
expressed genes to have a distribution centred on 0. Combining equality of means and equality of variances is
irrelevant, as the model is then degenerate. Additionally, setting constraints on the means makes the estimation of
the parameters challenging, as detailed in Appendix Extensions of the EM algorithm to overcome its limitations.

2The positive-definiteness constraint can be interpreted from a probabilistic point of view as a necessary
condition such that the generalised integral of the multivariate distribution is defined and sum-to-one over R or
from the statistical definition of the covariance. A symmetric real matrix X of rank D is said to be positive-definite if
for any non-zero vector v,∈ RD , the following constraint v⊤Xv > 0 is enforced.
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• the diagonal family, Σj = diag
(

σ2
1j, . . . , σ2

1D

)
, with σj ∈ RD

+, refers to GMMs whose covariance
matrix is diagonal. Its associated volume representation is an ellipsoid whose main axes are
aligned with the D canonical basis of RD. Of note, the null constraint imposed over the off-
diagonal terms in the spherical and diagonal families imply that the multivariate distribution
can be further decomposed and analysed as the product of univariate independent Gaussian
realisations.

• the ellipsoidal family, also named the general family, refer to GMMs whose covariance matrix,
Σj, can be any arbitrary positive-definite D × D matrix. Thus, the corresponding clusters for
each component J are ellipsoidal, centred at the mean vector µj, and volume and orientation
respectively determined by the eigenvalues and the eigenvectors of the covariance matrix Σj.

In the multivariate setting, the volume, shape, and orientation of the covariances can be con-
strained to be equal or variable across clusters, generating 14 possible parametrisations with dif-
ferent geometric characteristics (Banfield and Raftery 1993; Celeux and Govaert 1992). We review
them in Appendix Parameters estimation in a high-dimensional context and Table 5. Of note, the cor-
relation matrix can be easily derived from the covariance matrix with the following normalisation:

cor(X) =

(
cov(xl ,xm)√

var(xl)×
√

var(xm)

)
(l,m)∈D×D

. Correlation if strictly included between -1 and 1, the

strength of the correlation is given by its absolute value while the type of the interaction is returned by
its sign. A correlation of 1 or -1 between two features indicates a strictly linear relationship.

For the sake of simplicity and tractability, we will only consider the fully unconstrained model in
both the univariate (heteroscedastic and unbalanced classes) and multivariate dimension (unbalanced
and complete covariance matrices for each cluster) in the remainder of our paper.

1.2 Parameter estimation in finite mixtures models

A common way for estimating the parameters of a parametric distribution is the maximum likelihood
estimation (MLE) method. It consists in estimating the parameters by maximising the likelihood,
or equivalently the log-likelihood of a sample. In what follows, ℓ(θ|x1:n) = log( f (x1:n|θ)) is the
log-likelihood of a n-sample. When all observations are independent, it simplifies to ℓ(θ|x1:n) =
∑n

i=1 log( f (xi|θ)). The MLE consists in finding the parameter estimate θ̂ which maximises the log-
likelihood θ̂ = arg max ℓ(θ|x1:n).

Recovering the maximum of a function is generally performed by finding the values at which its
derivative vanishes. The MLE in GMMs has interesting properties, as opposed to the moment estimation
method: it is a consistent, asymptotically efficient and unbiased estimator (Chen 2016; McLachlan and
Peel 2000).

When S is completely observed, for pairs of observations (x1:n, s1:n), the log-likelihood of a finite
mixture model is simply given by Equation (6):

ℓ(θ|X1:n = x1:n, S1:n = s1:n) =
n

∑
i=1

k

∑
j=1

[
log

(
fζ j (xi, si = j)

)
+ log(pj)

]
1si=j

(6)

where an analytical solution can be computed provided that a closed-form estimate exists to
retrieve the parameters ζ j for each components’ parametric distribution. The MLE maximisation, in this
context, involves the estimation of the parameters for each cluster, denoted as ζ j. The corresponding
proportions, pj, can be straightforwardly computed as the ratios of observations assigned to cluster j
relative to the total number of observations, n.

However, when S is unobserved, the log-likelihood, qualified as incomplete with respect to the
previous case, is given by Equation (7):

ℓ(θ|x1:n) =
n

∑
i=1

log


k

∑
j=1

pj fζ j (xi)︸ ︷︷ ︸
sum of of logs

 (7)

The sum of terms embed in the log function (see underbrace section in Equation (7)) makes it
intractable in practice to derive the null values of its corresponding derivative. Thus, no closed form
of the MLE is available, including for the basic univariate GMM model. This is why most parameter
estimation methods derive instead from the EM algorithm, first described in Dempster, Laird, and
Rubin (1977). We describe its main theoretical properties, the reasons for its popularity, and its main
limitations in the next section.
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1.3 The EM algorithm

In cases where both S and the parameters associated to each cluster are unknown, there is no available
closed-form solution that would jointly maximise the log-likelihood, as defined in Equation (7), with
respect to the set of parameters (θ, S). However, when either S or θ are known, the estimation of the
other parameters is straightforward. Hence, the general principle of EM-like algorithms is splitting this
complex non-closed joint MLE estimation of (S, θ) into the iterative estimation of Sq from θ̂q−1 and X
(expectation phase, or E-step of the algorithm) and the estimation of θ̂q from (Sq and X (maximisation
phase, or M-step), with θ̂q−1 being the estimated parameters at the previous step q − 1, until we reach
the convergence.

The EM algorithm sets itself apart from other commonly used methods by taking into account
all possible values taken by the latent variable S. To do so, it computes the expected value of the
log likelihood of θ, conditioned by the posterior distribution Pθ̂q−1

(S|X), also named as the auxiliary
function. Utilising the assumption of independence among observations in a mixture model, the
general formula of this proxy function of the incomplete log-likelihood is given in finite mixture
models by Equation (8).

Q(θ|θ̂q−1) := ES1:n |X1:n ,θ̂q−1
[ℓ(θ|X1:n, S1:n)]

=
n

∑
i=1

k

∑
j=1

ηi(j)
(

log(pj) + log(P(Xi|Si = j, θ))
) (8)

with θ̂q−1 = θ̂ the current estimated parameter value.

In practice, the EM algorithm consists in performing alternatively E-step and M-step until conver-
gence, as described in the pseudocode below (Box 1):

Box 1: the EM algorithm

• step E: determine the posterior probability function ηi(j) for each observation of X for
each possible discrete latent class, using the initial estimates θ̂0 at step q = 0, or the
previously computed estimates θ̂q−1. The general formula is given by Equation (9):

ηi(j) =
pj fζ j (xi)

∑k
j=1 pj fζ j (xi)

(9)

• step M: compute the mapping function θ̂q := M(θ|θ̂q−1) = arg max Q(θ|θ̂q−1) which
maximises the auxiliary function. One way of retrieving the MLE associated to the
auxiliary function is to determine the roots of its derivative, namely solving Equation
(10)a:

∂Q(θ|θ̂q−1)

∂θ
= 0 (10)

aTo ensure that we reach a maximum, we should assert that the Hessian matrix evaluated at the MLE is
indeed negative definite.

Interestingly, the decomposition of the incomplete log-likelihood associated to a mixture model
ℓ(θ|X) reveals an entropy term and the so-called auxiliary function (Dempster, Laird, and Rubin
1977). It can be used to prove that maximising the auxiliary function at each step induces a bounded
increase of the incomplete log-likelihood. Namely, the convergence of the EM algorithm, defined by
comparisons of consecutive log-likelihood, is guaranteed, provided the mapping function returns
the maximum of the auxiliary function. Yet, the convergence of the series of estimated parameters
(θq)q≥0 −→

i→+∞
θ̂ is harder to prove but has been formally demonstrated for the exponential family (a

superset of the Gaussian family), as stated in Dempster, Laird, and Rubin (1977).

Additionally, the EM algorithm is deterministic, meaning that for a given initial estimate θ0 the
parameters returned by the algorithm at a given step q are fixed. However, this method requires the
user to provide an initial estimate, denoted as θ0, of the model parameters and to specify the number
of components in the mixture. We review some classic initialisation methods in Initialisation of the
EM algorithm and some algorithms used to overcome the main limitations of the EM algorithm in the
Appendix Extensions of the EM algorithm to overcome its limitations.
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Finally, the prevalent choice of Gaussian distributions to characterize the distribution of random
observations is guided by a set of interesting properties. In particular, Geary (1936) has shown that
the Normal distribution is the only distribution for which the Cochran’s theorem (Cochran 1934) is
guaranteed, namely for which the the mean and variance of the sample are independent of each other.
Additionally, similar to any distribution proceeding from the exponential family, the MLE statistic is
sufficient3.

1.4 Initialisation of the EM algorithm

EM-like algorithms require an initial estimate of the parameters, θ0, to optimise the maximum like-
lihood. Initialisation is a crucial step, as a bad initialisation can possibly lead to a local sub-optimal
solution or trap the algorithm in the boundary of the parameter space. The most straightforward
initialisation methods, such as random initialisation, are standalone and do not require any addi-
tional initialisation algorithms, whereas meta-methods, such as short-EM, still need to be initialised by
alternative methods. The commonly-used initialisation methods encompass:

• The Model-based Hierarchical Agglomerative Clustering (MBHC) is an agglomerative hierarchical
clustering based on MLE criteria applied to GMMs (Scrucca and Raftery 2015). First, the
MBHC is initialised by assigning each observation to its own cluster. Next, the pair of clusters
that maximises the likelihood of the underlying statistical model among all possible pairs is
merged. This procedure is repeated until all clusters are merged. The final resulting clusters
are then simply the last k cuts of the resulting dendrogram. When the data is univariate and
homoscedastic, or when the underlying distribution has a diagonal covariance matrix, the
merging criterion performs similarly to Ward’s criterion, in that merging of the two clusters also
simultaneously minimizes the sum of squares. As opposed to the other initialisation methods
described hereafter, MBHC is a deterministic method which does not require careful calibration
of hyperparameters. However, as acknowledged by the author of the method (Fraley 1998), the
resulting partitions are generally suboptimal compared to other initialisation methods.

• The conventional random initialization method, frequently employed for the initialization step
of the k-means algorithm, involves the random selection of k distinct observations, which are
referred to as centroids. Subsequently, each observation is assigned to the nearest centroid, a
process reminiscent of the C-step in the CEM algorithm (Biernacki, Celeux, and Govaert 2003).
This is the method used in this paper, unless otherwise stated. Alternative versions of this
method have been developed: for instance, the package mixtools draws the proportions of the
components from a Dirichlet distribution, whose main advantage lies in respecting the unit
simplex constraint (Equation (2))4, but uses binning methods to guess the means and standard
deviations of the components. Similarly, Kwedlo (2013) proposes a method in which the means
of the components are randomly chosen, but with an additional constraint of maximising the
Mahalanobis distance between the selected centroids. This enables to cover a larger portion of
the parameters’ space.

• k-means is a CEM algorithm, in which the additional assumption of balanced classes and
homoscedascity implies that each observation in the E-step is assigned to the cluster with
the nearest mean (the one with the shortest Euclidean distance). K-means is initialised by
randomly selecting k points, known as the centroids. It is often chosen for its fast convergence
and memory-saving consumption.

• The quantile method sorts each observation xi in an increasing order and splits them into equi-
balanced quantiles of size 1/k. Then, all observations for a given quantile are assumed to belong
to the same component. 5

• The Rough-Enhanced-Bayes mixture (REBMIX) algorithm is implemented in the rebmix (Nagode
2022) package and the complete pseudo-code is described thoroughly in (Nagode 2015; Panic,
Klemenc, and Nagode 2020). The key stages implemented by the rebmix algorithm for initialis-
ing the parameters of GMMs encompass:

3The Pitman–Koopman–Darmois theorem (Koopman 1936) states that only the exponential family provides
distributions whose statistic can summarize arbitrary amounts of iid draws using a finite number of values

4Without prior knowledge favouring one component over another, the Dirichlet distribution is generally
parametrised by α = 1

k , implicitly stating that any observation has equal chance to proceed from a given cluster.
In that case, the corresponding distribution is parametrised by a single scalar value α, called the concentration
parameter.

5This method is only available in the univariate framework, since it is not possible to define a unique partition of
the observable space into k-splits. For example, in bivariate setting, a binning with k = 2 components on each axis
leads to a total of 2 × 2 = 4 binned regions, which raises the selection issue of the best k hyper-squared volumes for
the initial parameters estimation. More generally, (D

k ) binning choices are possible in the multivariate setting.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=rebmix


CONTRIBUTED RESEARCH ARTICLE 61

– First, the observations are processed using one of these three methods: k-nearest neigh-
bours (KNN), Parzen kernel density estimation, or binned intervals. With the binned
interval method, the observations are initially divided into

√
nD intervals of equal lengths.

The mode of one of the components’ distribution is subsequently determined by the
midpoint of the interval with the highest frequency. The observations lying within the
interval are used as preliminary estimates, referred to as “rough” parameters in Nagode
(2015).

– All other observations and intervals are then iteratively assigned to the currently estimated
component or to residual components, the ones that have not yet been characterised. The
decision to assign an interval to either the currently estimated component or one of the
residual components depends on the magnitude of the discrepancy between the observed
and the expected frequency within the interval.

– Finally, all intervals assigned to the currently estimated component (and not only the
interval including the mode of the distribution) are used to determine the parameters
of the associated Gaussian distribution. Since this step relies on a more comprehensive
number of observations for parameter estimation, guaranteeing in principle more robust
estimates, this stage is referred to as “enhanced” estimation in Nagode (2015). The
algorithm terminates when all intervals have been assigned to a cluster, and the parameters
of the various distribution components have been estimated.

The rebmix algorithm can thus be seen as a natural extension of the quantile method, with more
rigorous statistical support. Two drawbacks of the algorithm include the need for intensive calibration
of hyperparameters and its inadequacy for the estimation of highly overlapping or high dimensional
mixture distributions6.

• The meta-methods consist generally in short runs of EM-like algorithms, namely CEM, SEM and
EM (see Appendix B: Extensions of the EM algorithm to overcome its limitation), with alleviated
convergence criterion. The main idea is to use several random initial estimates with shorter
runs of the algorithm to explore larger regions of the parameter space and avoid being trapped
in a local maximum. Yet, these methods are highly dependent on the choice of the initialisation
algorithm (Biernacki, Celeux, and Govaert 2003).

• In the high-dimensional setting, if the number of dimensions D exceeds the number of ob-
servations n, all previous methods must be adjusted, usually by first projecting the dataset
into a smaller, suitable subspace and then inferring prior parameters in it. In particular, EM-
MIXmfa, in the mixture of common factor analysers (MCFA) approach, initialises the shared
projection matrix Q by either keeping the first d eigen vectors generated from standard principal
component analysis or uses custom random initialisations (Baek, McLachlan, and Flack 2010).

Following this theoretical introduction, we empirically evaluate the performance of the aforemen-
tioned R packages, considering various initialization algorithms and the complexity of the GMMs
distributions. Precisely, we outline the simulation framework used to compare the seven packages in
Methods and report the results in Results. We conclude by providing a general simplified framework
to select the combination of package and initialisation method best suited to its objectives and the
nature of the distribution of the dataset.

2 A comprehensive benchmark comparing estimation performance of
GMMs

We searched CRAN and Bioconductor mirrors for packages that can retrieve parameters of GMM
models. Briefly, out of 54 packages dealing with GMMs estimation, we focused on seven packages that
all estimate the MLE in GMMs using the EM algorithm, were recently updated and allow the users
to specify their own initial estimates: bgmm, EMCluster, flexmix, GMKMcharlie, mclust, mixtools
and Rmixmod. The complete inclusion process is detailed in Appendix C, the meta-analysis workflow
for the final selection of CRAN and Bioconductor platforms. The flowchart summarising our choices is
represented in Figure 1.

6The method we describe here to preprocess the observations in order to estimate the empirical density
estimation, namely the “histogram method” is not well suited for high dimensional data, as the exponential
growth of the volume with respect to dimensionality leads to data sparsity, related to the well-known issue of the
“curse of dimensionality”. Indeed,

√
nD distinct intervals will be parsed by the method and the probability with

an increasing number of features and decreasing number of observations that no clear local maximum emerges
converges to 1. In high-dimensional context, the Parzen window or the KNN method should be favoured, see
(Nagode 2015), p. 16.
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Figure 1: A minimal roadmap used for the selection of the packages reviewed in our benchmark.

We also include two additional packages dedicated specifically to high-dimensional settings,
namely EMMIXmfa (Rathnayake et al. 2019) and HDclassif (Berge, Bouveyron, and Girard 2019) to
compare their performance with standard multivariate approaches in complex, but non degenerate
cases. We summarise the main features and use cases of the seven + two reviewed packages in Table
1. The three most commonly used packages are mixtools, mclust and flexmix. However, the mclust
package is by far the most complete with many features provided to visualise and evaluate the quality
of the GMM estimate. bgmm has the greatest number of dependencies, while mclust only depends
of base R packages. Additionally, in parallel to clustering tasks, flexmix and mixtools packages
perform regression of mixtures and implement mixture models using other parametric distributions
or non-parametric methods via kernel-density estimation.

Table 1: Main features of the reviewed packages, sorted by decreasing number of daily downloads.
Downloads per day returns the daily average number of downloads for each package on the last 2 years.
Recursive dependencies column counts the complete set of non-base packages required, as first-order
dependencies depend on other packages as well.

Package Version Regression Implemented
models

Downloads
per day

Last
update Imports Recursive

dependencies Language

mclust 5.4.7 5223 31/10/2022 R (≥ 3.0) 0 Fortran

flexmix 2.3-17
Poisson, binary,
non-parametric,
semi-parametric

3852 07/06/2022 R (≥ 2.15.0), modeltools,
nnet, stats4 3 R

mixtools 1.2.0
multinomial, gamma,

Weibull, non-parametric,
semi-parametric

178 05/02/2022 R (≥ 3.5.0), kernlab,
segmented, survival 6 C

Rmixmod 2.1.5 39 18/10/2022 R (≥ 2.12.0), Rcpp,
RcppEigen 4 C++

EMCluster 0.2-13 33 12/08/2022 R (≥ 3.0.1), Matrix 3 C

bgmm 1.8.4 27 10/10/2021 R (≥ 2.0),
mvtnorm, combinat

77 R

GMKMcharlie 1.1.1 12 29/05/2021 Rcpp, RcppParallel,
RcppArmadillo 3 C++

EMMIXmfa 2.0.11 12 16/12/2019 NA 0 C
HDclassif 2.2.0 35 12/10/2022 rARPACK 13 R

We further detail features specifically related to GMMs in Table 2. We detail row after row its
content below:

• The parametrisations used to provide parsimonious estimation of the GMMs are reviewed in
Parameter estimation in finite mixtures models and summarised in rows 1 and 2 (Table 2) for the
univariate and multivariate setting. We refer to the package as “canonical” when it implements
both homoscedastic and heteroscedastic parametrisations in the univariate setting, and the
14 parametrisations listed in Supplementary Table 3 in the multivariate setting. Adding the
additional constraint of equi-balanced clusters results in a total to 14 × 2 = 28 distinct models
and 2 × 2 = 4 parametrisations, respectively in the univariate and multivariate setting. Since
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EMMIXmfa and HDclassif are dedicated to the analysis of high-dimensional datasets, they
project the observations in a smaller subspace and are not available in the univariate setting.
Given an user-defined or prior computed intrinsic dimension, we can imagine using any of the
standard parametrisations available for instance in the mclust package, and listed in Appendix
Parsimonious parametrisation of multivariate GMMs. In addition, HDclassif allows each cluster j
to be represented with its own subspace intrinsic dimension dj, as we describe in further details
in Appendix Parameters estimation in a high-dimensional context.

• The EM algorithm is the most commonly employed method for estimating the parameters of
GMMs, however, alternative algorithms based on the EM framework, are reviewed in Appendix
B: Extensions of the EM algorithm to overcome its limitations and row 3 of Table 2. Especially, GMMs
estimation is particularly impacted by the presence of outliers, justifying a specific benchmark
(see Appendix A small simulation to evaluate the impact of outliers). We briefly review the most
common initialisation algorithms in section Initialisation of the EM algorithm and row 4 of
Table 2, a necessary and tedious task for both the EM algorithm and its alternatives.

• To select the best parametrisations and number of components that fit the mixture, several met-
rics are provided by the reviewed packages (Model selection and row 5). Due to the complexity of
computing the true distribution of the estimated parameters, bootstrap methods are commonly
used used to derive confidence intervals (see Appendix Derivation of confidence intervals in GMMs
and row 6 in Table 2).

• Six packages supply several functions for visualisation, summarised in the last row of Table 2, to
display either the distributions corresponding to the estimated parameters or compare quickly
the performance across packages. However, mclust is by far the most complete one, with density
plots (in the univariate setting) and isodensity plots (bi-dimensional in the bivariate setting
or in higher dimensions after appropriate dimensionality reduction), with the option to plot
custom confidence intervals and critical regions, and finally boxplot bootstrap representations
for displaying the distribution of the benchmarked estimated parameters.

High-dimensional packages provide specific representations adjusted to the high-dimensional
settings, notably allowing the user to visualise the projected factorial representation of its dataset in a
two or three-dimensional subspace. They also provide specialised performance plots, notably scree
plots or BIC scatter plots to represent in a compact way numerous projections and parametrisations.

Table 2: Custom features associated to GMMs estimation for any of the benchmarked packages.

mclust flexmix mixtools Rmixmod EMCluster bgmm GMKMcharlie EMMIXmfa HDclassif

Models Available (univariate) canonical unconstrainedcanonical canonical unconstrainedcanonical unconstrained NA NA

Models Available (multivariate) canonical
unconstrained
diagonal
or general

unconstrainedcanonical unconstrained

4 models
(diagonal
and
general,
either
compo-
nent
specific or
global)

unconstrained

4 models
(either
component-
wise or
common,
on the
intrinsic
and
diagonal
residual
error co-
variance
matrices)

canonical
on
projected
dimen-
sion

Variants of the EM algorithm VBEM SEM,
CEM ECM SEM,

CEM CW-EM, MML AECM SEM,
CEM

Initialisation hierarchical clustering,
quantile

short-EM,
random random

random,
short-EM,
CEM,
SEM

random,
short-EM

k-means,
quantile k-means

k-means,
random,
heuristic

short-EM,
random,
k-means

Model or Cluster Selection BIC, ICL, LRTS AIC, BIC,
ICL

AIC, BIC,
ICL,
CAIC,
LRTS

BIC, ICL,
NEC

AIC, BIC,
ICL, CLC GIC BIC, ICL,

CV

Bootstrap Confidence Intervals

Visualisation

performance, histograms
and boxplots of
bootstrapped estimates,
density plots (univariate),
scatter plots with
uncertainity regions and
boundaries (bivariate),
isodensity (bivariate , 2D
projected PCA or
selecting coordinates)

density
curves

density
curves,
scatter
plots with
uncer-
tainty
bound-
aries

performance,
scatter
plots with
uncer-
tainty
bound-
aries

projected
factorial
map

projected
factorial
map, per-
formance
(Cattell’s
scree plot,
BIC per-
formance,
slope
heuristic)

2.1 Methods

In addition to the the seven packages selected for our benchmark, we include a custom R implementa-
tion of the EM algorithm used as baseline, referred to as RGMMBench, and for the high-dimensional
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setting we select packages EMMIXmfa and HDclassif, on the basis of criteria detailed in Appendix C,
General workflow. Code for RGMMBench is provided in Appendix Application of the EM algorithm to
GMMs. To compare the statistical performances of these packages, we performed parametric bootstrap
(Derivation of confidence intervals in GMMs) and built an experimental design to cover distinct mixture
distributions parameter configurations, using prior user-defined parameters.

For each experiment, we assign each observation to an unique cluster by drawing n labels S1:n from
a multinomial distribution whose parameters were the prior user-defined proportions p = (p1, . . . , pk).
Then, each observation xi assigned to hidden component j is drawn from a Normal distribution using
the stats::rnorm() function for the univariate distribution and MASS::mvrnorm for the multivariate
distribution. The complete code used for simulating data is available on GitHub at RGMMBench.
Finally, we obtain an empirical distribution of the estimated parameters by computing the MLE of
each randomly generated sample.

For all the packages, we used the same convergence threshold, 10−6, and maximum of 1,000
iterations, as a numerical criterion for convergence. We generated simulated data with n = 200
observations in the univariate setting and n = 500 observations in the bivariate setting. We set the
number of observations in order to minimise the probability of generating a sample without drawing
any observations from one of the components7. Unless stated explicitly, we kept the default hyper-
parameters and custom global options provided by each package. For instance, the flexmix package
has a default option, minprior, set by default to 0.05, which removes any component present in the
mixture with a ratio below 0.05. Besides, the fully unconstrained model was the only one which
we implemented both in the univariate and multivariate settings, as it is the only parametrisation
implemented in all the seven packages.

We compared the packages’ performances using five initialisation methods: random, quantile,
k-means, rebmix and hierarchical clustering in the univariate setting. We benchmarked the same
initialisation methods in the multivariate setting, except for the quantile method which has no
multivariate equivalent (see section Initialisation of the EM algorithm):

• We used the function EMCluster::rand.EM() with 10 random restarts and minimal cluster
size of 2 for the random initialisation. The method implemented by EMCluster is the most
commonly used, described in details in Biernacki, Celeux, and Govaert (2003) and in section
Initialisation of the EM algorithm.

• To implement the k-means initialisation, we used the stats::kmeans() function with a conver-
gence criterion fo 10ˆ{-2} and maximum of 200 iterations. The initial centroid and covariance
matrix for each component were computed by restricting to the sample observations assigned to
the corresponding component. The approach is close to the one adopted by the CEM algorithm
(see Appendix B: Extensions of the EM algorithm to overcome its limitations).

• We used the mclust::hcV() function for the MBHC algorithm. This method has two main
limitations: just like the k-means implementation, it only returns a cluster assignment to each
observation instead of the posterior probabilities, and the splitting process to generate the
clusters sometimes results in clusters composed of only one observation. To avoid this, we
added a small epsilon to each posterior probability.

• We used in the univariate setting bgmm::init.model.params for the quantiles initialisation.

• To implement the rebmix method, we used the rebmix::REBMIX function, using the kernel density
estimation for the estimation of the empirical density distribution coupled with EMcontrol set to
one to prevent the algorithm from starting EM iterations.

• Any of the seven packages could be used to implement the small EM method. We decided
to use the mixtools::normalmixEM as it is the closest one to our custom implementation. We
specified 10 random restarts, a maximal number of iterations of 200 and an alleviated absolute
threshold of 10−2. Preliminary experiments have led us to consider the removal of the small EM
initialization method from the simulation benchmark. This decision is based on the observation
that the differences of performance observed between the packages were no longer significant
(see supplementary Figure 9).

We sum up in Table 3 the general configuration used to run the scripts. Additionally, all simulations
were run with the same R (R Core Team 2023) version 4.0.2 (2020-06-22).

Preliminary experiments suggested that the quality of the estimation of a GMM is mostly affected
by the overlap between components’ distribution and level of unbalance between components. We
quantified the overlap between two components by the following overlap score (OVL, see Equation
(11)), with a smaller score denoting well-separated components:

7It is especially critical in cases of highly unbalanced configurations, as detailed in Appendix Practical details for
the implementation of our benchmark
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Table 3: Global options shared by all the benchmarked packages.

Initialisation methods Algorithms Criterion threshold Maximal iterations Number of observations

midrule hc, kmeans, small
EM,rebmix, quantiles,

random

EM R, Rmixmod, bgmm,
mclust, flexmix,

EMCluster, mixtools,
GMKMCharlie

10−6 1000 100, 200, 500, 1000, 2000,
5000, 10000

OVL(i, j) =
∫

min( fζi (x), fζ j (x))dx with i ̸= j (11)

We may generalise this definition to k components by averaging the individual components’
overlap. We use the function MixSim::overlap from the MixSim package (Melnykov, Chen, and
Maitra 2021) that approximates this quantity using a Monte-Carlo based method (see appendices An
analytic formula of the overlap for univariate Gaussian mixtures and Practical details for the implementation of
our benchmark for further details).

The level of imbalance may be evaluated with entropy measure (Equation (12)):

H(S) = −
k

∑
j=1

pj logk(pj) (12)

with k is the number of components and pj = P(S = j) is the frequency of class j.
We considered 9 distinct configuration parameters, associated with distinct values of OVL and

entropy in the univariate setting, 20 configurations in the bivariate setting, and 16 configurations in
the high-dimensional setting. Briefly, in the univariate setting, we simulated components with the
same set of four means (0, 4, 8, and 12), three sets of mixture proportions
[(0.25, 0.25, 0.25, 0.25); (0.2, 0.4, 0.2, 0.2); (0.1, 0.7, 0.1, 0.1)] and three variances: (0.3, 1, 2). In the bivari-
ate setting, we consider two sets of proportions: [(0.5, 0.5); (0.9, 0.1)], two sets of coordinate centroids:
[(0; 20), (20, 0)] and [(0; 2), (2, 0)], the same variance of 1 for each feature and for each component for
illustrative purposes of the direct relation linking the correlation and the level of OVL and five sets of
correlation:[(−0.8,−0.8); (0.8,−0.8); (−0.8, 0.8); (0.8, 0.8); (0, 0)].

Finally, we tested eight configurations in the high-dimensional framework, setting to D = 10 the
number of dimensions. We modified the level of overlap (definition is reported in Equation (11)) and
the imbalance between the component proportions across our simulations. Additionally, we tested
two types of constraints on the covariance matrix: fully parametrised and spherical (see Appendix
Parsimonious parametrisation of multivariate GMMs). Each of the parameter configurations tested in
the high-dimensional setting was evaluated with n = 200 observations and n = 2000 observations.
Additionally, instead of manually defining the parameters for the high-dimensional simulation, we
used the MixSim function from the MixSim package (Melnykov, Chen, and Maitra 2021). This function
returns the user a fully parametrised GMM, with a prior defined level of maximum or average
overlap8.

The complete list of parameters used is reported respectively in Table 4 for the univariate setting,
Table 5 for the bivariate setting and 6 for the high-dimensional setting. We benchmarked simulations
where the components were alternatively very distinct or instead very overlapping, as well as of equal
proportions or instead very unbalanced. The adjustments made to meet the specific requirements of
high dimensional packages are detailed in Practical details for the implementation of our benchmark.

We report the most significant results and features and the associated recommendations in next
section Results.

2.2 Results

All figures and performance overview tables are reported in Supplementary Figures and Tables in the
univariate simulation for the univariate setting, Supplementary Figures and Tables in the bivariate simulation
for the bivariate scenario and Supplementary Figures and Tables in the HD simulation for the high
dimensional scenario.

Balanced and non-overlapping components

8Unfortunately, as discussed in further details in Appendix An analytic formula of the overlap for univariate Gaussian
mixtures, the MixSim package does not compute the global distribution overlap, but instead returns the mean
of pairwise overlap between any component (however, with two components, these two alternative definitions
match.) Finally, it is not possible to set the proportions of the components before the generation of the parameters,
except for clusters with equal proportions, and contrary to the expect behaviour of additional parameter PiLow,
supposed to define the smallest mixing proportion.
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In the univariate setting, with balanced components and low OVL (scenario U1 in Table 4), the
parameter estimates are identical in most cases across initialisation methods and packages, notably
the same estimates are returned with k-means or rebmix initialisation. However, the random initial-
isation method leads to a higher variance and bias on the parameter estimates than other methods
(Supplementary Figure 4 and Supplementary Table 6), with some estimates fitting only local maxima,
far from the optimal value.

Similarly, the scenarios in the bivariate setting (configurations B6-B10 in Table 5), with a focus on B6,
B7 and B10 visualised in Supplementary Figure 16, feature well-separated and balanced components.
Consistent with conclusions from the corresponding univariate configurations, all benchmarked
packages return the same estimates across initialisation methods.

Unbalanced and non-overlapping components

However, with unbalanced classes and low OVL (scenario U7 in 4), the choice of the initialisation
method is crucial, with quantiles and random methods yielding more biased estimates and proned to
fall in local maximum. Rebmix initialisation provides the best estimates, with the smallest MSE and
bias across packages (Supplementary Figure 5 and supplementary Table 7, always associated with
the highest likelihood. Overall, with well-discriminated components, most of the differences on the
estimation originate from the choice of initialisation method, while the choice of the package has only
small impact.

In the bivariate framework, two configurations featured both strongly unbalanced and well-
separated components, similarly to scenario U3 in Table 4: the configurations B12 (Supplementary
Figure 12 and Table 12) and B14 (Supplementary Figure 13 and Supplementary Table 13). Similarly,
configurations B16, B17 and B20 (Table 5) with similar characteristics are summarised in supplementary
Figure 17. In all these configurations, neither the initialisation method nor the package have a statistical
significant impact on the overall performance.

Similarly, configurations HD1a-HD4b in Table 6) in the high dimensional setting display well-
separated clusters, with a representative outcome represented in Supplementary Figure 19 and
Supplementary Table 16. Consistent with the results obtained in the analogous univariate and bivariate
scenarios, in the unbalanced and non-overlapping framework, the majority of the benchmarked
packages produce highly consistent and similar estimates when hierarchical clustering and k-means
were used for parameter initialisation. However, bgmm and EMCluster clearly perform worse when
the rebmix initialization method is used (however, overall, rebmix performs poorly, regardless of the
package used for estimation). Notably, initialisations with the rebmix package tend to display a much
larger number of poor estimations, some of which can be identified with the local maxima associated
with parameter switching between the two classes. Finally, the two additional packages dedicated to
high-dimensional clustering display the worst performances, with EMMIXmfa returning the most
biased parameters and HDclassif the most noisy estimates. EMMIXmfa is the only package that
returned highly biased estimates of the components’ proportions in this setting.

Balanced and overlapping components

When the overlap between components increases, the bias and variability of the estimates tends to
increase, and the choice of initialisation method becomes more impactful. The least biased and noisy
estimations with balanced components in the univariate setting (scenario U3 in Table 4) are obtained
with the k-means initialisation (Supplementary Figure 3 and Table 8) while the rebmix initialisation
returns the most biased and noisy estimates. Similar results are found in the bivariate setting with a
balanced and highly overlapping two-component GMM (configurations B1-B5 from Table 5), with
the best performance reached with the k-means initialisation method, followed by MBHC. This is
emphasised in supplementary Figure 16, in the top three most complex configurations, namely B1, B2
and B5. If the shape of the covariance matrix is well-recovered, no matter the package, the Hellinger
distances are significantly higher (and thus the estimate further away from the target distribution)
with the random and rebmix methods.

Similarly, in the high-dimensional scenario HD7 of Table 6), presenting balanced but highly
overlapping clusters with a full covariance structure, the best performance was obtained with k-means
initialisation, while the rebmix initialisation returned the most biased and noisy estimates. While
EMMIXmfa performed well when it converged, it returned an error in most cases (see Column Success
of supplementary Table 17). The least biased estimates were returned by mixtools and Rmixmod
and the least noisy by flexmix, mclust and GMKMCharlie (smaller MSE). Interestingly, in the high-
dimensional setting, the packages EMCluster and bgmm exhibited worse performance. In particular,
as can be seen in panel E of supplementary Figure 20, the proportions of the components recovered
the ]0 − 1[k simplex.

Conversely, the EMCluster package, and to a lesser extent, the bgmm package, performed sur-
prisingly well when datasets were simulated with an underlying spherical covariance structure, even
though the estimation was not performed explicitly with this constraint (Supplementary Table 19).
Indeed, it seems like that the off-diagonal terms tended to converge towards 0, as showcased in
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Supplementary Figure 21, in Panel C, in which the fourth row from top represents the bootstrap
intervals associated to the pairwise covariance between dimension 1 and 2 of each cluster.

Unbalanced and overlapping components

With unbalanced components and high OVL (scenario U9 in Table 4), all packages, no matter the
initialisation method, provided biased estimates, with a higher variability of the parameter estimates
compared to other configurations. The least biased estimates were obtained with k-means or random
initialisation, but with a higher variability on the estimates with random initialisation (Supplementary
Table 9). Delving further into the individual analysis of the parameter estimates associated to each
component, we found out that the least biased estimates were achieved with rebmix initialisation
for the most distinguishable components. For instance, in our configuration, the clusters 2 and 4
(see Supplementary Figure 7 and Table 9) were better characterised with the rebmix method. This
observation aligns with the rebmix’s underlying framework, using the modes of the distribution for
initialising the component (Nagode 2015). With highly-overlapping distributions and unbalanced
components, both the choice of the initialisation algorithm and the package have a substantial impact
on the quality of the estimation of this mixture.

Two configurations in our bivariate simulation feature distributions with both strong OVL and
unbalanced components. Especially, the scenario B11 (Table 5) has the strongest OVL overall, with
notably a risk of wrongly assigning minor component 2 to major component 1 of 0.5 (a random method
classifying each observation to cluster 1 or 2 would have the same performance).

First, we observe that the the random and rebmix initialisation methods have similar performance,
significantly better than k-means or MBHC (Supplementary Figure 11). Specifically, the rebmix
method returns the least biased estimates, while the random method is associated with the lowest
MSE (respectively for configurations B11 and B15, the supplementary Tables 11 and 14). Second, the
estimates differ across packages only in these two complex configurations, with packages Rmixmod
and mixtools returning more accurate estimates than the others. It it is particularly emphasised in
Scenario B15, where the component-specific covariance matrices are diagonal with same non-null
input, and thus should present spherical density distributions. However, only the first class of
packages correctly recovers the spherical bivariate 95% confidence regions while they are slightly
ellipsoidal with the second class of packages (Panel B, Supplementary Figure 14).

With full covariance structures and unbalanced proportions, as depicted in the high-dimensional
Scenario HD8a) and b) of Table 6, the general observations stated in the previous subsection for the
high dimensional setting hold, namely that the least biased estimates are returned by packages not
specifically designed for high-dimensional data, with the k-means initialisation (Supplementary Table
12 and supplementary Figure 22). Furthermore, the EMCluster and bgmm packages and the two
packages dedicated to high-dimensional, perform similarly with n = 200 observations (sub-scenario
a) and n = 2000 observations (sub-scenario b), whereas we would expect narrower and less biased
confidence intervals by increasing the number of observations by a factor of 10.

Finally, with spherical covariance structures and unbalanced proportions, the best performances,
both in terms of bias and variability, are obtained with flexmix, mclust and GMKMCharlie. Indeed,
as detailed later in Conclusions, these packages are more sensitive to the choice of the initialisation
method and have a greater tendency to get trapped in the neighbourhood of the initial estimates (Sup-
plementary Table 19 and supplementary Figure 22). Accordingly, k-means initialisation performs best
since it assumes independent and homoscedastic features for each cluster. Furthermore, EMMIXmfa is
the package that best estimates the off-diagonal terms in this setting, as highlighted in supplementary
Table 19.

Identification of two classes of packages with distinct behaviours

By summarizing the results obtained across all simulations, we identify two classes of packages
with distinct behaviours (Figure 2):

• The first class of packages, represented by Rmixmod and mixtools, returns similar estimates to
our baseline EM implementation. The estimates returned by these packages are less biased but
at the extent of a higher variability on the estimates. Additionally, with overlapping mixtures,
they tend to be slower compared to the second class, since they require additional steps to reach
convergence.

• The second class of packages, composed of the other reviewed packages, is more sensitive to
the initialisation method. This leads to more biased but less variable estimates, especially when
assumptions done by the initialisation algorithm are not met.

Panels A, B and C display, respectively in the univariate, bivariate and high-dimensional setting,
the heatmap of the Pearson correlation between the estimated parameters across the benchmarked
packages for the most discriminative scenario (the one featuring the most unbalanced and overlapping
components): scenario U9, Table 4 in the univariate setting, scenario B11, Table 5, for the bivari-
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Figure 2: Panels A, B and C show respectively the heatmap of the Pearson correlation in the univari-
ate, bivariate and high-dimensional framework between the parameters estimated by the packages,
evaluated for the most discriminating and complex scenario. The correlation matrix was computed
using the function stats::cor with option complete to remove any missing value related to a failed
simulation, and the heatmap generated with the Bioconductor package ComplexHeatmap. Panel D
represents a tree summarising the main differences between the benchmarked packages, in terms of
the EM implementation. They are discussed in more detail in Appendix EM-implementation differences
across reviewed packages.

ate simulation and scenario HD8, Table 6 for the high-dimensional simulation, with the k-means
initialisation.

We further identified with this representation minor differences for the estimation of the pa-
rameters between Rmixmod and mixtools, while three subgroups can be identified in the second
class of packages: the first subset with bgmm and mclust, the second subset with EMCluster and
GMKMcharlie packages and the flexmix package, which clearly stands out from the others, as being
the one most likely to be trapped at the boundaries of the parameter space. After examining the
source codes of the packages, we attribute this differences to custom implementation choices of the
EM algorithm, such as the way numerical underflow is managed or the choice of a relative or absolute
scale to compare consecutive computed log-likelihoods (see Appendix EM-implementation differences
across reviewed packages and Panel D, Figure 2). In the high-dimensional setting, the second class of
packages showed additional heterogeneity, with EMCluster and bgmm setting themselves apart from
the other three packages.

Failed estimations

Finally, in some cases, neither the specific EM algorithm implemented by each package nor the
initialisation method were able to return an estimate with the expected number of components, or
converged to a degenerate distribution (e.g., with infinite or zero variances). In that case, we considered
the estimation as failed and accordingly we did not include it into the visualisations and the summary
metric tables.

Most of the failed estimations occurred with the rebmix initialisation. Indeed, an updated version
of the package forced the user to provide a set of possible positive integer values for the number
of components, with at least a difference of two between the model with the most components and
the model with the least components (we therefore set the parameter cmax to k + 1 and cmin to
k − 1).In scenarios where the distributions associated with each cluster exhibit significant overlap,
there is an increased risk of incorrectly estimating the number of components. This arises from the
inherent difficulty of discerning the modes within the overall distribution. For instance, in the most
complex scenario B11, characterized by strong overlap and imbalanced clusters (refer to Table 5),
up to 20% of initialisations were unsuccessful. Similarly, in the second most challenging scenario,
B15, approximately 10% of initializations failed against an averaged number of 4% of the simulations
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exhibiting an inaccurate estimation of the number of components.

Removing errors proceeding from the initialisation method, only the flexmix package failed in
returning an estimate matching the user criteria in some configurations of the univariate and bivariate
settings. In both cases, the strong assumption that any cluster with less than 5% of the observations is
irrelevant, results in trimming one or more components9. This strong agnostic constraint on component
proportions led to failures in configurations featuring strongly overlapping clusters, with up to 20%
failed estimations with the random initialisation method in scenario B11 (Table 5) and 80% failed
estimations in the univariate setting10 with the rebmix initialisation with scenario U9, Table 4.

In a relatively high dimensional framework, as tested on our third benchmark (Table 6), none
of the algorithms that were initialised with the random method (EMCluster::rand.EM()) converged
successfully. Indeed, of the 16 configurations tested, the covariance returned during the initialisation
was systematically non-positive definite for at least one of the components, violating the properties
of covariance matrices. Furthermore, an analysis of summary metrics in scenarios HD1 and HD8,
reported in supplementary Tables 20 and 21, revealed a notably higher rate of failures when employing
rebmix initialisation in conjunction with packages tailored for high dimensionality, such as HDclassif
EMMIXmfa. This discrepancy was in stark contrast to the more reliable and consistent initial estimates
returned by k-means or hierarchical clustering.

Furthermore, as shown by the comparison of summary metrics with n = 200 and n = 2000
observations in supplementary Tables 20 and 21, respectively for the simplest scenario HD1 and the
most complex one HD8, the rebmix initialisation on the one hand, and the packages dedicated to high
dimensionality or those of the second class of packages that show a particular behaviour, present
much more failures than the k-means or hierarchical clustering initialisation.

3 Conclusions

There are many packages that implement the EM algorithm for estimating the parameters of GMMs.
But only few are regularly updated, implement both the unconstrained univariate and multivariate
GMM, and enable the user to provide its own initial estimates. Hence, among the 54 packages dealing
with GMMs available on CRAN or Bioconductor repositories, we focused our review on 7 packages
which implement all of these features. We believe that our in-depth review of the packages can help
users to quickly find the best package for their clustering pipeline and highlight limitations in the
implementation of some packages. Our benchmark covers a much broader range of configurations
than the previously-published studies (Nityasuddhi and Böhning 2003; Lourens et al. 2013; Leytham
1984; Xu and Knight 2010), as we studied the impact of the level of overlap and the imbalance of the
mixture proportions on the quality of the estimation.

Interestingly, the EM algorithm occasionally yields biased and inefficient estimates when the
components overlap a lot, which agrees with the past literature (Lourens et al. 2013; Leytham 1984; Xu
and Knight 2010). This appears to go counter to the theoretical results presented by Leytham (1984),
which demonstrated the asymptotic consistency, unbiasedness, and efficiency of maximum likelihood
estimates of GMMs. However, it’s important to note that this theoretical demonstration relies on the
definition of a “local” environment, necessitating the prior setting of boundaries within which the
theorem’s conditions are met (in other words, the definition of the support, which delineates the region
where the initial values can be sampled from). It’s not then surprising that the EM algorithm struggles
in reaching the global maximum of the distribution in the presence of multiple local extremes.

When all components are well-separated or have a relatively small number of components (three or
fewer), we found that the best estimation (lowest MSE and bias) is reached with the latest initialisation
method developed, namely the rebmix one. Notably, the global maximum is always properly found in
our simulations with distinguishable components. Yet, with overlapping components, the least biased
and variable estimates overall are obtained with k-means initialisation, enforcing the robustness of the
method while the assumptions for using it are not met.

On the contrary, with unbalanced and numerous components (above three), the quantiles initiali-
sation leads to the most biased estimates while the rebmix initialisation induces the highest variability.
Indeed, rebmix initialisation is not fit for highly overlapping mixtures, since one of its most restrictive
assumption is that each generated interval of the empirical mixture distribution can be associated
unambiguously to a component (see Initialisation of the EM algorithm and Nagode (2015)).

Furthermore, rebmix is not particularly adjusted to deal with high-dimensional mixtures, display-
ing systematically poorer performance compared to other initialisation strategies, such as k-means or
hierarchical clustering, as illustrated by the summary metrics listed in Appendix Supplementary Figures

9With a two-components mixture like our bivariate scenario, this even implies to consider an unimodal distribu-
tion of the dataset

10the gap proceeds from the stronger level of imbalance and the greater number of components
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and Tables in the HD simulation. Higher risk of returning a sub-optimal extremum likely arises from the
increased data sparsity in high dimensional datasets, which grows as the square root of the number of
dimensions

√
D (Convergence of distance definitions). Thus, we expect that most of the equally-large

intervals binning the sampling space and that are used to initiate the rebmix algorithm contain either
no or only observation, preventing from retrieving the numerically defined mode of the distribution
and increasing the risk of initiating the algorithm in a spurious neighbourhood.

About the remaining initialisation strategies, we observed that, even in the well-separated case,
random initializations can sometimes yield highly biased estimates, far from the true parameter values.
Consistent with our observations, it was shown in Jin et al. (2016) that the probability for the EM
algorithm to converge from randomly initialised estimates to a local suboptimal maximum is non
null above two components, increasing with the number of components. Additionally, the local
maximum of the likelihood function obtained can be arbitrarily worse than the global maximum.
Finally, hierarchical clustering does not take into account any uncertainty on the assignment for an
observation to a given class, which explains its rather bad performances with overlapping components.
Overall, there is always an initialisation algorithm performing better than the hierarchical clustering,
and further it is also by far the slowest and most computationally intensive initialisation method (see
supplementary Figure 10).

Our study reveals that while the EM algorithm is supposed to be deterministic, the estimates
obtained from its implementations can differ across packages. We were able to link these differences
with custom choices of EM implementations across the benchmarked packages. Two distinct classes of
packages emerge, each with specific approaches to address certain limitations of the EM algorithm.
The first class, exemplified by mixtools and Rmixmod typically yields smaller but less biased estimates
that exhibit lower sensitivity to the choice of initialization method. However, these estimates tend to
have higher variability and require longer running times to achieve convergence. The second class,
composed of the remaining packages, provide estimates with reduced MSE, but at the extent of a
higher bias on the estimates. One plausible explanation is that the first class of packages, comparing
absolute iterations of the function to be maximised, tends on average to perform more iterations. The
estimated results are accordingly more consistent and closer to the true MLE estimation but at the
expense of an increased risk of getting trapped in a local extrema or a plateau, explaining the greater
number of outliers observed. Among them, flexmix stands out by choosing an unbiased but non
MLE-estimate of the covariance matrix, without any clear improvement of the overall performance in
our simulations.

Based on these results, we design a decision tree indicating the best choice of package and
initialisation method in relation with the shape of the distribution, displayed in Figure 3. Interestingly,
our conclusions are consistent between the univariate and bivariate settings. Furthermore, most of the
general recommendations on the best choices of packages with respect to the characteristics of the
mixture model generally hold in a relatively higher dimensional setting11. From this, we assume that
projection into a lower-dimensional space is only beneficial in a very high-dimensional setting, for
example when the number of dimensions exceeds the number of observations, or when unrestricted
parameter estimation (with the full covariance structure) is practically infeasible for computational
reasons.

Comparing all these packages suggest several improvements.

1. The use of C++ code speeds up the convergence of the EM algorithm compared to a native R
implementation.

2. All packages dealing with GMMs should use k-means for overlapping, complex mixtures and
rebmix initialisation for well-separated components, provided that the dimension of the dataset
is relatively small. The final choice between these two could be set after a first run or visual
inspection aiming at determining roughly the level of entropy across mixture proportions and
the degree of overlap between components.

3. The packages should allow the user to set their own termination criteria (either relative or
absolute log-likelihood or over the estimates after normalisation). Interestingly, EMMIXmfa is
the only package among those examined that allows the user to consider an absolute or relative
convergence endpoint of the EM algorithm, through the conv_measure attribute, with diff and
ratio options respectively.

4. With a great number of components or complex overlapping distributions, the optimal package
should integrate prior information when available, e.g. via Bayesian estimation.

While mclust appeared as the most complete package to model GMMs in R, none of the packages
reviewed in this report features all the characteristics mentioned above. We thus strongly believe that

11We should note, however, that a larger sample space revealed that the packages bgmm and EMCluster display
more biased and noisy parameters compared to the other packages benchmarked and that their performance was
surprisingly unaffected by the number of simulated realisations
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Figure 3: A decision tree to select the best combination of package and initialisation method with
respect to the main characteristics of the mixture. It’s worth pointing that in both univariate and low
dimension multivariate settings, the recommandations are similar.

our observations will help users identify the most suitable packages and parameters for their analyses
and guide the development or updates of future packages.

4 Simulation settings

For ease of reading, we reproduce below the parameter configurations used to run the three bench-
marks, respectively for the univariate (Table 4), bivariate (5) and high dimensional setting (Table
6).

Table 4: The 9 parameter configurations tested to generate the samples of the univariate experiment,
with k = 4 components.

ID Entropy OVL Proportions Means Correlations

U1 1.00 3.3e-05 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3

U2 1.00 5.7e-03 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U3 1.00 2.0e-02 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 2 / 2 / 2 / 2

U4 0.96 3.3e-05 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3

U5 0.96 5.8e-03 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U6 0.96 2.0e-02 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 2 / 2 / 2 / 2

U7 0.68 2.7e-05 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3

U8 0.68 4.4e-03 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U9 0.68 1.5e-02 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 2 / 2 / 2 / 2

5 Additional files

• Additional files related to the univariate setting

– S1. Bootstrap distributions of the estimated parameters for each scenario described in 4.
– S2. Mean, standard deviation, bias and MSE for each individually estimated parameter in

configurations listed in 4.
– S3. Distribution of the running times taken for the EM estimation of the parameters of the

GMM, across all nine configurations described in 4, for each benchmarked package. We
selected the k-means algorithm to initialise the EM algorithm, as being the least variable
for a given package and scenario.
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Table 5: The 20 parameter configurations tested to generate the samples of the bivariate experiment.

ID Entropy OVL Proportions Means Correlations

B1 1.00 0.15000 0.5 / 0.5 (0,2);(2,0) -0.8 / -0.8

B2 1.00 0.07300 0.5 / 0.5 (0,2);(2,0) -0.8 / 0.8

B3 1.00 0.07300 0.5 / 0.5 (0,2);(2,0) 0.8 / -0.8

B4 1.00 0.00078 0.5 / 0.5 (0,2);(2,0) 0.8 / 0.8

B5 1.00 0.07900 0.5 / 0.5 (0,2);(2,0) 0 / 0

B6 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) -0.8 / -0.8

B7 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) -0.8 / 0.8

B8 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0.8 / -0.8

B9 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0.8 / 0.8

B10 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0 / 0

B11 0.47 0.06600 0.9 / 0.1 (0,2);(2,0) -0.8 / -0.8

B12 0.47 0.01600 0.9 / 0.1 (0,2);(2,0) -0.8 / 0.8

B13 0.47 0.05000 0.9 / 0.1 (0,2);(2,0) 0.8 / -0.8

B14 0.47 0.00045 0.9 / 0.1 (0,2);(2,0) 0.8 / 0.8

B15 0.47 0.03900 0.9 / 0.1 (0,2);(2,0) 0 / 0

B16 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) -0.8 / -0.8

B17 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) -0.8 / 0.8

B18 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0.8 / -0.8

B19 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0.8 / 0.8

B20 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0 / 0

– S4. Distribution of the time computations taken by the six initialisation methods listed in
Table 3.

• Additional files related to the outliers setting:

– S5. Bootstrap distributions of the estimated parameters used to generate Supplementary
Figure 2. We additionally include the otrimle package, dedicated to these extreme distri-
butions. Two configurations were tested, introducing 2% and 4% of outliers drawn from
an improper uniform distribution.

– S6. Mean, standard deviation, bias and MSE for each individually estimated parameter
in both configurations visualised on Supplementary Figure 2, for each combination of
package and initialisation method.

• Additional files related to the bivariate benchmark:

– S7. Bootstrap distributions of the estimated parameters for each scenario described in 5.

– S8. Mean, standard deviation, bias and MSE for each individually estimated parameter in
configurations listed in 5.
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Table 6: The 16 parameter configurations tested to generate the samples in a high dimensional context.
The first digit of each ID index refers to an unique parameter configuration (identified by its level
of overlap, entropy and topological structure, either circular or ellipsoidal, of the covariance matrix,
while the lowercase letter depicts the number of observations, a) with n = 200 and b) with n = 2000.

ID OVL Number of
observations Proportions Spherical

HD1a 1e-04 200 0.5 / 0.5

HD1b 1e-04 2000 0.5 / 0.5

HD2a 1e-04 200 0.19 / 0.81

HD2b 1e-04 2000 0.19 / 0.81

HD3a 1e-04 200 0.5 / 0.5

HD3b 1e-04 2000 0.5 / 0.5

HD4a 1e-04 200 0.21 / 0.79

HD4b 1e-04 2000 0.21 / 0.79

HD5a 2e-01 200 0.5 / 0.5

HD5b 2e-01 2000 0.5 / 0.5

HD6a 2e-01 200 0.15 / 0.85

HD6b 2e-01 2000 0.15 / 0.85

HD7a 2e-01 200 0.5 / 0.5

HD7b 2e-01 2000 0.5 / 0.5

HD8a 2e-01 200 0.69 / 0.31

HD8b 2e-01 2000 0.69 / 0.31

– S9. Distribution of the running times taken for the EM estimation of the parameters of the
GMM, across all twenty configurations described in 5, for each benchmarked package. We
selected the k-means algorithm to initialise the EM algorithm, as being the least variable
for a given package and scenario.

• Additional files related to the high-dimensional benchmark:

– S10. Bootstrap distributions of the estimated parameters for each scenario described in 6.

– S11. Mean, standard deviation, bias and MSE for each individually estimated parameter
in configurations listed in 6.

– S12. Distribution of the running times taken for the EM estimation of the parameters of the
GMM, across all twenty configurations described in 6, for each benchmarked package. We
selected the k-means algorithm to initialise the EM algorithm, as being the least variable
for a given package and scenario.
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