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Fairness Audits and Debiasing Using
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by Florian Pfisterer, Siyi Wei, Sebastian Vollmer, Michel Lang, and Bernd Bischl

Abstract Given an increase in data-driven automated decision-making based on machine learning
(ML) models, it is imperative that, along with tools to develop and improve such models, there are
sufficient capabilities to analyze and assess models with respect to potential biases. We present the
package mlr3fairness, a collection of metrics and methods that allow for the assessment of bias in
machine learning models. Our package implements a variety of widely used fairness metrics that can
be used to audit models for potential biases, along with a set of visualizations that can help to provide
additional insights into such biases. mlr3fairness furthermore integrates bias mitigation methods for
machine learning models through data pre-processing or post-processing of predictions. These allow
practitioners to trade off performance and fairness metrics that are appropriate for their use case.

1 Introduction

Humans are increasingly subject to data-driven automated decision-making. Those automated proce-
dures, such as credit risk assessments, are often applied using predictive models (Kozodoi, Jacob, and
Lessmann 2022; Galindo and Tamayo 2000), often profoundly affecting individual’s lives. It is therefore
important that, along with tools to develop and improve such models, we also develop sufficient
capabilities to analyze and assess models not only with respect to their robustness and predictive
performance but also with respect to potential biases. This is highlighted by the European General
Data Protection Regulation (GDPR) which requires data to be processed fairly. Popular modelling
frameworks for the R language (R Core Team 2021) such as caret (Kuhn 2021), tidymodels (Kuhn and
Wickham 2020), SuperLearner (Polley et al. 2021), or mlr (Bischl et al. 2016) implement a plethora
of metrics to measure performance, but fairness metrics are widely missing. This lack of availability
can be detrimental to obtaining fair and unbiased models if the result is to forgo bias audits due to
the considerable complexity of implementing such metrics. Consequently, there exists a considerable
necessity for R packages to (a) implement such metrics, and (b) to connect these metrics to existing ML
frameworks. If biases are detected and need to be mitigated, we might furthermore want to employ
bias mitigation techniques that tightly integrate with the fitting and evaluation of the resulting models
in order to obtain trade-offs between a model’s fairness and utility (e.g., predictive accuracy).

In this article, we present the mlr3fairness package which builds upon the ML framework mlr3
(Lang et al. 2019). Our extension contains fairness metrics, fairness visualizations, and model-agnostic
pre- and post-processing operators that aim to reduce biases in ML models. Additionally, mlr3fairness
comes with reporting functionality that assists the user in documenting data and ML models, as well
as in performing fairness audits.

In the remainder of the article, we first provide an introduction to fairness in ML to raise awareness
of biases that can arise due to the use of ML models. Next, we introduce the mlr3fairness package,
followed by an extensive case study, showcasing the capabilities of mlr3fairness. We conclude with a
summary.

2 Fairness in Machine Learning

Studies have found that data-driven automated decision-making systems often improve over human
expertise (Dawes, Faust, and Meehl (1989)) and high-stakes decisions can therefore be enhanced using
data-driven systems. This often does not only improve predictions, but can also make decisions more
efficient through automation. Such systems, often without human oversight, are now ubiquitous
in everyday life (O’neil 2016; Eubanks 2018; Noble 2018). To provide further examples, ML-driven
systems are used for highly influential decisions such as loan accommodations (Chen 2018; Turner
and McBurnett 2019), job applications (Schumann et al. 2020), healthcare (Topol 2019), and criminal
sentencing (Angwin et al. 2016; Corbett-Davies et al. 2017; Berk et al. 2018). With this proliferation,
such decisions have become subject to scrutiny as a result of prominent inadequacies or failures, for
example in the case of the COMPAS recidivism prediction system (Angwin et al. 2016).

Without proper auditing, those models can unintentionally result in negative consequences for
individuals, often from underprivileged groups (Barocas, Hardt, and Narayanan 2019). Several
sources of such biases are worth mentioning in this context: Data often contains historical biases
such as gender or racial stereotypes, that – if picked up by the model – will be replicated into the
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future. Similarly, unprivileged populations are often not represented in data due to sampling biases
leading to models that perform well in groups sufficiently represented in the data but worse on others
(Buolamwini and Gebru 2018) – this includes a higher rate of missing data. Other biases include
biases in how labels and data are measured (Bao et al. 2021) as well as feedback loops where repeated
decisions affect the population subject to such decisions. For an in-depth discussion and further
sources of biases, the interested reader is referred to available surveys of the field (Barocas, Hardt, and
Narayanan 2019; Mehrabi et al. 2021; S. Mitchell et al. 2021).

Quantifying fairness

We now turn to the question of how we can detect whether disparities exist in a model and if so,
how they can be quantified. What constitutes a fair model depends on a society’s ethical values and
which normative position we take, resulting in different metrics that are applied to a problem at hand.
In this article, we focus on a subgroup of these, so-called statistical group fairness metrics. First, the
observations are grouped by a sensitive attribute A (A = 0 vs. A = 1), which, e.g., is an identifier
for a person’s race or a person’s gender. For the sake of simplicity, we consider a binary classification
scenario and a binary sensitive attribute. Each observation has an associated label Y, Y ∈ {0, 1}, and we
aim to predict, e.g., whether a defendant was caught re-offending. A system then makes a prediction
Ŷ, Ŷ ∈ {0, 1}, with the goal to predict whether an individual might re-offend. We assume that Y = 1 is
the favored outcome in the following exposition. While we do not describe them in detail, the concepts
discussed in the following often extend naturally to more complex scenarios including multi-class
classification, regression or survival analysis. Similarly, metrics can be extended to settings that require
consideration of multiple possibly intersecting sensitive attributes. We now provide and discuss
groups of metrics that require either Separation or Independence (Barocas, Hardt, and Narayanan 2019)
to provide further intuition regarding core concepts and possible applications.

Separation

One group of widely used fairness notions requires Separation: Ŷ ⊥ A|Y. In order for separation
to hold, the prediction Ŷ has to be independent of A given the true label Y. This essentially requires
that some notion of model error, e.g., accuracy or false positive rate, is equal across groups A. From
this notion, we can derive several metrics that come with different implications. It is important to
note that those metrics can only meaningfully identify biases under the assumption that no disparities
exist in the data or that they are legally justified. For example, if societal biases lead to disparate
measurements of an observed quantity (e.g. SAT scores) for individuals with the same underlying
ability, separation based metrics might not identify existing biases. For this reason, Wachter, Mittelstadt,
and Russell (2020) refer to those metrics as bias-preserving metrics since underlying disparities are not
addressed.

Equalized Odds A predictor Ŷ satisfies equalized odds with respect to a sensitive attribute A and
observed outcome Y, if Ŷ and A are conditionally independent given Y:

P
(
Ŷ = 1 | A = 0, Y = y

)
= P

(
Ŷ = 1 | A = 1, Y = y

)
, y ∈ {0, 1}. (1)

In short, we require that the true positive rates (TPR) and false positive rates (FPR) across both groups
A = 0 and A = 1 are equal. This intuitively requires, e.g., in the case of university admission,
independent of the sensitive attribute, equal chances for qualified individuals to be accepted and
unqualified individuals to be rejected. Similar measures have been proposed based on equalized
false positive rates (Chouldechova 2017) and false omission rates (Berk et al. 2018), depending on the
scenario and societal context.

Equality of Opportunity A predictor Ŷ satisfies equality of opportunity with respect to a sensitive
attribute A and observed outcome Y, if Ŷ and A are conditionally independent for Y = 1. This is a
relaxation of the aforementioned equalized odds essentially only requiring equal TPRs:

P
(
Ŷ = 1 | A = 0, Y = 1

)
= P

(
Ŷ = 1 | A = 1, Y = 1

)
. (2)

Intuitively, this only requires that, independent of the sensitive attribute, qualified individuals have
the same chance of being accepted.

Performance Parity A more general formulation can be applied when we require parity of some
performance metric across groups. To provide an example, Buolamwini and Gebru (2018) compare
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accuracy across intersectional subgroups, essentially arguing that model performance should be equal
across groups:

P
(
Ŷ = Y | A = 0

)
= P

(
Ŷ = Y | A = 1

)
. (3)

This intuitively requires that the model should work equally well for all groups, i.e., individuals are
correctly accepted or denied at the same rate, independent of the predicted attribute. This notion can
be extended across supervised learning settings and performance metrics, leading to considerations of
equal mean squared error, e.g., in a regression setting.

Independence

The second group of fairness metrics is given by so-called bias-transforming metrics (Wachter, Mittel-
stadt, and Russell 2020). They require that decision rates, such as the positive rate, are equal across
groups. This notion can identify biases, e.g., those which arise from societal biases, that manifest in
different base rates across groups. At the same time, employing such notions poses a considerable risk,
as blindly optimizing for demographic parity might result in predictors that, for example jail innocent
people from an advantaged group in order to achieve parity across both groups (Dwork et al. 2012;
Berk et al. 2018). A predictor Ŷ satisfies demographic parity (Calders and Verwer 2010) with respect to a
sensitive attribute A and observed outcome Y, if Ŷ and A are conditionally independent:

P
(
Ŷ = 1 | A = 0

)
= P

(
Ŷ = 1 | A = 1

)
. (4)

In contrast to the previous definitions, this requires that the chance of being accepted is equal across
groups.

Fairness metrics

In order to encode the requirements in equations (1) - (4) into a fairness metric, we encode differences
between measured quantities in two groups. For a performance metric M, e.g., the true positive rate
(TPR), we calculate the difference in the metric across the two groups:

∆M = MA=0 − MA=1.

When ∆M significantly deviates from 0, this indicates a fairness violation with respect to the fairness
notion described in M. To provide an example, with P

(
Ŷ = 1 | A = ⋆, Y = 1

)
denoted with TPRA=⋆,

we calculate the difference in TPR between the two groups:

∆TPR = TPRA=0 − TPRA=1.

When ∆TPR now significantly deviates from 0, the prediction Ŷ violates the requirement for equality of
opportunity formulated above.

It is important to note that in practice, we might not be able to perfectly satisfy a given metric, e.g.,
due to stochasticity in data and labels. Instead, to provide a binary conclusion regarding fairness, a
model could be considered fair if |∆TPR| < ϵ for a given threshold ϵ > 0, e.g., ϵ = 0.05. This allows
for small deviations from perfect fairness due to variance in the estimation of TPRA=⋆ or additional
sources of bias. However, choosing appropriate thresholds is difficult, and widely used values for
ϵ such as 0.05 are arbitrary and do not translate to legal doctrines, e.g., disparate impact (Watkins,
McKenna, and Chen 2022). A more in-depth treatment of metrics is given by (Barocas, Hardt, and
Narayanan 2019; Saleiro et al. 2018; Kim, Chen, and Talwalkar 2020; Mehrabi et al. 2021; Wachter,
Mittelstadt, and Russell 2020).

Selecting fairness metrics While the aforementioned metrics are conceptually similar, they encode
different beliefs of what constitutes fair in a given scenario. Wachter, Mittelstadt, and Russell (2020)
differentiate between bias-preserving and bias-transforming metrics: Bias-preserving metrics such as
equalized odds and equality of opportunity require that errors made by a model are equal across
groups. This can help to detect biases stemming, from imbalances in the sampling or under- and
overfitting in ML models, but might be problematic in cases where labels are biased. To provide an
example, police enforcement and subsequent arrests of violent re-offenders might be different across
ZIP code areas, a proxy for race. This might lead to situations where observed labels Y suffer from
differential measurement bias strongly correlated with race (Bao et al. 2021). Bias-preserving metrics
do not take such disparities into account and might, therefore (wrongly) lead to the conclusion that a
given model is fair.
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Bias-transforming methods, in contrast, do not depend on labels and might therefore not suffer
from this problem. They can help detect biases arising from different base rates across populations, aris-
ing, e.g., from aforementioned biases in the labelling or as a consequence of structural discrimination.
Deciding which metrics to use constitutes a value judgement and requires careful assessment of the
societal context a decision-making system is deployed in. A discussion of different metrics and their
applicability can be found in the Aequitas Fairness Toolkit (Saleiro et al. 2018) which also provides
guidance towards selecting a metric via the Aequitas Fairness Tree. Wachter, Mittelstadt, and Russell
(2020) recommend using bias-transforming metrics and provide a checklist that can guide the choice of
fairness metric. Corbett-Davies and Goel (2018), on the other hand, point out several limitations of
available metrics and argue for grounding decisions in real-world quantities in addition to abstract
fairness metrics. Similarly, Friedler, Scheidegger, and Venkatasubramanian (2016) emphasize the need
to differentiate between constructs we aim to measure (e.g., job-related knowledge) and the observed
quantity that can be measured in practice (e.g., years in a job) when trying to automate decisions, since
disparities in how constructs translate to observed quantities might suffer from bias. To provide an
example, individuals with similar abilities might exhibit different measured quantities (grades) due to
structural bias, e.g., differential access to after-school tutoring programs.

The dangers of fairness metrics We want to stress that overly trusting in metrics can be dangerous
and that fairness metrics cannot and should not be used to prove or guarantee fairness. Whether a
selected fairness notion (and a corresponding numerical value) is actually fair depends on the societal
context in which a decision is made and which action should be derived from a given prediction.
Therefore, selecting the correct fairness metric requires a thorough understanding of the societal
context of a decision, as well as the possible implications of such decisions. To provide an example,
in some cases discrepancies in positive predictions might be justified or even desired, as they, for
example, allow for a more nuanced, gender-specific diagnosis (Cirillo et al. 2020). Furthermore,
fairness metrics might not detect biases in more fine-grained subgroups, e.g., at the intersection
of multiple sensitive attributes. It is also important to note that fairness metrics merely provide a
reduction of the aforementioned fairness notions into mathematical objectives. As such, they require
a variety of abstraction steps that might invalidate the metric (Watkins, McKenna, and Chen 2022),
as they, for example, require that the data is a large enough and representative sample of exactly the
population that we aim to investigate. Furthermore, practitioners need to look beyond the model, and
also at the data used for training and the process of data and label acquisition. If the data for example
exhibit disparate measurement errors in the features or labels, valid fairness assessments can become
impossible. Similarly, feedback loops might arise from a prediction leading to changes in the data
collected in the future. Even an initially fair model might then lead to adverse effects in the long term
(Schwöbel and Remmers 2022).

Note that the fairness definitions presented above serve a dual purpose (Wachter, Mittelstadt, and
Russell 2020): First, as a diagnostic tool to detect disparities. This allows for assessing whether a model
has inherited biases, e.g., from historical disparities reflected in the data. The second purpose is as
a basis for model selection and making fair decisions in practice. In this setting, fairness notions are
employed to audit ML models or to select which model should be used in practice. In this setting, it
is important to note that fairness metrics should not be used as the sole basis for making decisions
about whether to employ a given ML model or to assess whether a given system is fair. We therefore
explicitly encourage using the presented metrics for exploratory purposes.

Other notions of fairness In addition to statistical group fairness notions introduced above, several
additional fairness notions exist. The notion of individual fairness was proposed by Dwork et al. (2012).
Its core idea comes from the principle of treating similar cases similarly and different cases differently. In
contrast to statistical group fairness notions, this notion allows assessing fairness at an individual
level and would therefore allow determining whether an individual is treated fairly. A more in-depth
treatment of individual fairness notions is, given in Binns (2020). Similarly, a variety of causal fairness
notions exist (c.f. Kilbertus et al. (2017)). They argue that assessing fairness requires incorporating
causal relationships in the data and propose a variety of causal fairness metrics based on a directed
acyclic graph describing relationships in the data.

Fairness constraints Statistical group fairness notions suffer from two further problems in practice:
First, it might be hard to exactly satisfy the required fairness notions, e.g., due to a limited amount of
data available for evaluation. Secondly, only requiring fairness might lead to degenerate solutions
(Corbett-Davies and Goel 2018) or models that have low utility, e.g., in separating good and bad
credit risk. One approach to take this into account is to employ models which maximize utility but
satisfy some maximum constraint on potential unfairness. This can be achieved via constraints on
the employed fairness measure, e.g. |∆M| ≤ ϵ requiring that the absolute difference in a metric M
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between groups is smaller than a chosen value ϵ. In the following, we denote the fairness metric we
want to minimize with ∆M and a performance metric with ρ.

ρ|∆M |≤ϵ =

{
ρ |∆M| ≤ ϵ
−|∆M| else.

Note that this assumes that the fairness metric ρ is strictly positive and should be maximized. This
approach is similar in spirit to the approach of Perrone et al., (2021) who optimize the constrained
expected improvement cEI = P(|∆M| ≤ ϵ) · ρ.

However, it is not immediately clear how the constraint ϵ should be chosen. An alternative, there-
fore, is to employ multi-objective optimization to investigate available trade-offs between performance
and accuracy metrics. This can be done via mlr3tuning (Becker, Lang, et al. 2023) which contains
functionality to tune models for multiple metrics, described in more detail in the mlr3book (Bernd
Bischl 2024). The result of multi-objective optimization then is the Pareto-set: A list of models which
optimally trade off the specified objectives.

Bias mitigation

If biases are detected in a model, we might now be interested in improving models in order to
potentially mitigate such biases. Bias in models might arise from a variety of sources, so a careful
understanding of the data, data quality and distribution might lead to approaches that can help in
decreasing biases, e.g. through the collection of better or additional data or a better balancing of
sensitive groups. Similarly, biases might arise from the model, through under- or overfitting and
more careful tuning of model hyperparameters might help with improving fairness. Especially if
the goal is to satisfy bias-transforming metrics, a better solution might often be to address fairness
problems in the real world instead of relying on algorithmic interventions to solve fairness. This might
lead to more robust, long-term solutions instead of temporarily addressing issues via algorithmic
interventions. In addition, a variety of algorithmic bias mitigation techniques, that might help with
obtaining fairer models have been proposed. Their goal is to reduce measured gaps in fairness, either
via data pre-processing, employing models that incorporate fairness, or by applying post-processing
techniques to a model’s predictions. Popular examples of such techniques include computing instance
weights before training (Kamiran and Calders 2012), where each observation is weighted proportional
to the inverse frequency of its label and sensitive attribute. Other methods work by directly learning
fair models that incorporate fairness constraints into the fitting procedure (Zafar et al. 2017) or by
adapting model predictions, e.g., Hardt, Price, and Srebro (2016) propose to randomly flip a small
fraction of predictions in each group given by Ŷ and A, such that fairness metrics are satisfied in
expectation. Since bias mitigation techniques are often tailored towards a particular fairness metric,
the optimal choice is often not trivial and a combination of algorithms and bias mitigation techniques
determined via tuning might result in an optimal model.

Bias-mitigation techniques, as proposed above, have the goal of mitigating fairness issues, as
measured by fairness metrics. In practice, this usually comes with several drawbacks: First, bias-
mitigation strategies often lead to a decrease in a classifier’s predictive performance (Corbett-Davies
and Goel 2018). In addition, processing schemes can worsen interpretability or introduce stochasticity
during prediction (see, e.g., Hardt, Price, and Srebro (2016)). Furthermore, we want to caution against
favouring bias-mitigation techniques over policy interventions that tackle biases at their root cause.
A different set of risks is posed by fairwashing (Aivodji et al. 2019), i.e., finding fair explanations or
satisfying fairness metrics for otherwise unfair models. If biases are only addressed at a given moment
and without regard for downstream effects, they might simultaneously lead to a decrease in predictive
performance in the near term and to negative consequences for the sensitive group in the long term
(Schwöbel and Remmers 2022).

3 The mlr3fairness package

In this section, we first give an overview of related software. Next, we give a very brief introduction to
the mlr3 ecosystem of packages. Finally, the implemented extensions for fairness are presented.

Related software

Several R packages provide similar capabilities to our software, but mostly focus on fairness metrics
and visualization. The fairness package (Kozodoi and V. Varga 2021) allows for the calculation of a
variety of fairness metrics, while aif360 (Bellamy et al. 2019) wraps the Python aif360 module allowing
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for the computation of fairness metrics and several bias mitigation techniques, but has only limited
interoperability with R objects such as data.frames. The fairmodels (Wiśniewski and Biecek 2022)
package again allows for the computation of fairness metrics for classification and regression settings
as well as several bias mitigation techniques. It tightly integrates with DALEX (Biecek 2018) to gain
further insight using interpretability techniques.

Outside R, in Python, the fairlearn module (Bird et al. 2020) provides ample functionality to study
a wide variety of metrics, bias mitigation with respect to a variety of pre-, in- and post-processing
methods as well as to visualize differences. It furthermore provides a fairlearn dashboard providing a
comprehensive fairness report. The aif360 (Bellamy et al. 2019) module similarly provides metrics
as well as bias mitigation techniques while the aequitas fairness toolkit (Saleiro et al. 2018) provides
similar capabilities. Interoperability with the scikit-learn (Pedregosa et al. 2011) ML framework allows
for bias mitigation for a wide variety of ML models in all aforementioned systems. Similar capabilities
are also available in Julia’s Fairness.jl (Agrawal, Chen, et al. 2020) library.

The mlr3 ecosystem

mlr3fairness is tightly integrated into the ecosystem of packages around the ML framework mlr3 (Lang
et al. 2019). mlr3 provides the infrastructure to fit, resample, and evaluate over 100 ML algorithms
using a unified API. Packages from the ecosystem can be installed and updated via the mlr3verse
(Lang and Schratz 2023) package. Multiple extension packages bring numerous additional advantages
and extra functionality. In the context of fairness, the following extension packages deserve special
mention:

• mlr3pipelines (Binder et al. 2021) for pre- and postprocessing via pipelining. This allows
composing bias mitigation techniques with arbitrary ML algorithms shipped with mlr3 as well
as fusing ML algorithms with pre-processing steps such as imputation or class balancing. It
furthermore integrates with mcboost (Pfisterer et al. 2021), which implements additional bias
mitigation methods. We present an example in the supplementary material.

• mlr3tuning and bbotk (Becker, Richter, et al. 2023) for its extensive tuning capabilities.
• mlr3proba (Sonabend et al. 2021) for survival analysis.
• mlr3benchmark for post-hoc analysis of benchmarked approaches.
• mlr3oml as a connector to OpenML (Vanschoren et al. 2014), an online scientific platform for

collaborative ML.

In order to provide the required understanding for mlr3, we briefly introduce some terminology
and syntax. A full introduction can be found in the mlr3 book (Bernd Bischl 2024).

A Task in mlr3 is a basic building block holding the data, storing covariates and the target variable
along with some meta-information. The shorthand constructor function tsk() can be used to quickly
access example tasks shipped with mlr3 or mlr3fairness. In the following chunk, we retrieve the
binary classification task with id "adult_train" from the package. It contains a part of the Adult data
set (Dua and Graff 2017). The task is to predict whether an individual earns more than $50.000 per
year. The column "sex" is set as a binary sensitive attribute with levels "Female" and "Male".

library("mlr3verse")
library("mlr3fairness")

task = tsk("adult_train")
print(task)

#> <TaskClassif:adult_train> (30718 x 13)
#> * Target: target
#> * Properties: twoclass
#> * Features (12):
#> - fct (7): education, marital_status, occupation, race, relationship,
#> sex, workclass
#> - int (5): age, capital_gain, capital_loss, education_num,
#> hours_per_week
#> * Protected attribute: sex

The second building block is the Learner. It is a wrapper around an ML algorithm, e.g., an
implementation of logistic regression or a decision tree. It can be trained on a Task and used for
obtaining a Prediction on an independent test set which can subsequently be scored using a Measure
to get an estimate for the predictive performance on new data. The shorthand constructors lrn() and
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msr() allow for the instantiation of implemented Learners and Measures, respectively. In the following
example, we will first instantiate a learner, then split our data into a train and test set, afterwards train
it on the train set of the dataset and finally evaluate predictions on held-out test data. The train-test
split in this case is given by row indices, here stored in the idx variable.

learner = lrn("classif.rpart", predict_type = "prob")
idx = partition(task)
learner$train(task, idx$train)
prediction = learner$predict(task, idx$test)

We then employ the classif.acc measure which measures the accuracy of a prediction compared
to the true label:

measure = msr("classif.acc")
prediction$score(measure)

#> classif.acc
#> 0.8382

In the example above, we obtain an accuracy score of 0.8382, meaning our ML model correctly
classifies roughly 84 % of the samples in the test data. As the split into training set and test set is
stochastic, the procedure should be repeated multiple times for smaller datasets (Bischl et al. 2012) and
the resulting performance values should be aggregated. This process is called resampling, and can
easily be performed with the resample() function, yielding a ResampleResult object. In the following,
we employ 10-fold cross-validation as a resampling strategy:

resampling = rsmp("cv", folds = 10)
rr = resample(task, learner, resampling)

We can call the aggregate method on the ResampleResult to obtain the accuracy aggregated across
all 10 replications.

rr$aggregate(measure)

#> classif.acc
#> 0.8408

Here, we obtain an accuracy of 0.8408, so slightly higher than previous scores, due to using a larger
fraction of the data. Furthermore, this estimate has a lower variance (as it is an aggregate) at the cost of
additional computation time. To properly compare competing modelling approaches, candidates can
be benchmarked against each other using the benchmark() function (yielding a BenchmarkResult). In
the following, we compare the decision tree from above to a logistic regression model. To do this, we
use the benchmark_grid function to compare the two Learners across the same Task and resampling
procedure. Finally, we aggregate the measured scores each learner obtains on each cross-validation
split using the $aggregate() function.

learner2 = lrn("classif.log_reg", predict_type = "prob")

grid = benchmark_grid(task, list(learner, learner2), resampling)
bmr = benchmark(grid)

bmr$aggregate(measure)[, .(learner_id, classif.acc)]

#> learner_id classif.acc
#> 1: classif.rpart 0.8408
#> 2: classif.log_reg 0.8467

After running the benchmark, we can again call .$aggregate to obtain aggregated scores. The
mlr3viz package comes with several ready-made visualizations for objects from mlr3 via ggplot2’s
(Wickham 2016) autoplot function. For a BenchmarkResult, the autoplot function provides a Box-plot
comparison of performances across the cross-validation folds for each Learner. Figure 1 contains
the box-plot comparison. We can see that log_reg has higher accuracy and lower interquartile range
across the 10 folds, and we might therefore want to prefer the log_reg model.
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Figure 1: Model comparison based on accuracy for decision trees (rpart) and logistic regression
(log_reg) across resampling splits.

Selecting the sensitive attribute

For a given task, we can select one or multiple sensitive attributes. In mlr3, the sensitive attribute is
identified by the column role pta and can be set as follows:

task$set_col_roles("marital_status", add_to = "pta")

In the example above, we add the "marital_status" as an additional sensitive attribute. This
information is then automatically passed on when the task is used, e.g., when computing fairness
metrics. If more than one sensitive attribute is specified, metrics will be computed based on intersecting
groups formed by the columns.

Quantifying fairness

With the mlr3fairness package loaded, fairness measures can be constructed via msr() like any other
measure in mlr3. They are listed with prefix fairness, and simply calling msr() without any arguments
will return a list of all available measures. Table 1 provides an overview of some popular fairness
measures which are readily available.

Table 1: Overview of fairness metrics available with mlr3fairness.

key description

fairness.acc Accuracy equality (Buolamwini and Gebru, 2018)
fairness.mse Mean squared error equality (Regression)
fairness.eod Equalized odds (Hardt et al., 2016)
fairness.tpr True positive rate equality / Equality of opportunity (Hardt et al., 2016)
fairness.fpr False positive rate equality / Predictive equality (Chouldechova, 2017)
fairness.tnr True negative rate equality
fairness.fnr False negative rate equality (Berk et al., 2018)
fairness.fomr False omission rate equality (Berk et al., 2018)
fairness.tnr Negative predictive value equality
fairness.tnr Positive predictive value equality
fairness.cv Demographic parity / Equalized positive rates (Calders and Verwer, 2010)
fairness.pp Predictive parity / Equalized precision (Chouldechova, 2017)
fairness.{tp, fp, tn,
fn}

Equal true positives, false positives, true negatives, false negatives

fairness.acc_eod=.05 Accuracy under equalized odds constraint (Perrone et al., 2021)
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key description

fairness.acc_ppv=.05 Accuracy under ppv constraint (Perrone et al., 2021)

Furthermore, new custom fairness measures can be easily implemented, either by implementing
them directly or by composing them from existing metrics. This process is extensively documented in
an accompanying measures vignette available with the package.

Here we choose the binary accuracy measure "classif.acc" and the equalized odds metric from
above using "fairness.eod": The constructed list of measures can then be used to score a Prediction,
a ResampleResult or BenchmarkResult, e.g.

measures = list(msr("classif.acc"), msr("fairness.eod"))
rr$aggregate(measures)

#> classif.acc fairness.equalized_odds
#> 0.84078 0.07939

We can clearly see a comparatively large difference in equalized odds at around 0.08. This means,
that in total, the false positive rates (FPR) and true positive rates (TPR) on average differ by ~0.08,
indicating that our model might exhibit a bias. Looking at the individual components yields a clearer
picture. Here, we are looking at the confusion matrices of the combined predictions of the 10 folds,
grouped by sensitive attribute:

fairness_tensor(rr)

#> $Male
#> truth
#> response <=50K >50K
#> <=50K 0.43030 0.10033
#> >50K 0.03408 0.11202
#>
#> $Female
#> truth
#> response <=50K >50K
#> <=50K 0.282668 0.020900
#> >50K 0.003907 0.015789

Plotting the prediction density or comparing measures graphically often provides additional
insights: For example, in Figure 2, we can see that Females are more often predicted to earn below
$50.000. Similarly, we can see that both equality in FPR and TPR differ considerably.

fairness_prediction_density(prediction, task)
compare_metrics(prediction, msrs(c("fairness.fpr", "fairness.tpr", "fairness.eod")), task)

Bias mitigation

As mentioned above, several ways to improve a model’s fairness exist. While non-technical inter-
ventions, such as e.g. collecting more data should be preferred, mlr3fairness provides several bias
mitigation techniques that can be used together with a Learner to obtain fairer models. Table 2
provides an overview of implemented bias mitigation techniques. They are implemented as PipeOps
from the mlr3pipelines package and can be combined with arbitrary learners using the %>>% operator
to build a pipeline that can later be trained. In the following example, we show how to combine a
learner with a reweighing scheme (reweighing_wts) or alternatively how to post-process predictions
using the equalized odds debiasing (EOd) strategy. An introduction to mlr3pipelines is available in the
corresponding mlr3book chapter (Bernd Bischl 2024).

po("reweighing_wts") %>>% lrn("classif.glmnet")
po("learner_cv", lrn("classif.glmnet")) %>>% po("EOd")
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Figure 2: Visualizing predictions of the decision tree model. Left: Prediction densities for the negative
class for Female and Male. Right: Fairness metrics comparison for FPR, TPR, EOd metrics. Plots show
a higher likelihood for the ’<50k’ class for females resulting in fairness metrics different from 0.

Table 2: Overview of bias mitigation techniques available in mlr3fairness.

Key Description Type Reference

EOd Equalized-Odds Debiasing Postprocessing Hardt, Price, and
Srebro (2016)

reweighing_os Reweighing (Oversampling) Preprocessing Kamiran and
Calders (2012)

reweighing_wts Reweighing (Instance weights) Preprocessing Kamiran and
Calders (2012)

It is simple for users or package developers to extend mlr3fairness with additional bias mitigation
methods – as an example, the mcboost package adds further post-processing methods that can improve
fairness. Along with pipeline operators, mlr3fairness contains several machine learning algorithms
listed in table 3 that can directly incorporate fairness constraints. They can similarly be constructed
using the lrn() shorthand.

Table 3: Overview of fair ML algorithms available with mlr3fairness.

Key Package Reference

regr.fairfrrm fairml Scutari, Panero, and Proissl (2021)
classif.fairfgrrm fairml Scutari, Panero, and Proissl (2021)
regr.fairzlm fairml Zafar et al. (2017)
classif.fairzlrm fairml Zafar et al. (2017)
regr.fairnclm fairml Komiyama et al. (2018)

Reports

Because fairness aspects can not always be investigated based on the fairness definitions above (e.g.,
due to biased sampling or labelling procedures), it is important to document data collection and the
resulting data as well as the models resulting from this data. Informing auditors about those aspects of
a deployed model can lead to better assessments of a model’s fairness. Questionnaires for ML models
(M. Mitchell et al. 2019) and data sets (Gebru et al. 2021) have been proposed in literature. We further
add automated report templates using R markdown (Xie, Dervieux, and Riederer 2020) for data sets
and ML models. In addition, we provide a template for a fairness report which includes many fairness
metrics and visualizations to provide a good starting point for generating a fairness report inspired by
the Aequitas Toolkit (Saleiro et al. 2018). A preview for the different reports can be obtained from the
Reports vignette in the package documentation.
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Table 4: Overview of reports generated by mlr3fairness.

Report Description Reference

report_modelcard() Modelcard for ML models M. Mitchell et al. (2019)
report_datasheet() Datasheet for data sets Gebru et al. (2021)
report_fairness() Fairness Report –

4 Case study

In order to demonstrate a full workflow, we conduct full bias assessment and bias mitigation on
the popular adult data set (Dua and Graff 2017). The goal is to predict whether an individual’s
income is larger than $50.000 with the sensitive attribute being gender. The data set is included with
mlr3fairness, separated into a train and test task and can be instantiated using tsk("adult_train")
and tsk("adult_test"), respectively. As a fairness metric, we consider true positive parity which calls
for equality in the true positive rates across groups, in this case the sex variable. We furthermore are
interested in the model’s utility, here measured as its classification accuracy.

library("mlr3verse")
library("mlr3fairness")

task = tsk("adult_train")
print(task)

#> <TaskClassif:adult_train> (30718 x 13)
#> * Target: target
#> * Properties: twoclass
#> * Features (12):
#> - fct (7): education, marital_status, occupation, race, relationship,
#> sex, workclass
#> - int (5): age, capital_gain, capital_loss, education_num,
#> hours_per_week
#> * Protected attribute: sex

measures = msrs(c("fairness.tpr", "classif.acc"))

In order to get an initial perspective, we benchmark three models using 3-fold cross-validation
each:

• a classification tree from the rpart package,
• a penalized logistic regression from the glmnet package and
• a penalized logistic regression from the glmnet package, but with reweighing pre- processing.

The logistic regression in the latter two approaches does not support operating on factor features
natively, therefore we pre-process the data with a feature encoder from mlr3pipelines. To achieve
this, we connect the feature encoder po("encode") with the learner using the %>>% operator. This
encodes factor variables into integers using dummy encoding. We then evaluate all three learners
on the adult_train data using 3-fold cross-validation by building up a grid of experiments we want
to run using benchmark_grid. This grid is then executed using the benchmark function, and we can
aggregate the performance and fairness metric scores via the $aggregate() function.

set.seed(4321)
learners = list(

lrn("classif.rpart"),
po("encode") %>>% lrn("classif.glmnet"),
po("encode") %>>% po("reweighing_wts") %>>% lrn("classif.glmnet")

)

grid = benchmark_grid(
tasks = tsks("adult_train"),
learners = learners,
resamplings = rsmp("cv", folds = 3)

)
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bmr1 = benchmark(grid)
bmr1$aggregate(measures)[, c(4, 7, 8)]

#> learner_id fairness.tpr classif.acc
#> 1: classif.rpart 0.059767 0.8408
#> 2: encode.classif.glmnet 0.070781 0.8411
#> 3: encode.reweighing_wts.classif.glmnet 0.004732 0.8351

The pre-processing step of reweighing already improved the fairness while sacrificing only a
tiny bit of performance. To see if we can further improve, we use mlr3tuning to jointly tune all
hyperparameters of the glmnet model as well as our reweighing hyperparameter. In order to do this,
we use an AutoTuner from mlr3tuning; a model that tunes its own hyperparameters during training.
The full code for setting up this model can be found in the appendix. An AutoTuner requires a specific
metric to tune for. Here, we define a fairness-thresholded accuracy metric. We set ϵ = 0.01 as a
threshold:

i f |∆EOd| ≤ ϵ : accuracy else : −|∆EOd|.

metric = msr("fairness.constraint",
performance_measure = msr("classif.acc"),
fairness_measure = msr("fairness.eod"),
epsilon = 0.01

)

We then design the pipeline and the hyperparameters we want to tune over. In the following
example, we choose tuning_iters = 3 and set a small range for the hyperparameters in vals to
shorten the run time of the tuning procedure. In real settings, this parameter would be set to a larger
number, such as 100. To construct a self-tuning learner, we construct an AutoTuner that takes as input
a learner, the resampling procedure and metric used for tuning as well as the tuning strategy along
with a termination criterion (here how many tuning iterations should be run). In addition, we provide
a new id for the learner to beautify subsequent printing and visualization. We can then use this
self-tuning learner like any other learner and benchmark it using benchmark as described above.

tuning_iters = 3
at = AutoTuner$new(lrn, rsmp("holdout"),

metric,
tuner = mlr3tuning::tnr("random_search"),
terminator = trm("evals", n_evals = tuning_iters)

)
at$id = "glmnet_weighted_tuned"

grd = benchmark_grid(
tasks = tsks("adult_train"),
learners = list(at),
resamplings = rsmp("cv", folds = 3)

)

bmr2 = benchmark(grd, store_models = TRUE)
bmr2$aggregate(measures)[, c(4, 7, 8)]

#> learner_id fairness.tpr classif.acc
#> 1: glmnet_weighted_tuned 0.009486 0.8385

The result improves w.r.t. accuracy while only slightly decreasing the measured fairness. Note that
the generalization error is estimated using a holdout strategy during training and slight violations
of the desired threshold ϵ should therefore be considered (Feurer et al. 2023). The results of both
benchmark experiments can then be collected and jointly visualized in Figure 3 visualizing accuracy
and fairness of models in our benchmark. In addition to aggregate scores (denoted by a cross)
individual iterations of the 3-fold Cross-Validation (represented by points) are shown to visualize
variations in the individual results.

bmr$aggregate(measures)[, c(4, 7, 8)]
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Figure 3: Fairness-Accuracy tradeoff for 3-fold CV on the adult train set.

#> learner_id fairness.tpr classif.acc
#> 1: classif.rpart 0.059767 0.8408
#> 2: encode.classif.glmnet 0.070781 0.8411
#> 3: encode.reweighing_wts.classif.glmnet 0.004732 0.8351
#> 4: glmnet_weighted_tuned 0.009486 0.8385

Especially when considering optimizing accuracy while still retaining a fair model, tuning can be
helpful and further improve upon available trade-offs. In this example, the AutoTuner improves w.r.t.
the fairness metric while offering accuracy comparable with the simple glmnet model. This can be
observed from the fairness accuracy tradeoff shown in Figure 3. Whether the achieved accuracy is
sufficient needs to be determined, e.g. from a business context. For now, we assume that the model
obtained from the AutoTuner is the model we might want to use going forward. Having decided on a
final model, we can now train the final model on the full training data

at_lrn = bmr$learners$learner[[4]]
at_lrn$train(tsk("adult_train"))

and predict on the held out test set available for the Adult dataset to obtain a final estimate. This is
important since estimating fairness metrics often incurs significant variance (Agrawal, Pfisterer, et al.
2020) and evaluation of the test-set provides us with an unbiased estimate of model performance after
the previous model selection step.

test = tsk("adult_test")
at_lrn$predict(test)$score(measures, test)

#> fairness.tpr classif.acc
#> 0.07141 0.84375

On the held-out test set, the fairness constraint is slightly violated which can happen due to the
comparatively large variance in the estimation of fairness metrics.

5 Summary

The large-scale availability and use of automated decision making systems have resulted in growing
concerns for a lack of fairness in the decisions made by such systems. As a result, fairness auditing
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methods, that allow for investigating (un-)fairness in such systems are an important step towards
improving the auditability of deployed systems. For ease of use, it is especially important, that they
provide interoperability with machine learning toolkits that allows for ease of use and integration
into model evaluation and tuning. In future work we plan on implementing several tools that further
support the user w.r.t. pinpointing potential fairness issues in the data, especially through the help of
interpretability tools, such as the iml (Molnar, Bischl, and Casalicchio 2018) package. We furthermore
aim to implement additional fairness metrics from the realm of ‘individual fairness’ (Dwork et al.
2012) and ‘conditional demographic parity’ (Wachter, Mittelstadt, and Russell 2020).
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6 Appendix

Tuning the ML pipeline

We include the full code to construct the AutoTuner with additional details and comments below. We
first load all required packages and use mlr3’s interaction with the future (Bengtsson 2021) package
to automatically distribute the tuning to all available cores in parallel by setting a plan. See the
documentation of future for platform-specific hints regarding parallelization.

library(mlr3misc)
library(mlr3)
library(mlr3pipelines)
library(mlr3fairness)
library(mlr3tuning)

# Enable parallelization utilizing all cores
future::plan("multicore")

We then instantiate an ML pipeline using mlr3pipelines. This connects several modelling steps, in
our case categorical encoding, reweighing and a final learner using the %>>% (double caret) operator,
ultimately forming a new learner. This learner can then subsequently be fit on a Task. We use the
po(<key>) shorthand to construct a new pipeline operator from a dictionary of implemented operators.
We conduct categorical encoding because glmnet can not naturally handle categorical variables, and
we therefore have to encode them (in our case using one-hot encoding).

# Define the learner pipeline.
lrn = as_learner(po("encode") %>>% po("reweighing_wts") %>>%
po("learner", lrn("classif.glmnet")))

In addition, we have to specify the hyperparameter space our Tuner should tune over. We do this
by defining a list of values with a to_tune() token specifying the range. Note, that hyperparameter
names are prefixed with the respective operation’s id.

# Define the parameter space to optimize over
vals = list(
reweighing_wts.alpha = to_tune(0.75, 1),
classif.glmnet.alpha = to_tune(0.5, 1),
classif.glmnet.s = to_tune(1e-4, 1e-2, logscale = TRUE)

)

# Add search space to the learner
lrn$param_set$values = insert_named(lrn$param_set$values, vals)

Before we now train the model, we again specify a metric we aim to satisfy, here we would like the
equalized odds difference to be smaller than 0.1. In this case, we set a constraint on the equalized odds
difference comprised of the differences in true positive rate (TPR) and false positive rate (FPR):

∆EOd =
|TPRsex=M − TPRsex=F|+ |FPRsex=M − FPRsex=F|

2
.

This can be done using the fairness.constraint measure.

metric = msr("fairness.constraint",
performance_measure = msr("classif.acc"),
fairness_measure = msr("fairness.eod"),
epsilon = 0.1

)

We can now instantiate a new AutoTuner using lrn defined above by additionally providing
arguments specifying the tuning strategy, in our case random search, the measure to optimize for as
well as the number of tuning steps.

metric = msr("fairness.constraint",
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performance_measure = msr("classif.acc"),
fairness_measure = msr("fairness.eod"),
epsilon = 0.1

)

at = AutoTuner$new(
learner = lrn, # The learner
resampling = rsmp("holdout"), # inner resampling strategy
measure = metric, # the metric to optimize for
tuner = mlr3tuning::tnr("random_search"), # tuning strategy
terminator = trm("evals", n_evals = 30) # number of tuning steps

)

The so-constructed AutoTuner can now be used on any classification Task! Additional information
regarding the AutoTuner is again available in the corresponding mlr3book chapter. In the following
example, we will apply it to the Adult task and train our model. This will perform a tuning loop for
the specified number of evaluations and automatically retrain the best found parameters on the full
data.

at$train(tsk("adult_train"))

After training, we can look at the best models found, here ordered by our metric. Note, that our
metric reports the negative constraint violation if the constraint is violated and the accuracy in case
the constraint is satisfied.

head(at$archive$data[order(fairness.acc_equalized_odds_cstrt), 1:4])

#> reweighing_wts.alpha classif.glmnet.alpha classif.glmnet.s
#> 1: 0.9503 0.5138 -4.654
#> 2: 0.8160 0.9289 -5.314
#> 3: 0.7507 0.6784 -5.786
#> 4: 0.9694 0.9219 -6.198
#> 5: 0.8254 0.8826 -7.241
#> 6: 0.8808 0.7362 -7.311
#> fairness.acc_equalized_odds_cstrt
#> 1: 0.8411
#> 2: 0.8445
#> 3: 0.8447
#> 4: 0.8448
#> 5: 0.8448
#> 6: 0.8448

We can then use the tuned model to assess our metric on the held out data:

prd = at$predict(tsk("adult_test"))
prd$score(c(metric, msr("classif.acc"), msr("fairness.eod")), tsk("adult_test"))

#> fairness.acc_equalized_odds_cstrt classif.acc
#> 0.83976 0.83976
#> fairness.equalized_odds
#> 0.07512

So our tuned model manages to obtain an accuracy of ~0.84 while satisfying the specified con-
straint of ∆EOd < 0.1. So to summarize, we have tuned a model to optimize accuracy with respect to a
constraint on a selected fairness metric using an AutoTuner.
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