
CONTRIBUTED RESEARCH ARTICLE 297

Estimating Causal Effects using Bayesian
Methods with the R Package BayesCACE
by Jincheng Zhou, Jinhui Yang, James S. Hodges, Lifeng Lin, and Haitao Chu

Abstract Noncompliance, a common problem in randomized clinical trials (RCTs), complicates the
analysis of the causal treatment effect, especially in meta-analysis of RCTs. The complier average
causal effect (CACE) measures the effect of an intervention in the latent subgroup of the population
that complies with its assigned treatment (the compliers). Recently, Bayesian hierarchical approaches
have been proposed to estimate the CACE in a single RCT and a meta-analysis of RCTs. We develop an
R package, BayesCACE, to provide user-friendly functions for implementing CACE analysis for binary
outcomes based on the flexible Bayesian hierarchical framework. This package includes functions
for analyzing data from a single study and for performing a meta-analysis with either complete or
incomplete compliance data. The package also provides various functions for generating forest, trace,
posterior density, and auto-correlation plots, which can be useful to review noncompliance rates,
visually assess the model, and obtain study-specific and overall CACEs.

1 Introduction

Noncompliance in randomized clinical trials and causal effect

Randomized clinical trials (RCTs) are often used to evaluate healthcare-related interventions. An RCT
typically compares an experimental treatment to a standard treatment or to a placebo. A common
problem in RCTs is that not all patients fully comply with the allocated treatments. Although RCT
investigators control the randomization process, the actual treatments received by study participants
may not follow the randomization allocation; this is called noncompliance. For example, in trials of a
therapist-led intervention, noncompliance occurs when individuals randomized to the intervention
fail to take the intervention (e.g., due to severe adverse events), or when some patients assigned to the
control figure out a way to take the intervention. In some cases, investigators can collect outcome data
on all of these patients, regardless of whether they followed interventions. When compliance status is
incompletely observed, it is more complicated to evaluate the causal treatment effect.

Conventionally, researchers use the intention-to-treat (ITT) analysis, in which data are analyzed
based on treatments originally allocated rather than treatments actually received. The ITT method
estimates the effect of being offered the intervention, namely, the overall effect in the real world in
which the intervention is made available. However, our interest may lie in a different question, namely
the causal effect of actually receiving the treatment. When using ITT, the treatment effect tends to be
diluted by including people who do not receive the treatment to which they were randomly allocated
(Freedman 1990).

To identify a treatment’s causal effect, the principal stratification framework (Frangakis and
Rubin 2002) is proposed, which stratifies subjects on the joint potential post-randomization variables.
This causal inference method is widely used in handling various intercurrent events (also called an
intermediate variable) in areas like vaccine effect (Hudgens and Halloran 2006; J. Zhou et al. 2016),
pain relief use (Baccini, Mattei, and Mealli 2017), surrogate endpoint evaluation (Gilbert et al. 2015),
noncompliance (J. Zhou et al. 2019), etc. An estimator called the “complier average causal effect”
(CACE) has been proposed, in which patients are classified into different principal strata (compliers,
never-takers, always-takers, and defiers) based on their potential behavior after assignment to both the
treatment and control arms. Compliers are patients who receive the treatment as assigned; never-takers
are those who do not receive treatment, regardless of treatment assignment; always-takers are those who
receive treatment regardless of treatment assignment; and patients who always do the opposite of their
treatment assignment are called defiers. The CACE is the causal effect of the intervention estimated
from compliers. Because patients are assumed to be compliers (or not) before the randomization, the
CACE retains the benefit of the randomization. Specifically, CACE is an unbiased estimate of the
difference in outcomes for compliers in the intervention group compared to those in the control group,
who would have engaged with treatment had they been randomized to the intervention group.

The biggest challenge in estimating the CACE is that we cannot actually identify which participants
are compliers. Some of those receiving the treatment in the intervention group are compliers, but
the rest are always-takers. Similarly, some of those not receiving the treatment in the control arm are
compliers, but others are never-takers. Several R packages are available to perform CACE analysis in a
single study. For example, the noncomplyR package (Coggeshall 2017) provides convenient functions
for using Bayesian methods to perform inferences on the CACE. The package eefAnalytics (Kasim et al.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=noncomplyR
https://CRAN.R-project.org/package=eefAnalytics

CONTRIBUTED RESEARCH ARTICLE 298

2017) provides tools for exploratory CACE analysis of simple randomized trials, cluster randomized
trials, and multi-site trials with a focus on education trials. Besides the CACE analysis, another method
commonly used to account for noncompliance is the instrumental variable (IV) method estimating the
treatment effect with two-staged least squares (2SLS) regression (White 1982); the archived R package
ivpack (Jiang and Small 2014) performs this type of analysis.

CACE in meta-analysis

All of the above methods are framed in a single study setting. However, for analyzing multiple trials
in the presence of noncompliance, no software is available for causal effect analysis, specifically for
meta-analysis. When noncompliance data are reported in each trial, one could intuitively implement a
two-step approach by first estimating CACE for each study and then combining the study-specific
estimates using a fixed-effect or random-effects model to estimate the population-averaged CACE.
Recently, J. Zhou et al. (2019) proposed a Bayesian hierarchical model to estimate the CACE in a
meta-analysis of randomized trials where compliance may be heterogeneous between studies. It is
also common that noncompliance data are not available for some trials. Simply excluding trials with
incomplete noncompliance data from a meta-analysis can be inefficient and potentially biased. J. Zhou,
Hodges, and Chu (2021) proposed an improved flexible Bayesian hierarchical CACE framework to
account simultaneously for heterogeneous noncompliance and incomplete noncompliance data. More
recently, T. Zhou et al. (2021) used a generalized linear latent and mixed model to estimate CACE,
which accounts for between-study heterogeneity with random effects. The package BayesCACE
focuses on providing user-friendly functions to estimate CACE in either a single study or meta-
analysis using models based on J. Zhou et al. (2019), Baker (2020), J. Zhou, Hodges, and Chu (2020)
and J. Zhou, Hodges, and Chu (2021).

This article introduces the R package BayesCACE, which performs CACE analysis for binary
outcomes in a single study, and meta-analysis with either complete or incomplete noncompliance
information. The package BayesCACE is available from the Comprehensive R Archive Network
(CRAN). It uses Markov chain Monte Carlo (MCMC) methods on the R platform through JAGS. JAGS
is a program for analyzing Bayesian hierarchical models using MCMC simulation, which is available
for diverse computer platforms including Windows and Mac OS X. Convergence of the MCMC routine
can be assessed by the function outputs. The package also provides functions to generate posterior
trace plots, density plots, and auto-correlation plots. For meta-analysis, the package provides a forest
plot of study-specific CACE estimates with 95% credible intervals as well as the overall CACE estimate,
to visually display the causal treatment effect comparisons.

This article is organized as follows. The next section defines CACE in mathematical notation that
will be used throughout the paper. We also describe the assumptions needed to make the CACE a
valid causal effect estimator. Following that, we present an overview of the Bayesian hierarchical
models for CACE implemented in the BayesCACE package. Then, we illustrate use of the package
with a case study example and discuss the output structures. Finally, we provide a brief discussion
with potential future improvements.

Assumptions and definition of CACE

The CACE is a measure of the causal effect of a treatment or intervention on patients who received
it as intended by the original group allocation. It is an unbiased causal effect estimate based on five
standard assumptions commonly used in causal inference research. First, it assumes that potential
outcomes for each participant are independent of the potential outcomes for other participants, known
as the Stable Unit Treatment Value Assumption (SUTVA). Second, it assumes that assignment to treatment
is random, so that the proportion of compliers should be the same in the intervention and control
groups, thus allowing the estimation of one of the core unobserved parameters needed to derive a
CACE estimate. Third, it assumes that treatment assignment has an effect on the outcome only if it
changes the actual treatment taken, an assumption known as exclusion restriction. For never-takers, for
instance, it assumes that simply being assigned to treatment does not affect their outcomes, as they
do not actually receive the treatment assigned to them. Fourth, it assumes that assigning the study
treatment to participants in the intervention group induces at least some participants to receive the
treatment, so the compliance rate is not zero. Finally, it assumes that there is a monotonic relationship
between treatment assignment and treatment receipt, which implies that there are no individuals for
whom assignment to treatment actually reduces the likelihood of receiving treatment (i.e., no defiers).
This assumption reduces the number of compliance types for which estimates are derived, permitting
a properly identified model.

We follow J. Zhou et al. (2019) and introduce notation both on the individual level and on the
study level. Suppose a meta-analysis reviews I two-armed RCTs, and Ni is the number of subjects in

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=BayesCACE
https://CRAN.R-project.org/package=BayesCACE
https://CRAN.R-project.org/package=BayesCACE
https://CRAN.R-project.org/package=BayesCACE

CONTRIBUTED RESEARCH ARTICLE 299

the i-th trial for i ∈ {1, . . . , I}. If the data include a single study only, then I = 1 and we can remove
the subscript i from all notation.

On the individual level, notation is defined as follows for subject j in trial i.

1. Let Rij = r index the randomization assignment with r = 0 for those randomized to control and
r = 1 for those randomized to the intervention.

2. Let Tr
ij = t ∈ {0, 1} be the indicator of whether the individual received the intervention. This

is a potential outcome under the randomization assignment r ∈ {0, 1}, i.e., what the value of
treatment t would be for individual (i, j) if r = 0 or r = 1, respectively.

3. Let Yr,t
ij = o ∈ {0, 1} be the potential binary outcome under randomization assignment r and

treatment received t. Note that the exclusion restriction assumption allows us to define Yt
ij ≡ Yr,t

ij .

4. The sets of {Yr,t
ij } and {Tr

ij} are the potential outcome and treatment-received status respectively
under possible r and t, but for each subject in a trial, only one of the possible values of each set
can be observed. Therefore, we denote the observed response and received treatment variables
as Yij and Tij.

5. We allow Tij = ∗ if the actual received treatment is not recorded. Then let Mij = m be the
missing indicator corresponding to whether subject j has actual treatment received status on
record (m = 0) or missing (m = 1).

6. Using these potential outcomes, we can define the compliers and the CACE. Let Cij be the latent
compliance class of individual j in trial i, defined as follows:

Cij =


0, for never-taker with (T0

ij, T1
ij) = (0, 0)

1, for complier with (T0
ij, T1

ij) = (0, 1)

2, for always-taker with (T0
ij, T1

ij) = (1, 1)

3, for defier with (T0
ij, T1

ij) = (1, 0)

.

A subject’s compliance status Cij is not observable because in a two-arm trial, only one of T1
ij and

T0
ij can be observed. Based on the observed randomization group and actual treatment received, the

compliance classes can be only partially identified.

Now, the complier average causal effect of the i-th trial is the average difference between potential
outcomes for compliers. In this case, the CACE in study i is θCACE

i = E(Y1
ij − Y0

ij|Cij = 1), where the
patients for whom Cij = 1 are the compliers.

On the study level, nirto denotes the observed number of individuals in study i, randomization
group r, actual received treatment group t, and outcome o. If the compliance status of individual j in
trial i is not on record, Tij = t = ∗ so the corresponding count is nir∗o, which is the sum of the two
unobserved counts nir0o and nir1o.

2 Estimating CACE

This section briefly describes the Bayesian hierarchical models used to estimate CACE. These models
form the basis of the framework proposed by J. Zhou et al. (2019) and underlie the BayesCACE package.
In addition to the notation defined in the previous section, we define the following parameters for
study i.

1. Let πia and πin be the probabilities of being an always-taker and a never-taker, respectively.
Because defiers are ruled out by the monotonicity assumption, each trial has at most only three
compliance classes. Thus the probability of being a complier in study i is πic = 1 − πia − πin.

2. Define these response probabilities: ui1 for a complier randomized to the treatment group; vi1
for a complier randomized to the control/placebo group; si1 for a never-taker; and bi1 for an
always-taker. Thus for study i, the parameters included in the model are βi = (πia, πin, ui1, vi1,
si1, bi1).

As the outcome is binary, the expected difference between outcomes from the two treatment
groups among compliers is just the risk difference between ui1 and vi1. Therefore, the CACE can be
written as θCACE

i = E(Y1
ij − Y0

ij|Cij = 1) = ui1 − vi1.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=BayesCACE

CONTRIBUTED RESEARCH ARTICLE 300

CACE for a single trial with noncompliance

Consider first a single trial with noncompliance, i.e., I = 1, so all notation and parameters defined
earlier are reduced to the version without subscript i. According to J. Zhou et al. (2019), each observed
nrto has a corresponding probability that can be written in terms of parameters defined in β = (πa,
πn, u1, v1, s1, b1), thus the vector (n000, n001, n010, n011, n100, n101, n110, n111) follows a multinomial
distribution. The likelihood is available in the Supplemental Materials.
The CACE for a single study is u1 − v1, so the posterior of θCACE is the posterior of u1 − v1.

CACE for a meta-analysis with complete compliance information

This section introduces two methods for performing a meta-analysis of the CACE when noncompliance
data are reported in each trial.

The two-step approach

As described in the previous section, using the observed data nirto, θCACE
i is identified for study~i.

Therefore, to estimate the population-average CACE in a meta-analysis, we propose combining the
study-specific estimates and standard errors using a standard meta-analysis method such as the
fixed-effect (Laird and Mosteller 1990) or random-effects model (Hedges and Vevea 1998; Hedges
and Olkin 1985). We call this a “two-step” approach. As the CACE measure is a risk difference, a
transformation may be necessary to ensure that the normal distribution assumption is approximately
true. Building upon the well-developed R package metafor, various estimators suggested in the
literature can be estimated to account for potential between-study heterogeneity in the CACE, e.g., the
Hunter–Schmidt estimator, the Hedges estimator, the DerSimonian–Laird estimator, the maximum-
likelihood or restricted maximum-likelihood estimator, or the empirical Bayes estimator (Viechtbauer
2010).

The Bayesian hierarchical model

In a meta-analysis, the CACE can also be estimated using the joint likelihood from the Bayesian
hierarchical model. This method is systematically introduced in J. Zhou et al. (2019). The log
likelihood contribution of trial i is denoted by adding a subscript i to each parameter. Then the
log likelihood for all trials in the meta-analysis is logL(β) = ∑i log Li(βi). Because the studies are
probably not exactly identical in their eligibility criteria, measurement techniques, study quality, etc.,
differences in methods and sample characteristics may introduce heterogeneity to the meta-analysis.
One way to model the heterogeneity is to use a random-effects model.

To guarantee the desired properties of study i’s latent compliance classes and to account for
possible between-study heterogeneity in the compliance class and response probabilities, we use these
transformations:

1. πin =
exp(ni)

1+exp(ni)+exp(ai)
, πia =

exp(ai)
1+exp(ni)+exp(ai)

, where ni = αn + δin, ai = αa + δia, and

(δin, δia)
⊤ ∼ N(0, Σps), Σps =

(σ2
n ρσnσa

ρσnσa σ2
a

)
.

2. We also define random effect models on the transformed scale of each response probability
si1, bi1, ui1, vi1: g(si1) = αs + δis, g(bi1) = αb + δib, g(ui1) = αu + δiu, g(vi1) = αv + δiv, where
g(·) is a link function such as the logit or probit, δis ∼ N(0, σ2

s), δib ∼ N(0, σ2
b), δiu ∼ N(0, σ2

u),
δiv ∼ N(0, σ2

v).

Here we allow correlation between ni and ai, and assign random effect variables to all param-
eters. However, if a parameter does not vary between trials, it can be modeled as a fixed effect.
Let f (βi|β0, Σ0) be the distributions described above of all parameters βi = (πia, πin, si1, bi1, ui1,
vi1), where β0 is the vector of mean hyper-parameters (αn, αa, αs, αb, αu, αv), and Σ0 is the diagonal
covariance matrix containing Σps, σ2

s , σ2
b , σ2

u and σ2
v .

If we specify f (β0) and f (Σ0) as the prior distributions for the hyper-parameters, then the joint poste-
rior distribution is proportional to the likelihood multiplied by the priors, i.e., ∏i Li(βi) f (βi|β0, Σ0) f (β0) f (Σ0).

As stated earlier, θCACE
i = ui1 − vi1 for study i, so for the meta-analysis, the overall CACE

is θCACE = E(θCACE
i) = E(ui1) − E(vi1). When a random effect δiu or δiv is not assigned in the

model, E(ui1) = g−1(αu) and E(vi1) = g−1(αv). Otherwise, E(ui1) and E(vi1) can be estimated
by integrating out the random effects, e.g., E(ui1) =

∫ +∞
−∞ g−1(αu + t)σ−1

u ϕ(t
σu
)dt, where ϕ(·) is the

standard Gaussian density. If the function g(·) is the probit link, this expectation has a closed form:

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=metafor

CONTRIBUTED RESEARCH ARTICLE 301

E(ui1) = Φ(αu√
1+σ2

u
). If the link function g(·) is logit, a well-established approximation E(ui1) ≈

logit−1(αu√
1+C2σ2

u

) can be used, where C = 16
√

3
15π (Zeger, Liang, and Albert 1988). The above formulas

also apply to E(vi1), the expected response rate of a complier in the control group.

The two-step approach, stated by Lin and Zeng (2010), can be viewed as asymptotically equivalent
to the model using the joint likelihood. However, as the two-step approach requires the whole set of
parameters to be estimated independently for each study, the total number of effective parameters
tends to be larger than the Bayesian hierarchical model, so estimates using our method are likely to be
more efficient.

CACE for meta-analysis with incomplete compliance information

Another advantage of the Bayesian hierarchical model is that it can include trials with incomplete
compliance data. Commonly, some trials do not report noncompliance data because study investigators
do not collect actual received treatment status for some subjects or simply do not report compliance.
The two-step approach needs counts for all of the groups defined by randomized assignment, treatment
received, and outcome in order to estimate the study-specific θCACE

i . Thus, by using this method, trials
with incomplete compliance data are simply excluded, making estimation less efficient and potentially
biased.

J. Zhou, Hodges, and Chu (2021) proposed a comprehensive framework to incorporate both
heterogeneous and incomplete noncompliance data for estimating the CACE in a meta-analysis of
RCTs. Here we present the data structure needed for binary outcomes. For study i, randomization
group r ∈ {0, 1} and output o ∈ {0, 1}, if the compliance information is reported, then values of nir0o
and nir1o are reported, so we assign the marginal count nir∗o = 0. Otherwise, we do not have data on
outcomes for groups defined by actually received treatment, so only the marginal nir∗o is observed,
where nir∗o is the number of patients randomized to treatment arm r who had outcome o. In this
situation, the two unobserved counts nir0o and nir1o are assigned as 0. In the Supplemental Materials,
a table for the observed counts data with corresponding probabilities is presented. The log likelihood
is also obtained from the multinomial distribution. The CACE for this meta-analysis incorporating
incomplete compliance data is θCACE = E(θCACE

i) = E(ui1)− E(vi1) = Φ(αu√
1+σ2

u
)− Φ(αv√

1+σ2
v
) if the

probit link function is used for ui1 and vi1.

3 Using the R package BayesCACE

The primary objective of the BayesCACE package is to provide a user-friendly implementation of the
Bayesian method for estimating the CACE. The package is now available to download and install via
CRAN at https://CRAN.R-project.org/package=BayesCACE. It can be installed within R using the
command install.packages("BayesCACE"). The latest version of the package is 1.2.3.

The BayesCACE package depends on the R packages rjags (Plummer 2018), coda (Plummer et
al. 2006), and forestplot (Gordon and Lumley 2017). Users need to install JAGS separately from its
homepage http://mcmc-jags.sourceforge.net as the BayesCACE package does not include a copy
of the JAGS library. The current version of JAGS is 4.3.0, which is the version of the package that
BayesCACE requires; earlier versions of JAGS may not guarantee exactly reproducible results.

Data structure for estimating the CACE

We introduce the data structures through the illustrative example included in the package BayesCACE:
epidural_c and epidural_ic. These two data sets were obtained from Bannister-Tyrrell et al. (2015),
who conducted an exploratory meta-analysis of the association between using epidural analgesia in
labor and the risk of cesarean section. The dataset epidural_c contains 10 trials with full compliance
information; each trial has 8 observed counts, denoted by nirto and presented in columns nirto for
i = 1, . . . , 10 and r, t, o ∈ {0, 1}. These data were re-analyzed by J. Zhou et al. (2019) in a meta-analysis
using their proposed Bayesian hierarchical model to estimate the CACE. The function cace.meta.c()
performs this analysis. The column study.id contains IDs for the 10 studies, and study.name labels
each study by its first author’s surname and its publication year.

The data can be loaded and printed using these commands:

library("BayesCACE")
data("epidural_c", package = "BayesCACE")
epidural_c

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=BayesCACE
https://CRAN.R-project.org/package=BayesCACE
https://CRAN.R-project.org/package=BayesCACE
https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=coda
https://CRAN.R-project.org/package=forestplot
http://mcmc-jags.sourceforge.net
https://CRAN.R-project.org/package=BayesCACE
https://CRAN.R-project.org/package=BayesCACE
https://CRAN.R-project.org/package=BayesCACE

CONTRIBUTED RESEARCH ARTICLE 302

#> study.id study.name n000 n001 n010 n011 n100 n101 n110 n111
#> 1 1 Bofill, 1997 37 2 11 1 2 0 42 5
#> 2 2 Clark, 1998 72 6 68 16 7 2 134 13
#> 3 3 Halpern, 2004 62 5 44 7 0 0 112 12
#> 4 4 Head, 2002 51 7 2 0 3 0 43 10
#> 5 5 Jain, 2003 72 11 0 0 0 2 36 7
#> 6 6 Nafisi, 2006 179 19 0 0 0 0 173 24
#> 7 7 Nikkola, 1997 6 0 4 0 0 0 10 0
#> 8 8 Ramin, 1995 546 17 95 8 230 2 393 39
#> 9 9 Sharma, 1997 336 16 5 0 114 1 231 12
#> 10 10 Volmanen, 2008 23 1 3 0 1 0 23 1

The other dataset epidural_ic represents the situation in which not all trials report complete
compliance data. It contains 27 studies, only 10 of which have full compliance information and
are included in epidural_c. This dataset is also drawn from Bannister-Tyrrell et al. (2015), and
represents studies with incomplete compliance information when estimating the CACE. The function
cace.meta.ic() performs this analysis.

Each study is represented by one row in the dataset; the columns study.id and study.name have
the same meanings as in the dataset epidural_c. Each study’s data are summarized in 12 numbers
(columns) denoted by nirto and nir∗o. For a particular randomization group r ∈ {0, 1}, the observed
counts are presented either as nirto or nir∗o depending on whether the compliance information is
available; values for other columns are denoted by 0. The corresponding column names in the dataset
are nirto and nirso, respectively.

The first 6 rows of the dataset epidural_ic are printed below.

data("epidural_ic", package = "BayesCACE")
head(epidural_ic)

#> study.id study.name n000 n001 n010 n011 n0s0 n0s1 n100 n101 n110 n111
#> 1 1 Bofill, 1997 37 2 11 1 0 0 2 0 42 5
#> 2 2 Clark, 1998 72 6 68 16 0 0 7 2 134 13
#> 3 3 Dickinson, 2002 0 0 0 0 428 71 0 0 0 0
#> 4 4 Evron, 2008 40 4 0 0 0 0 0 0 0 0
#> 5 5 El Kerdawy, 2010 0 0 0 0 12 3 0 0 0 0
#> 6 6 Gambling, 1998 0 0 0 0 573 34 206 10 371 29
#> n1s0 n1s1
#> 1 0 0
#> 2 0 0
#> 3 408 85
#> 4 129 19
#> 5 11 4
#> 6 0 0

Note that NA is not allowed in a dataset for the package BayesCACE, but some trials may have 0 events
or 0 noncompliance rates.

Plotting noncompliance rates

Before performing the CACE analysis, one might want a visual overview of study-specific non-
compliance rates in both randomization arms. The function plt.noncomp provides a forest plot of
noncompliance rates in an R plot window. The function can be simply called as

plt.noncomp(data, overall = TRUE)

where data is a dataset with structure like epidural_c or epidural_ic. Specifically, the dataset
should contain the following columns: study.id, study.name, and 8 or 12 columns of data represented
by nirto, or nirto and nir∗o (see previous section for more details). Each row corresponds to one study.
Only studies with full compliance information are included in this plot because noncompliance rates
cannot be calculated without compliance data. Figure 1 shows the resulting plot, where the red dot
with its horizontal line shows the study-specific noncompliance rate with its 95% exact confidence
interval for the patients randomized to the treatment arm, and the blue square with its horizontal line
represents that rate and interval for those in the control arm. The confidence intervals are calculated

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=BayesCACE

CONTRIBUTED RESEARCH ARTICLE 303

Study (Author, Year)

Bofill, 1997

Clark, 1998

Halpern, 2004

Head, 2002

Jain, 2003

Nafisi, 2006

Nikkola, 1997

Ramin, 1995

Sharma, 1997

Volmanen, 2008

Overall

P(T=0|R=1)

0.041 (0.005,0.140)

0.058 (0.027,0.107)

0.000 (0.000,0.029)

0.054 (0.011,0.149)

0.044 (0.005,0.151)

0.000 (0.000,0.019)

0.000 (0.000,0.308)

0.349 (0.313,0.387)

0.321 (0.273,0.372)

0.040 (0.001,0.204)

0.093 (0.039,0.206)

P(T=1|R=0)

0.235 (0.128,0.375)

0.519 (0.439,0.598)

0.432 (0.341,0.527)

0.033 (0.004,0.115)

0.000 (0.000,0.043)

0.000 (0.000,0.018)

0.400 (0.122,0.738)

0.155 (0.128,0.184)

0.014 (0.005,0.032)

0.111 (0.024,0.292)

0.172 (0.080,0.333)

0 0.2 0.4 0.6
Nocompliance Rates

P(T=0|R=1)

P(T=1|R=0)

Figure 1: Noncompliance rates plot generated by the function plt.noncomp(). The red dots and
lines show the study-specific noncompliance rate with its 95% confidence interval randomized to the
treatment arm, and the blue squares and lines refer to those in the control arm.

by the Clopper–Pearson exact method (Clopper and Pearson 1934), which is based on the cumulative
distribution function of the binomial distribution. Using the default overall = TRUE, the figure also
gives a summary estimate of the compliance rates per randomization group. This overall rate is
estimated using a logit generalized linear mixed model. Otherwise, if the argument overall is FALSE,
the plot shows only study-specific noncompliance rates. Any additional parameters passed to the
function will be automatically used in the forestplot function from the forestplot package.

CACE analysis for a single study or in a meta-analysis

The major functions in BayesCACE are cace.study(), cace.meta.c(), and cace.meta.ic(), which
implement the models introduced earlier to perform Bayesian CACE analysis for different data
structures. In particular, cace.study() performs CACE analysis for a single study. The function
cace.meta.c() performs CACE analysis for a meta-analysis when each trial reports noncompliance
information. Users can choose to do the analysis either by the two-step approach or using the Bayesian
hierarchical model. When some trials do not report noncompliance data, the function cace.meta.ic()
can be applied to perform a CACE meta-analysis using the likelihood provided in the Supplemental
Materials. Each function may take 1–15 minutes to run. Generally the two-step approach using the
function cace.meta.c() takes longer because MCMC chains are run on the studies one by one. The
actual run time depends on the amount of data and the user’s processor.

Function cace.study() for a study-specific analysis or a two-step meta-analysis

For the default interface, the arguments of the function cace.study() are

cace.study(data, param = c("CACE", "u1", "v1", "s1", "b1", "pi.c", "pi.n",
"pi.a"), re.values = list(), model.code = '', digits = 3, n.adapt = 1000,
n.iter = 100000, n.burnin = floor(n.iter/2), n.chains = 3, n.thin =
max(1,floor((n.iter-n.burnin)/1e+05)), conv.diag = FALSE, mcmc.samples =
FALSE, two.step = FALSE, method = "REML")

where users need to input data with the same structure as epidural_c, containing either one row
of observations for a single study, or multiple rows referring to multiple studies in a meta-analysis.
This function fits a model for a single study. If the data includes more than one study, the study-specific
CACEs will be estimated by retrieving data row by row.

The argument param is a character string vector indicating the parameters to be tracked and
estimated. By default all parameters are included: θCACE (CACE), u1 (u1), v1 (v1), s1 (s1), b1 (b1), πa
(pi.a), πn (pi.n), and πc = 1 − πa − πn (pi.c). Users can modify the string vector to only include
parameters of interest besides θCACE. Users can specify the prior distributions (mean and standard
deviation) of n, a, αs, αb, αu, αv with the re.values parameter. By default, the re.values list is empty,

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=forestplot
https://CRAN.R-project.org/package=BayesCACE

CONTRIBUTED RESEARCH ARTICLE 304

and they are assigned to the transformed scale of the following parameters: πn =
exp(n)

1+exp(n)+exp(a) ,

πa =
exp(a)

1+exp(n)+exp(a) , logit(s1) = αs, logit(b1) = αb, probit(u1) = αu, and probit(v1) = αv, where

n, a ∼ N(0, 2.52) and αs, αb, αu, αv ∼ N(0, 22). With these settings, a 95% prior probability interval
for any of the probabilities πin, πia, and πic ranges from about 0.001 to 0.91, and a 95% prior interval
for the probabilities s1, b1, u1, and v1 ranges approximately from 0.01 to 0.98. The prior parameters
are passed into the model.study function to get the model code, which first calls the prior.study to
get the custom prior distribution. Here we give an example output of prior.study when assigning
N(0, 10−2) to every parameter:

out.string <-
"# priors
n ~ dnorm(0, 0.01)
a ~ dnorm(0, 0.01)
alpha.s ~ dnorm(0, 0.01)
alpha.b ~ dnorm(0, 0.01)
alpha.u ~ dnorm(0, 0.01)
alpha.v ~ dnorm(0, 0.01)
"

To customize the model fully, the user can pass their complete model string to the cace.study()
function with the parameter model.code. The arguments n.adapt, n.iter, n.burnin, n.chains, and
n.thin control the MCMC algorithm run by the R package rjags (Plummer 2018). The argument
n.adapt is the number of iterations for adaptation; it is used to maximize the sampling efficiency,
and the default is set as 1,000. The argument n.chains determines the number of MCMC chains
(the default is 3); n.iter is the number of iterations of each MCMC chain; n.burnin is the number
of burn-in iterations to be discarded at the beginning of each chain; n.thin is the thinning rate for
MCMC chains, which is used to avoid potential high auto-correlation and to save computer memory
when n.iter is large. The default of n.thin is set as 1 or the largest integer not greater than ((n.iter
- n.burnin)/1e+05)), whichever is larger. The argument conv.diag specifies whether to compute the
Gelman and Rubin convergence statistic (R̂) of each parameter as a convergence diagnostic (Brooks
and Gelman 1998; Gelman and Rubin 1992). The chains are considered well-mixed and converged
to the target distribution if R̂ ≤ 1.1. If the argument mcmc.samples = TRUE, the function saves each
chain’s MCMC samples for all parameters, which can be used to produce trace, posterior density, and
auto-correlation plots by calling the functions plt.trace, plt.density, and plt.acf.

By default, the function cace.study() returns a list including posterior estimates (posterior mean,
standard deviation, median, and a 95% credible interval with 2.5% and 97.5% quantiles as the lower
and upper bounds), and the deviance information criterion (DIC) statistic (Spiegelhalter et al. 2002)
for each study. The argument two.step is a logical value indicating whether to conduct a two-step
meta-analysis. If two.step = TRUE, the posterior mean and standard deviation of study-specific
θCACE

i are used to perform a standard meta-analysis, using the R package metafor. The default
estimation method is the REML (restricted maximum-likelihood estimator) method for the random-
effects model (Harville 1977). Users can change the argument method to obtain different meta-analysis
estimators from either a random-effects model or a fixed-effect model, e.g., method = "DL" refers to the
DerSimonian–Laird estimator, method = "HE" returns the Hedges estimator, and method = "HS" gives
the Hunter–Schmidt estimator. More details are available from the documentation of the function
metafor::rma (Viechtbauer 2010). If the input data include only one study, the meta-analysis result is
the same as the result from the single study.

Here is an example to demonstrate the function’s usage. We call the function cace.study() on the
dataset epidural_c as follows:

data("epidural_c", package = "BayesCACE")
set.seed(123)
out.study <- cace.study(data = epidural_c, conv.diag = TRUE,

mcmc.samples = TRUE, two.step = TRUE)

The following messages are output as the code runs:

% NA is not allowed in the input data set;
% the rows containing NA are removed.
Compiling model graph

Resolving undeclared variables
Allocating nodes

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=metafor

CONTRIBUTED RESEARCH ARTICLE 305

Graph information:
Observed stochastic nodes: 2
Unobserved stochastic nodes: 6
Total graph size: 44

Initializing model

|++| 100%
|**| 100%
|**| 100%

MCMC convergence diagnostic statistics are calculated and saved in conv.out

If the dataset contains more than one study, e.g., the epidural_c dataset has 10 trials, then once
the JAGS model compiles for the first study, it automatically continues to run on the next study’s data.
The results are saved in the object out.study, a list containing the model name, posterior information
for each monitored parameter, and DIC of each study. We can use parameter names to display the
corresponding estimates. The argument digits in the function cace.study() can be used to change
the number of significant digits to the right of the decimal point. Here, we used the default setting
digits = 3. For example, the estimates of θCACE for each single study (posterior mean and standard
deviation, posterior median, 95% credible interval, and time-series standard error) can be displayed
as:

out.study$CACE

#> Mean SD 2.5% 50% 97.5% Naive SE Time-series SE
#> [1,] 0.04980 0.0797 -0.09510 4.46e-02 0.2180 1.45e-04 2.51e-04
#> [2,] -0.02490 0.0489 -0.12200 -2.23e-02 0.0785 8.94e-05 1.48e-04
#> [3,] -0.02210 0.0606 -0.12700 -2.90e-02 0.1120 1.11e-04 1.94e-04
#> [4,] 0.07180 0.0758 -0.07550 7.10e-02 0.2230 1.38e-04 2.01e-04
#> [5,] 0.08250 0.0768 -0.06260 8.11e-02 0.2370 1.40e-04 2.51e-04
#> [6,] 0.02600 0.0319 -0.03650 2.59e-02 0.0891 5.83e-05 7.55e-05
#> [7,] 0.01430 0.1580 -0.28200 2.11e-04 0.4050 2.89e-04 4.21e-04
#> [8,] 0.05030 0.0248 0.00176 5.02e-02 0.0993 4.54e-05 7.34e-05
#> [9,] -0.01100 0.0234 -0.05740 -1.09e-02 0.0350 4.27e-05 6.22e-05
#> [10,] 0.00145 0.0655 -0.13400 -4.36e-06 0.1460 1.20e-04 1.56e-04

If the argument conv.diag is specified as TRUE, the output list contains a sub-list conv.out, which
outputs the point estimates of the “potential scale reduction factor” (the Gelman and Rubin conver-
gence statistic, labeled Point est.) calculated for each parameter from each single study, and their
upper confidence limits (labeled Upper C.I.). Approximate convergence is diagnosed when the upper
limit is close to 1 (Brooks and Gelman 1998; Gelman and Rubin 1992). For example, the first sub-list
from conv.out is:

out.study$conv.out[[1]]

#> Point est. Upper C.I.
#> CACE 1.000025 1.000046
#> b1 1.000041 1.000129
#> pi.a 1.000025 1.000094
#> pi.c 1.000036 1.000134
#> pi.n 1.000029 1.000067
#> s1 1.000014 1.000018
#> u1 1.000016 1.000033
#> v1 1.000077 1.000185

In this example, we included mcmc.samples = TRUE in the argument, so the output list out.study
includes each chain’s MCMC samples for all parameters. They can be used with our plotting functions
to generate the trace, posterior density, and auto-correlation plots for further model diagnostics.

If the dataset used by the function cace.study() has more than one study, specifying the argument
two.step = TRUE causes the two-step meta-analysis for θCACE to be done. The outcomes are saved as
a sub-list object meta. Note that users can obtain different meta-analysis estimators by changing the
method argument as described earlier.

out.study$meta

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 306

#>
#> Random-Effects Model (k = 10; tau^2 estimator: REML)
#>
#> tau^2 (estimated amount of total heterogeneity): 0.0002 (SE = 0.0008)
#> tau (square root of estimated tau^2 value): 0.0131
#> I^2 (total heterogeneity / total variability): 8.10%
#> H^2 (total variability / sampling variability): 1.09
#>
#> Test for Heterogeneity:
#> Q(df = 9) = 5.9353, p-val = 0.7464
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> 0.0182 0.0143 1.2758 0.2020 -0.0098 0.0462
#>
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Function cace.meta.c() for meta-analysis with complete compliance data

The function cace.meta.c() performs the Bayesian hierarchical model method for meta-analysis when
the dataset has complete compliance information for all studies. The function’s default arguments are
as shown:

cace.meta.c(data, param = c("CACE", "u1out", "v1out", "s1out", "b1out",
"pic", "pin", "pia"), random.effects = list(), re.values = list(),
model.code = '', digits = 3, n.adapt = 1000, n.iter = 100000,
n.burnin = floor(n.iter/2), n.chains = 3, n.thin =
max(1,floor((n.iter-n.burnin)/100000)), conv.diag = FALSE,
mcmc.samples = FALSE, study.specific = FALSE)

The arguments controlling the MCMC algorithm are mostly similar to those of cace.study(). One
major difference is that users need to specify parameters that are modeled as random effects. Earlier,
we showed how to specify random effects for each parameter on the transformed scales, namely δin,
δia, δiu, δiv, δis, and δib, and allowed a non-zero correlation ρ between δin and δia. The model with all of
these random effects as well as the correlation ρ is considered the full model. However, this function is
flexible, allowing users to choose which random effects to include by specifying the random.effects
argument. By default, the list is empty and all of the list values are set to TRUE. Users can customize
that by setting delta.n, delta.a, delta.u, delta.v, delta.s, delta.b, and/or cor to FALSE. Note that
ρ (cor) can only be included when both δin (delta.n) and δia (delta.a) are set to TRUE. Otherwise, a
warning is shown and the model continues running by forcing delta.n = TRUE and delta.a = TRUE.
The default parameters to be monitored depend on which parameters are modeled as random effects.
For example, u1out refers to E(ui1), where for the probit link, E(ui1) = Φ(αu) if δu is not specified in
the model, and E(ui1) = Φ(αu√

1+σ2
u
) when the random effect δu is included.

Users can use the re.values parameter to customize the prior distribution. Like the func-
tion cace.study(), by default, weakly informative priors αn, αa ∼ N(0, 2.52) and αs, αb, αu, αv ∼
N(0, 22) are assigned to the means of these transformed parameters: πin =

exp(ni)
1+exp(ni)+exp(ai)

, πia =

exp(ai)
1+exp(ni)+exp(ai)

, where ni = αn + δin, ai = αa + δia, logit(si1) = αs + δis, logit(bi1) = αb + δib,

probit(ui1) = αu + δiu, and probit(vi1) = αv + δiv. For the random effects, we have δis ∼ N(0, σ2
s),

δib ∼ N(0, σ2
b), δiu ∼ N(0, σ2

u), and δiv ∼ N(0, σ2
v), as response rates are assumed to be independent

between latent classes. A Gamma(2, 2) hyper-prior distribution is assigned to the precision parame-
ters σ−2

s , σ−2
b , σ−2

u and σ−2
v , which corresponds to a 95% interval of (0.6, 2.9) for the corresponding

standard deviations, allowing moderate heterogeneity in the response rates. In a reduced model with
one of δin or δia set to 0, the prior of the other precision parameter is also assumed to be Gamma(2, 2),
which gives moderate heterogeneity for latent compliance class probabilities, whereas for the full
model, (δin, δia)

⊤ ∼ N(0, Σps), the prior for the variance-covariance matrix Σps is InvWishart(I, 3),
where I is the identity matrix.

Similar to cace.study(), to customize the model fully, the user can pass their complete model
string with the parameter model.code. Because the function cace.meta.c() is more complicated
depending on the choice of random effects, we show an example of the customized prior distributions

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 307

when assigning delta.n = TRUE, delta.a = TRUE, delta.u = TRUE, delta.v = FALSE, delta.s =
TRUE, delta.b = TRUE, and cor = TRUE while keeping default values for re.values.

string <-
"# priors
alpha.n ~ dnorm(0, 0.16)
alpha.a ~ dnorm(0, 0.16)
alpha.s ~ dnorm(0, 0.25)
alpha.b ~ dnorm(0, 0.25)
alpha.u ~ dnorm(0, 0.25)
alpha.v ~ dnorm(0, 0.25)

II[1,1] <- 1
II[2,2] <- 1
II[1,2] <- 0
II[2,1] <- 0

Omega.rho ~ dwish (II[,], 3)
Sigma.rho <- inverse(Omega.rho)
sigma.n <- Sigma.rho[1, 1]
sigma.a <- Sigma.rho[2, 2]
rho <- Sigma.rho[1, 2]
u1out <- phi(alpha.u/sqrt(1+sigma.u^2))
tau.u ~ dgamma(2, 2)
sigma.u <- 1/sqrt(tau.u)
v1out <- phi(alpha.v)
CACE <- u1out-v1out
s1out <- ilogit(alpha.s/sqrt(1 + (16^2*3/(15^2*pi^2))*sigma.s^2))
tau.s ~ dgamma(2, 2)
sigma.s <- 1/sqrt(tau.s)
b1out <- ilogit(alpha.b/sqrt(1 + (16^2*3/(15^2*pi^2))*sigma.b^2))
tau.b ~ dgamma(2, 2)
sigma.b <- 1/sqrt(tau.b)
"

The epidural_c dataset is used as a real-study example:

data("epidural_c", package = "BayesCACE")
set.seed(123)
out.meta.c <- cace.meta.c(data = epidural_c, conv.diag = TRUE,

mcmc.samples = TRUE, study.specific = TRUE)

The usage of arguments conv.diag and mcmc.samples is the same as for the function cace.study.
When the argument study.specific is specified as TRUE, the model will first check the logical status
of arguments delta.u and delta.v. If both are FALSE, meaning that neither response rate ui1 or vi1 is
modeled with a random effect, then the study-specific θCACE

i is the same across studies. The function
gives a warning and continues by making study.specific = FALSE. Otherwise, the study-specific
θCACE

i are estimated and saved as the parameter cacei.

In this example, by calling the object smry from the output list out.meta.c, posterior estimates
(posterior mean, standard deviation, posterior median, 95% credible interval, and time-series standard
error) are displayed.

out.meta.c$smry

#> Mean SD 2.5% 50% 97.5% Naive SE Time-series SE
#> CACE 0.020200 0.0627 -0.10200 0.018900 0.1490 1.14e-04 7.69e-04
#> b1out 0.128000 0.0459 0.05970 0.121000 0.2370 8.39e-05 4.07e-04
#> cacei[1] 0.043900 0.0679 -0.08130 0.040700 0.1870 1.24e-04 2.35e-04
#> cacei[2] -0.023100 0.0489 -0.11500 -0.025000 0.0822 8.94e-05 1.89e-04
#> cacei[3] -0.007630 0.0569 -0.11000 -0.011800 0.1130 1.04e-04 2.16e-04
#> cacei[4] 0.065000 0.0678 -0.06620 0.064300 0.2010 1.24e-04 1.62e-04
#> cacei[5] 0.054000 0.0686 -0.07380 0.051500 0.1960 1.25e-04 2.45e-04
#> cacei[6] 0.026300 0.0309 -0.03390 0.026200 0.0875 5.64e-05 6.87e-05

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 308

#> cacei[7] 0.002770 0.0931 -0.18900 -0.000142 0.2100 1.70e-04 3.71e-04
#> cacei[8] 0.048300 0.0239 0.00171 0.048200 0.0956 4.36e-05 6.38e-05
#> cacei[9] -0.010600 0.0224 -0.05520 -0.010500 0.0331 4.09e-05 5.49e-05
#> cacei[10] 0.000228 0.0600 -0.12000 -0.001200 0.1280 1.10e-04 2.15e-04
#> pia 0.114000 0.0742 0.02460 0.098200 0.3010 1.35e-04 3.92e-03
#> pic 0.821000 0.0842 0.60500 0.838000 0.9350 1.54e-04 4.50e-03
#> pin 0.064200 0.0397 0.01540 0.056700 0.1590 7.25e-05 2.11e-03
#> s1out 0.184000 0.1040 0.04560 0.161000 0.4450 1.91e-04 9.03e-04
#> u1out 0.127000 0.0473 0.05520 0.120000 0.2390 8.64e-05 6.10e-04
#> v1out 0.107000 0.0406 0.04700 0.100000 0.2040 7.41e-05 4.55e-04

The posterior estimates of θCACE
i can be used to make a forest plot by calling the function plt.forest.

Users can manually do model selection procedures by including different random effects and
comparing DIC from the outputs. DIC and its two components are saved as an object DIC in the output
list.

out.meta.c$DIC

#>
#> D.bar 204.40801
#> pD 44.74788
#> DIC 249.15590

DIC is the penalized deviance, calculated as the sum of D.bar and pD, where D.bar is the posterior
expectation of the deviance, reflecting the model fit, and pD reflects the effective number of parameters
in the model. D.bar is usually lower when more parameters are included in the model, but complex
models may lead to overfitting. Thus DIC balances the model’s fit against the effective number of
parameters. Generally a model with smaller DIC is preferred. However, it is difficult to conclude
what constitutes an important improvement in DIC. Following Lunn et al. (2012), we suggest that a
reduction of less than 5 is not a substantial improvement. When fitting models to a particular dataset,
it is usually uncertain which random effect variables should be included in the model. The function
cace.meta.c() allows users to specify candidate models with different random effects, and thus to
conduct a forward/backward/stepwise model selection procedure to choose the best fitting model.

Function cace.meta.ic() for meta-analysis with incomplete compliance information

Another major function in the package BayesCACE is cace.meta.ic(). It also estimates θCACE using
the Bayesian hierarchical model but can accommodate studies with incomplete compliance data. The
arguments of this function are:

cace.meta.ic(data, param = c("CACE", "u1out", "v1out", "s1out", "b1out",
"pic", "pin", "pia"), random.effects = list(), re.values = list(),
model.code = '', digits = 3, n.adapt = 1000, n.iter = 100000,
n.burnin = floor(n.iter/2), n.chains = 3, n.thin =
max(1,floor((n.iter-n.burnin)/100000)), conv.diag = FALSE,
mcmc.samples = FALSE, study.specific = FALSE)

The arguments of cace.meta.ic() are mostly similar to those of cace.meta.c(), although the function
cace.meta.ic() calls a different built-in model file from the package BayesCACE. The major difference
in using this function is that users need to create a dataset with the same structure as epidural_ic. As
for cace.meta.c(), users can set their customized prior distributions. Here we use the epidural_ic
dataset as an example:

data("epidural_ic", package = "BayesCACE")
set.seed(123)
out.meta.ic <- cace.meta.ic(data = epidural_ic, conv.diag = TRUE,

mcmc.samples = TRUE, study.specific = TRUE)

The results are saved in the object out.meta.ic, a list containing posterior estimates for monitored
parameters, DIC, convergence diagnostic statistics, and MCMC samples. In this example, the argument
study.specific is TRUE, so the summary for each study-specific θCACE

i is displayed in the object
out.meta.ic$smry together with other parameters.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=BayesCACE
https://CRAN.R-project.org/package=BayesCACE

CONTRIBUTED RESEARCH ARTICLE 309

Note that when compiling the JAGS model, the warning “adaptation incomplete” may occasionally
occur, indicating that the number of iterations for the adaptation process is not sufficient. The default
value of n.adapt (the number of iterations for adaptation) is 1,000. This is an initial sampling phase dur-
ing which the samplers adapt their behavior to maximize their efficiency (e.g., a Metropolis–Hastings
random walk algorithm may change its step size) (Plummer 2018). The “adaptation incomplete”
warning indicates that the MCMC algorithm may not achieve maximum efficiency, but it generally
has little impact on the posterior estimates of the treatment effects. To avoid this warning, users may
increase n.adapt.

Plotting the trace plot, posterior density, and auto-correlation

When compiling the JAGS models, it is helpful to assess the performance of the MCMC algorithm. The
functions plt.trace, plt.density, and plt.acf provide diagnostic plots for the MCMC, namely trace
plots, kernel density estimation plots, and auto-correlation plots. Both trace plots and auto-correlation
plots can be used to examine whether the MCMC chains appear to be drawn from stationary distribu-
tions. A posterior density plot for a parameter visually shows the posterior distribution. Users can
simply call this function on objects produced by cace.study(), cace.meta.c(), or cace.meta.ic().

The arguments of this plot function are:

plt.trace(obj, param = c("CACE"), trialnumber = 1, ...)
plt.density(obj, param = c("CACE"), trialnumber = 1, ...)
plt.acf(obj, param = c("CACE"), trialnumber = 1, ...)

We use the objects list obtained from fitting the Bayesian hierarchical model cace.meta.ic() as an
example to generate the three plots. To avoid lengthy output we just illustrate how these plots are
produced for θCACE. The relevant code is:

plt.trace(obj = out.meta.ic)
plt.density(obj = out.meta.ic)
plt.acf(obj = out.meta.ic)

The produced plots are shown in Figures 2–4. The trace plots in Figure 2 show the parameter values
sampled at each iteration versus the iteration number. Each chain is drawn as a separate trace plot to
avoid overlay. Here we used the default n.chains = 3, so three trace plots are drawn. These plots
show evidence that the posterior samples of θCACE are drawn from the stationary distribution.

The density plot in Figure 3 is smoothed using the R function density(). It shows that the kernel-
smoothed posterior of θCACE is almost symmetric. The posterior mean is not far from 0, indicating
that the complier average causal effect of using epidural analgesia in labor on cesarean section is likely
not significant.

The auto-correlation plot in Figure 4 is a bar plot displaying the auto-correlation for different lags.
At lag 0, the value of the chain has perfect auto-correlation with itself. As the lag becomes greater, the
values become less correlated. After a lag of about 50, the auto-correlation drops below 0.1. If the plot
shows high auto-correlation, users can run the chain longer or can choose a larger n.thin, e.g., n.thin
= 10 would keep only 1 out of every 10 iterations, so that the thinned out chain is expected to have the
auto-correlation drop quickly. Any additional parameters passed to the 3 plotting function will be
automatically used in the plot function for plt.trace and plt.density, and in the acf function for
plt.acf.

Plotting the study-specific CACE in a forest plot

A graphical overview of the results can be obtained by creating a forest plot (Lewis and Clarke 2001).
The function plt.forest() draws a forest plot for θCACE estimated from the meta-analysis. Users can
call this function for the objects from cace.meta.c() or cace.meta.ic(). Here is an example using
the object out.meta.ic:

plt.forest(data = epidural_ic, obj = out.meta.ic)

Note that in addition to the object out.meta.ic, users also need to specify the dataset used to compute
that object, from which the plt.forest() function extracts the study names and publication years for
the figure.

Figure 5 is a forest plot of θCACE
i for each study individually, using the Bayesian method with

full random effects and default priors. The summary estimate based on the model cace.meta.ic()

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 310

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−0
.2

0.
0

0.
2

Trace Plot of CACE , Chain 1

Iterations

C
A

C
E

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−0
.2

0.
0

0.
2

Trace Plot of CACE , Chain 2

Iterations

C
A

C
E

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−0
.1

0.
1

Trace Plot of CACE , Chain 3

Iterations

C
A

C
E

Figure 2: Trace plots for θCACE from the epidural_ic dataset fit using cace.meta.ic() for a sample of 3
chains. Because there are no strong patterns and the variability is relatively constant, we can conclude
that the posterior means are drawn from a stationary distribution.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 311

−0.2 −0.1 0.0 0.1 0.2

0
2

4
6

8
1

0

Density of CACE

CACE

D
e

n
si

ty

Figure 3: The kernel smoothed density for θCACE from the function cace.meta.ic() applied to the
epidural analgesia in labor meta-analysis. The posterior mean is close to 0, indicating that the complier
average causal effect may not be significant in this case.

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

C
A

C
E

Series CACE

Figure 4: Auto-correlation plot of θCACE from the model cace.meta.ic() fit to the epidural_ic dataset. As
the lag increases, the values become less correlated. Users can choose to address high auto-correlation
with a longer chain or a larger n.thin.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 312

Study
Bofill, 1997
Clark, 1998
Dickinson, 2002
Evron, 2008
El Kerdawy, 2010
Gambling, 1998
Grandjean, 1979
Halpern, 2004
Head, 2002
Hogg, 2000
Howell, 2001
Jain, 2003
Long, 2003
Loughnan, 2000
Lucas, 2001
Muir, 1996
Muir, 2000
Nafisi, 2006
Nikkola, 1997
Philipsen, 1989
Ramin, 1995
Sharma, 1997
Sharma, 2002
Shifman, 2007
Thalme, 1974
Thorp, 1993
Volmanen, 2008
Overall

CACE
0.042 (−0.079, 0.180)

−0.018 (−0.109, 0.084)
0.062 (−0.091, 0.310)
0.041 (−0.090, 0.181)
0.054 (−0.232, 0.389)
0.019 (−0.056, 0.125)
0.007 (−0.109, 0.163)

−0.004 (−0.103, 0.111)
0.065 (−0.064, 0.199)
0.027 (−0.180, 0.279)

−0.011 (−0.174, 0.172)
0.053 (−0.071, 0.190)

−0.046 (−0.238, 0.160)
−0.005 (−0.187, 0.202)

0.012 (−0.179, 0.248)
0.023 (−0.195, 0.271)
0.022 (−0.161, 0.250)
0.027 (−0.033, 0.087)
0.010 (−0.169, 0.209)
0.069 (−0.141, 0.337)

0.048 (0.001, 0.095)
−0.010 (−0.054, 0.034)
−0.013 (−0.149, 0.127)
−0.050 (−0.350, 0.247)

0.085 (−0.232, 0.473)
0.224 (0.067, 0.447)

0.004 (−0.113, 0.129)
0.028 (−0.043, 0.106)

−0.35 −0.076 0.199 0.473

Figure 5: Forest plot of study-specific θCACE from the model cace.meta.ic() with full random effects fit
to the epidural_ic dataset. The summary estimate and confidence interval limits based on the model
cace.meta.ic() are included in the figure, both in terms of written values and the squares and lines on
the right. Overall, it shows that the study-specific θCACE

i vary from negative to positive in individual
studies, while most of the 95% credible intervals cover zero.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 313

is automatically added to the figure, with the outer edges of the polygon indicating the confidence
interval limits. The 95% credible interval of the summary θCACE covers zero, indicating a non-
significant complier average causal effect estimate for using epidural analgesia in labor on the risk of
cesarean section for the meta-analysis with 27 trials. For a study with incomplete data on compliance
status, a dashed horizontal line in the forest plot is used to represent the posterior 95% credible interval
of θCACE

i from the Bayesian hierarchical model fit. The study-specific θCACE
i vary from negative to

positive in individual studies, while most of the 95% credible intervals cover zero. As the θCACE
i for a

trial without complete compliance data is not estimable using only data from that single trial, dashed
lines tend to have longer credible intervals than those with complete data (solid lines).

4 Discussion

This article provides an overview of the BayesCACE package for conducting CACE analysis with
R. Bayesian hierarchical models estimating the CACE in individual studies and in meta-analysis
are introduced to demonstrate the underlying methods of the functions. Practical usage of various
functions is illustrated using real meta-analysis datasets epidural_c and epidural_ic. The package
provides several plots for model outputs and model diagnosis.

It is important to note that the two-step approach for meta-analysis is included in the package
BayesCACE because by using the full observed data from a single study i, θCACE

i is identifiable,
making it possible to pool the estimated posterior means and standard deviations of the θCACE

i in a
meta-analysis. However, the Bayesian hierarchical-model meta-analysis method for estimating the
overall CACE is preferred for two reasons: the conventional two-step approach requires the whole
set of parameters to be estimated for each trial, giving a greater total number of parameters than the
random effect model, so the estimate of the CACE can be less efficient. Also, when study i does not
report complete compliance data, it must be excluded from the two-step approach because θCACE

i is
no longer directly estimable by simply using the incomplete data from this individual study, while the
function cace.meta.ic() can use the incomplete information and thus help improve the efficacy in
estimation.

The Gelman and Rubin convergence statistics, time-series standard errors, trace plots, and auto-
correlation plots are provided by the package BayesCACE to examine whether the MCMC chains
are drawn from stationary distributions. However, in practice, any sample is finite, thus there is
no guaranteed way to prove that the sampler has converged (Kass et al. 1998; Cowles and Carlin
1996). Additional techniques may be required to determine the effective sample size for adequate
convergence (Robert and Casella 2004). For example, the well-developed R package mcmcse (Flegal et
al. 2017) can be used to assess whether MCMC has been run for enough iterations (sufficient chain
lengths). To call the functions in mcmcse, users can specify the argument mcmc.samples = TRUE in
cace.study(), cace.meta.c(), and cace.meta.ic(), so the MCMC posterior samples of monitored
parameters are saved in the output objects.

The current version of BayesCACE only applies to binary outcomes. However, the Bayesian
hierarchical model can be extended to handle ordinal outcomes o ∈ {1, . . . , O}.
By selecting weighting scores {W1, W2, . . . , WO} to reflect distances between outcome categories
{1, . . . , O}, θCACE

i is defined as E(Y1
ij −Y0

ij|Cij = 1) = ∑o (Wo × uio)− ∑o (Wo × vio) (J. Zhou, Hodges,
and Chu 2021; J. Zhou et al. 2019). Equally spaced scores {1, 2, ..., O}, their linear transforms, and
midranks are reasonable weight choices (Agresti 2013). Future work will add CACE meta-analysis
functions for ordinal outcomes, and allow users to choose their preferred weights {W1, W2, . . . , WO}.
Note that ordinal outcomes lead to more complex correlation structures in the parameters related to
response rates, so multivariate prior distributions are necessary to analyze such outcomes.

References

Agresti, Alan. 2013. Categorical Data Analysis. Third Edition. Hoboken, NJ: John Wiley & Sons.
Baccini, Michela, Alessandra Mattei, and Fabrizia Mealli. 2017. “Bayesian Inference for Causal

Mechanisms with Application to a Randomized Study for Postoperative Pain Control.” Biostatistics
18 (4): 605–17.

Baker, Stuart G. 2020. “CACE and Meta-Analysis (Letter to the Editor).” Biometrics 76 (4): 1383–84.
Bannister-Tyrrell, Melanie, Branko Miladinovic, Christine L Roberts, and Jane B Ford. 2015. “Ad-

justment for Compliance Behavior in Trials of Epidural Analgesia in Labor Using Instrumental
Variable Meta-Analysis.” Journal Article. Journal of Clinical Epidemiology 68 (5): 525–33.

Brooks, Stephen P, and Andrew Gelman. 1998. “General Methods for Monitoring Convergence of
Iterative Simulations.” Journal Article. Journal of Computational and Graphical Statistics 7 (4): 434–55.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=BayesCACE
https://CRAN.R-project.org/package=BayesCACE
https://CRAN.R-project.org/package=BayesCACE
https://CRAN.R-project.org/package=mcmcse
https://CRAN.R-project.org/package=mcmcse
https://CRAN.R-project.org/package=BayesCACE

CONTRIBUTED RESEARCH ARTICLE 314

Clopper, Charles J, and Egon S Pearson. 1934. “The Use of Confidence or Fiducial Limits Illustrated in
the Case of the Binomial.” Biometrika 26 (4): 404–13.

Coggeshall, Scott. 2017. noncomplyR: Bayesian Analysis of Randomized Experiments with Non-Compliance.
https://CRAN.R-project.org/package=noncomplyR.

Cowles, Mary Kathryn, and Bradley P Carlin. 1996. “Markov Chain Monte Carlo Convergence
Diagnostics: A Comparative Review.” Journal of the American Statistical Association 91 (434): 883–
904.

Flegal, James M, John Hughes, Dootika Vats, and N Dai. 2017. mcmcse: Monte Carlo Standard Errors for
MCMC. https://CRAN.R-project.org/package=mcmcse.

Frangakis, Constantine E, and Donald B Rubin. 2002. “Principal Stratification in Causal Inference.”
Biometrics 58 (1): 21–29.

Freedman, Laurence S. 1990. “The Effect of Partial Noncompliance on the Power of a Clinical Trial.”
Controlled Clinical Trials 11 (3): 157–68.

Gelman, Andrew, and Donald B Rubin. 1992. “Inference from Iterative Simulation Using Multiple
Sequences.” Journal Article. Statistical Science 7 (4): 457–72.

Gilbert, Peter B, Erin E Gabriel, Ying Huang, and Ivan SF Chan. 2015. “Surrogate Endpoint Evaluation:
Principal Stratification Criteria and the Prentice Definition.” Journal of Causal Inference 3 (2): 157–75.

Gordon, Max, and Thomas Lumley. 2017. forestplot: Advanced Forest Plot Using “Grid” Graphics.
https://CRAN.R-project.org/package=forestplot.

Harville, David A. 1977. “Maximum Likelihood Approaches to Variance Component Estimation and
to Related Problems.” Journal of the American Statistical Association 72 (358): 320–38.

Hedges, Larry V, and Ingram Olkin. 1985. Statistical Methods for Meta-Analysis. Orlando, FL: Academic
Press.

Hedges, Larry V, and Jack L Vevea. 1998. “Fixed- and Random-Effects Models in Meta-Analysis.”
Psychological Methods 3 (4): 486–504.

Hudgens, Michael G, and M Elizabeth Halloran. 2006. “Causal Vaccine Effects on Binary Postinfection
Outcomes.” Journal of the American Statistical Association 101 (473): 51–64.

Jiang, Yang, and Dylan Small. 2014. ivpack: Instrumental Variable Estimation. https://CRAN.R-
project.org/package=ivpack.

Kasim, Adetayo, ZhiMin Xiao, Steve Higgings, and Ewoud De Troyer. 2017. eefAnalytics: Analysing
Education Trials. https://CRAN.R-project.org/package=eefAnalytics.

Kass, Robert E, Bradley P Carlin, Andrew Gelman, and Radford M Neal. 1998. “Markov Chain Monte
Carlo in Practice: A Roundtable Discussion.” The American Statistician 52 (2): 93–100.

Laird, Nan M, and Frederick Mosteller. 1990. “Some Statistical Methods for Combining Experimental
Results.” International Journal of Technology Assessment in Health Care 6 (1): 5–30.

Lewis, Steff, and Mike Clarke. 2001. “Forest Plots: Trying to See the Wood and the Trees.” BMJ 322
(7300): 1479–80.

Lin, D Y, and D Zeng. 2010. “On the Relative Efficiency of Using Summary Statistics Versus Individual-
Level Data in Meta-Analysis.” Biometrika 97 (2): 321–32.

Lunn, David, Chris Jackson, Nicky Best, David Spiegelhalter, and Andrew Thomas. 2012. The BUGS
Book: A Practical Introduction to Bayesian Analysis. New York, NY: Chapman; Hall/CRC.

Plummer, Martyn. 2018. rjags: Bayesian Graphical Models Using MCMC. https://CRAN.R-project.
org/package=rjags.

Plummer, Martyn, Nicky Best, Kate Cowles, and Karen Vines. 2006. “CODA: Convergence Diagnosis
and Output Analysis for MCMC.” R News 6 (1): 7–11.

Robert, Christian, and George Casella. 2004. Monte Carlo Statistical Methods. New York, NY: Springer
Science & Business Media.

Spiegelhalter, David J, Nicola G Best, Bradley P Carlin, and Angelika Van Der Linde. 2002. “Bayesian
Measures of Model Complexity and Fit.” Journal Article. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 64 (4): 583–639.

Viechtbauer, Wolfgang. 2010. “Conducting Meta-Analyses in r with the metafor Package.” Journal of
Statistical Software 36 (3): 1–48.

White, Halbert. 1982. “Instrumental Variables Regression with Independent Observations.” Economet-
rica 50 (2): 483–99.

Zeger, Scott L, Kung-Yee Liang, and Paul S Albert. 1988. “Models for Longitudinal Data: A Generalized
Estimating Equation Approach.” Biometrics 44 (4): 1049–60.

Zhou, Jincheng, Haitao Chu, Michael G Hudgens, and M Elizabeth Halloran. 2016. “A Bayesian
Approach to Estimating Causal Vaccine Effects on Binary Post-Infection Outcomes.” Statistics in
Medicine 35 (1): 53–64.

Zhou, Jincheng, James S Hodges, and Haitao Chu. 2020. “Rejoinder to ‘CACE and Meta-Analysis
(Letter to the Editor)’ by Stuart Baker.” Biometrics 76 (4): 1385.

———. 2021. “A Bayesian Hierarchical CACE Model Accounting for Incomplete Noncompliance with
Application to a Meta-Analysis of Epidural Analgesia on Cesarean Section.” Journal of the American
Statistical Association 116 (536): 1700–1712.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=noncomplyR
https://CRAN.R-project.org/package=mcmcse
https://CRAN.R-project.org/package=forestplot
https://CRAN.R-project.org/package=ivpack
https://CRAN.R-project.org/package=ivpack
https://CRAN.R-project.org/package=eefAnalytics
https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=rjags

CONTRIBUTED RESEARCH ARTICLE 315

Zhou, Jincheng, James S. Hodges, M. Fareed K. Suri, and Haitao Chu. 2019. “A Bayesian Hierarchical
Model Estimating CACE in Meta-Analysis of Randomized Clinical Trials with Noncompliance.”
Biometrics 75 (3): 978–87.

Zhou, Ting, Jincheng Zhou, James S Hodges, Lifeng Lin, Yong Chen, Stephen R Cole, and Haitao Chu.
2021. “Estimating the Complier Average Causal Effect in a Meta-Analysis of Randomized Clinical
Trials with Binary Outcomes Accounting for Noncompliance: A Generalized Linear Latent and
Mixed Model Approach.” American Journal of Epidemiology 191 (1): 220–29.

Jincheng Zhou
Gilead Inc.
Clinical Data Science
Foster City, CA 94404, USA
jeni.zhou9@gilead.com

Jinhui Yang
University of Minnesota Twin Cities
Department of Computer Science and Engineering
Minneapolis, MN 55455, USA
yang7004@umn.edu

James S. Hodges
University of Minnesota Twin Cities
Division of Biostatistics
School of Public Health
Minneapolis, MN 55455, USA
hodge003@umn.edu

Lifeng Lin
University of Arizona
Department of Epidemiology and Biostatistics
Mel and Enid Zuckerman College of Public Health
Tucson, AZ 85724, USA
lifenglin@arizona.edu

Haitao Chu
(Affliation 1) Pfizer Inc. (Affliation 2) University of Minnesota Twin Cities
(1) Statistical Research and Data Science Center
New York, NY 10017, USA
(2) Division of Biostatistics
School of Public Health
Minneapolis, MN 55455, USA
(1) Haitao.Chu@Pfizer.com (2) chux0051@umn.edu

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

mailto:jeni.zhou9@gilead.com
mailto:yang7004@umn.edu
mailto:hodge003@umn.edu
mailto:lifenglin@arizona.edu
mailto:Haitao.Chu@Pfizer.com
mailto:chux0051@umn.edu

	Estimating Causal Effects using Bayesian Methods with the R Package BayesCACE
	Introduction
	Noncompliance in randomized clinical trials and causal effect
	CACE in meta-analysis
	Assumptions and definition of CACE

	Estimating CACE
	CACE for a single trial with noncompliance
	CACE for a meta-analysis with complete compliance information
	CACE for meta-analysis with incomplete compliance information

	Using the R package BayesCACE
	Data structure for estimating the CACE
	Plotting noncompliance rates
	CACE analysis for a single study or in a meta-analysis
	Plotting the trace plot, posterior density, and auto-correlation
	Plotting the study-specific CACE in a forest plot

	Discussion
	References

