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Robust Functional Linear Regression Models
by Ufuk Beyaztas and Han Lin Shang

Abstract With advancements in technology and data storage, the availability of functional data whose
sample observations are recorded over a continuum, such as time, wavelength, space grids, and depth,
progressively increases in almost all scientific branches. The functional linear regression models,
including scalar-on-function and function-on-function, have become popular tools for exploring the
functional relationships between the scalar response-functional predictors and functional response-
functional predictors, respectively. However, most existing estimation strategies are based on non-
robust estimators that are seriously hindered by outlying observations, which are common in applied
research. In the case of outliers, the non-robust methods lead to undesirable estimation and prediction
results. Using a readily-available R package robflreg, this paper presents several robust methods build
upon the functional principal component analysis for modeling and predicting scalar-on-function and
function-on-function regression models in the presence of outliers. The methods are demonstrated via
simulated and empirical datasets.

1 Introduction

The interest and need for developing statistical methods for analyzing functional data have increased
in the last few decades. There have been many recent theoretical and applied developments in
functional data analysis tools (see Ramsay and Dalzell, 1991; Ramsay and Silverman, 2002, 2006;
Ferraty and Vieu, 2006; Horváth and Kokoszka, 2012; Cuevas, 2014; Hsing and Eubank, 2015; Marron
et al., 2015; Srivastava and Klassen, 2016; Dryden and Mardia, 2016; Kokoszka and Reimherr, 2017).
Among many others, the scalar-on-function linear regression model (SFLRM), where the response is
scalar-valued and predictor(s) consist of random functions (see Cardot et al., 1991, 2003; James, 2002;
Reiss and Ogden, 2007; Chen et al., 2011; Jiang and Wang, 2011; Goldsmith et al., 2011; Dou et al., 2012;
Tucker et al., 2019; Ahn et al., 2020; Beyaztas and Shang, 2022), and the function-on-function linear
regression model (FFLRM), where both the response and predictor(s) consist of random curves (see
Yao et al., 2005; Harezlak et al., 2007; Şentürk and Müller, 2008; Matsui et al., 2009; Ivanescu et al.,
2015; Scheipl et al., 2015; Chiou et al., 2016; Beyaztas and Shang, 2020), have received considerable
attention among researchers as a tool for exploring the functional relationship between a scalar
response-functional predictors and functional response-functional predictors, respectively. In addition,
please see the available R packages fda (Ramsay et al., 2022) and refund (Goldsmith et al., 2022) for
the implementation of many functional data analysis methods, including SFLRM and FFLRM.

Most of the existing methods developed to estimate the SFLRM and FFLRM are non-robust to
outlying observations, i.e. observations which are generated by a stochastic process with a distribution
different from that of the rest of the observations (see, e.g., Raña et al., 2015). In the case of outliers,
the non-robust methods produce biased estimates; thus, predictions obtained from the fitted models
become unreliable (see, e.g., Zhu et al., 2011; Maronna and Yohai, 2013; Shin and Lee, 2016; Kalogridis
and Aelst, 2019; Boente et al., 2020; Hullait et al., 2021; Beyaztas and Shang, 2022). These methods may
also lack robustness because they are coss-sectional and the fitted mean of the response variable may
not be representative of the underlying data generating process. In this paper, we provide a hands-on
tutorial for the implementation of functional principal component regression based on several robust
approaches ( available in the R package robflreg), for robustly modeling and predicting the SFLRM
and FFLRM in the presence of outliers.

The methods available in the robflreg package are centered on the robust functional principal
component analysis (RFPCA) approach of Bali et al. (2011). It uses the robust projection pursuit
approach of Croux and Ruiz-Gazen (1996) combined with a robust scale estimator to produce functional
principal components and the corresponding principal component scores. With this approach, the
infinite-dimensional SFLRM and FFLRM are projected onto a finite-dimensional space of RFPCA
bases. Then, for the SFLRM, the robust estimation methods, including the least trimmed squares
(LTS) of Rousseeuw (1984), MM-type regression estimator (MM) of Yohai (1987) and Koller and Stahel
(2011), S estimator, and the tau estimator of Salibian-Barrera et al. (2008), are used to estimate the
parameter vector of regression model, where the scalar-valued response is predicted by the robust
principal component scores of the functional predictors. For the FFLRM, on the other hand, the robust
estimation methods, including the minimum covariance determinant estimator (MCD) of Rousseeuw
et al. (2004), multivariate least trimmed squares estimator (MLTS) of Bali et al. (2008), MM estimator of
Kudraszow and Moronna (2011), S estimator of Bilodeau and Duchesne (2000), and the tau estimator
of Ben et al. (2006), are used to estimate the parameter matrix of the regression model between the
robust principal component scores of the functional response and the functional predictor variables.
Besides the robust procedures, the package robflreg allows for non-robust estimation of the functional

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 213

principal component regression model using the classical functional principal component analysis
(FPCA) of Ramsay and Silverman (2006) and the least-squares estimator.

The remainder of this paper is organized as follows. The SFLRM and FFLRM, as well as the
techniques used for modeling and predicting these regression models, are reviewed and implemented
using the robflreg package. Some ideas on how the available R package robflreg can be further
improved are given at the end.

2 Functional linear regression models

We present the SFLRM and FFLRM, respectively.

The SFLRM

We consider a random sample {Yi,X i(s) : i = 1, . . . , n} from the pair (Y,X ), where Y ∈ R is the
scalar response and X = [X1(s), . . . ,XP(s)]⊤ with Xp(s) ∈ L2[0, I ], ∀ p = 1, . . . , P is the vector
of P set of functional predictors whose sample elements are denoted by curves belonging to L2
Hilbert space, denoted by H, with bounded and closed interval s ∈ I . We assume that the functional
predictors Xp(s), for p = 1, . . . , P, have finite second-order moments, i.e., E[∥Xp(s)∥] < ∞. Without
loss of generality, we also assume that Y and Xp(s), for p = 1, . . . , P, are mean-zero processes, so that
E[Y] = E[Xp(s)] = 0 and s ∈ [0, 1]. Then, the SFRM is defined as follows:

Yi =
∫ 1

0
X⊤

i (s)β(s)ds + ϵi, (1)

where βp(s) ∈ L2[0, 1] is the regression coefficient function linking Y with Xp(s), and β(s) =

[β1(s), . . . , βP(s)]⊤ ∈ LP
2 [0, 1], and ϵi is the error term which is assumed to follow a Gaussian distribu-

tion with mean-zero and variance σ2.

Simulation of a dataset for the SFLRM

The function generate.sf.data() in the package robflreg allows to simulate a dataset for the SFRM (1)
as follows:

generate.sf.data(n, n.pred, n.gp, out.p = 0)

Here, the argument n denotes the number of observations for each variable to be generated, n.pred
denotes the number of functional predictors to be generated, n.gp denotes the number of grid points
(i.e. the number of breaks in a fine grid on the interval [0, 1]), and out.p is a number between 0
and 1, denoting percentage of outliers in the generated data. In the data generation process, first,
generate.sf.data() simulates the functional predictors based on the following process:

X (s) =
5

∑
j=1

κjνj(s),

where κj is a vector generated from a Normal distribution with mean one and variance
√

aj−3/2, where
a is is a uniformly generated random number between 1 and 4, and

νj(s) = sin(jπs)− cos(jπs).

The regression coefficient functions are generated from a coefficient space that includes ten different
functions, such as b sin(2πt) and b cos(2πt), where b is generated from a uniform distribution between
1 and 3. The error process is generated from the standard normal distribution. Finally, the scalar
response is obtained using (1). Suppose outliers are allowed in the generated data, i.e., out.p > 0.
Then, the randomly selected n × out.p cases are generated differently from the process mentioned
above. In more detail, if out.p > 0, the regression coefficient functions (possibly different from the
previously generated coefficient functions) generated from the coefficient space with b∗ (instead of b),
where b∗ is generated from a uniform distribution between 3 and 5, are used to generate the outlying
observations. Further, in this case, the following process is used to generate functional predictors:

X ∗(s) =
5

∑
j=1

κ∗j ν∗j (s),
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where κ∗j is a vector generated from a Normal distribution with mean one and variance
√

aj−1/2 and

ν∗j (s) = 2 sin(jπs)− cos(jπs).

Moreover, the error process is generated from a normal distribution with mean of zero and a variance
of one. A graphical display of the generated dataset with five functional predictors and n = 400
observations at 101 equally spaced points in the interval [0, 1] obtained by generate.sf.data() is
presented in Figure 1.
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Figure 1: Plots of the simulated scalar response and the functional predictor variables. a) Observations
generated under the main data generating process (black) and outlier points (grey). b-f) Curves of the
functional predictors generated under the main data generating process (black) and outlier curves
(grey).

Figure 1 can be produced by the following code (refer to the supplement code file for all the
reproducible code):

library(robflreg)
library(fda.usc)
set.seed(202)

# Generate a dataset with five functional predictors and 400
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the scalar-on-function regression model
sim.data <- generate.sf.data(n = 400, n.pred = 5, n.gp = 101, out.p = 0.1)

# Response variable
Y <- sim.data$Y
# Predictors
X <- sim.data$X
# Regression coefficient functions
coeffs <- sim.data$f.coef
# Plot the scalar response
out.indx <- sim.data$out.indx
plot(Y[-out.indx,], type = "p", pch = 16, xlab = "Index", ylab = "",
main = "Response", ylim = range(Y))
points(out.indx, Y[out.indx,], type = "p", pch = 16, col = "blue")
# Plot the first functional predictor
fX1 <- fdata(X[[1]], argvals = seq(0, 1, length.out = 101))
plot(fX1[-out.indx,], lty = 1, ylab = "", xlab = "", col = "black",

main = expression(X[1](s)), mgp = c(2, 0.5, 0), ylim = range(fX1))
lines(fX1[out.indx,], lty = 1, col = "grey")
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The FFLRM

Let us consider a random sample {Yi(t),X i(s): i = 1, 2, . . . n} from the pair (Y ,X ), where Y ∈ L2[0, 1]
is the functional response and X = [X1(s), . . . ,XP(s)]⊤ with Xp(s) ∈ L2[0, 1], ∀ p = 1, . . . , P is the
vector of P set of functional predictors. We assume that the functional response and functional
predictors have finite second-order moments, i.e., E[∥Y(t)∥] = E[∥Xp(s)∥] < ∞, for p = 1, . . . , P.
Without loss of generality, we also assume that both Y(t) and Xp(s), for p = 1, . . . , P, are mean-zero
processes, so that E[Y(t)] = E[Xp(s)] = 0. Then, the FFRM is defined as follows:

Yi(t) =
∫ 1

0
X⊤

i (s)β(s, t)dsdt + ϵi(t), (2)

where βp(s, t) ∈ L2[0, 1] is the bivariate regression coefficient function linking Y(t) with Xp(s), and
β(s, t) = [β1(s, t), . . . , βP(s, t)]⊤ ∈ LP

2 [0, 1], and ϵi(t) ∈ L2[0, 1] is the error term which is assumed to
be independent of Xp(s), for p = 1, . . . , P and E[ϵi(t)] = 0.

Simulation of a dataset for the FFLRM

The function generate.ff.data() allows for the simulation of a dataset for the FFLRM as follows:

generate.ff.data(n.pred, n.curve, n.gp, out.p = 0)

Similar to the generate.sf.data(), n.pred denotes the number of functional predictors to be gener-
ated, n.curve denotes the number of observations for each functional variable to be generated, n.gp
denotes the number of grid points, and out.p is an integer between 0 and 1, denoting the outlier
percentage in the generated data. When generating a dataset, first, the function generate.ff.data()
first simulates the functional predictors via the following process:

X (s) =
5

∑
j=1

κjνj(s),

where κj is a vector generated from a Normal distribution with mean one and variance
√

aj−1/2, where
a is is a uniformly generated random number between 1 and 4, and

νj(s) = sin(jπs)− cos(jπs).

The bivariate regression coefficient functions are generated from a coefficient space that includes ten
different functions such as b sin(2πs) sin(πt) and be−3(s−0.5)2

e−4(t−1)2
, where b is generated from a

uniform distribution between 1 and 3. The error process ϵ(t), on the other hand, is generated from the
Ornstein-Uhlenbeck process:

ϵ(t) = l + [ϵ0(t)− l]e−θtσ
∫ t

0
e−θ(t−u)dWu,

where l, θ > 0, σ > 0 are real constants, ϵ0(t) is the initial value of ϵ(t) taken from Wu, and Wu is
the Wiener process. If outliers are allowed in the generated data, i.e., out.p > 0, then, the randomly
selected n × out.p cases are generated differently from the process mentioned above. In more detail,
if out.p > 0, the regression coefficient functions (possibly different from the previously generated
coefficient functions) generated from the coefficient space with b∗ (instead of b), where b∗ is generated
from a uniform distribution between 1 and 2, are used to generate the outlying observations. In
addition, in this case, the following process is used to generate functional predictors:

X ∗(s) =
5

∑
j=1

κ∗j ν∗j (s),

where κ∗j is a vector generated from a Normal distribution with mean one and variance
√

aj−3/2 and

ν∗j (s) = 2 sin(jπs)− cos(jπs).

A graphical display of the generated dataset with five functional predictors and n = 200 observations
at 101 equally spaced points in the interval [0, 1] obtained by generate.ff.data() is presented in
Figure 2.

Figure 2 can be produced by the following code (refer to the supplement code file for all the
reproducible code):
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Figure 2: Plots of the simulated functional response and functional predictor variables: In the plots, the
black curves denote the observations of the response and functional predictors generated under the
smooth data generation process. The grey curves denote the outlying observations in the functional
variables.

library(robflreg)
library(fda.usc)
set.seed(202)

# Generate a dataset with five functional predictors and 200
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the function-on-function regression model
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101, out.p = 0.1)

# Response variable
Y <- sim.data$Y
# Predictors
X <- sim.data$X
# Regression coefficient functions
coeffs <- sim.data$f.coef
# Plot the scalar response
out.indx <- sim.data$out.indx
fY <- fdata(Y, argvals = seq(0, 1, length.out = 101))
plot(fY[-out.indx,], lty = 1, ylab = "", xlab = "",
main = "Response", mgp = c(2, 0.5, 0), ylim = range(fY))
lines(fY[out.indx,], lty = 1, col = "grey")
# Plot the first functional predictor
fX1 <- fdata(X[[1]], argvals = seq(0, 1, length.out = 101))
plot(fX1[-out.indx,], lty = 1, ylab = "", xlab = "", col = "black",
main = expression(X[1](s)), mgp = c(2, 0.5, 0), ylim = range(fX1))
lines(fX1[out.indx,], lty = 1, col = "grey")

3 Estimation

We first review the classical and robust FPCA methods. Then, we will focus on the robust estimation
of the SFLRM and FFLRM by the functional principal component regression.
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Functional principal component analysis (FPCA)

For a functional random variable X (s), let us denote its covariance function by C(s1, s2) = Cov[X (s1), X (s2)]

satisfying
∫ 1

0

∫ 1
0 C(s1, s2)ds1ds2 < ∞. Then, by Mercer’s Theorem, the following representation holds:

C =
∞

∑
k=1

κkψk(s1)ψk(s2), ∀s1, s2 ∈ [0, 1],

where {ψk(s) : k = 1, 2, . . .} are orthonormal bases of eigenfunctions in L2[0, 1] corresponding to the
non-negative eigenvalues {κk : k = 1, 2, . . .} with κk ≥ κk+1. In practice, most of the variability in
functional variables can be captured via a finite number of the first K eigenfunctions. Thus, the
covariance function of a functional variable is estimated using a pre-determined truncation constant
K. In addition, the orthonormal bases of eigenfunctions are unknown in practice. Thus, they are
approximated via a suitable basis expansion method such as B-spline, which is used in the robflreg
package.

The RFPCA of Bali et al. (2011) follows a similar structure as the classical FPCA, but it uses a robust
scale functional instead of variance. Now let ∥α∥2 = ⟨α, α⟩ denote the norm generated by the inner
product ⟨·, ·⟩. Also, let F [α] denote the distribution of ⟨α,X ⟩ where F is the distribution of X . Then,
for a given M-scale functional σM(F ), the orthonormal bases of eigenfunctions defined by Bali et al.
(2011) are as follows: 

ψk(F ) = arg max
∥α∥2=1

σM(F [α]), k = 1,

ψk(F ) = arg max
∥α∥2=1,α∈Bk

σM(F [α]), k ≥ 2,

where Bk = {α ∈ L2[0, 1] : ⟨α, ψk(F )⟩ = 0, 1 ≤ k ≤ K − 1}. The k-th largest eigenvalue is given by:

κk(F ) = σ2
M(F [ψk]) = max

∥α∥2=1,α∈Bk

σ2
M(F [α]).

Denote by σM(Fn[α]) the functional for σM. Let s2
n : L2[0, 1] → R denote the function of empirical

M-scale functional such that s2(α) = σ2
M(F [α]). Then, the RFPCA estimates of the orthonormal bases

of eigenfunctions for X (s) are given by
ψ̂k(s) = arg max

∥α∥2=1
sn(α), k = 1,

ψ̂k(s) = arg max
α∈B̂k

sn(α), k ≥ 2,

where B̂k =
{

α ∈ L2[0, 1] : ∥α∥ = 1, ⟨α, ψ̂k⟩ = 0, ∀ 1 ≤ k ≤ K − 1
}

. The corresponding eigenvalues,
on the other hand, are given by

κ̂k = s2
n(ψ̂k), k ≥ 1.

Main RFPCA function and its arguments

The main function to obtain the robust estimates of functional principal components and the corre-
sponding principal component scores is called getPCA():

getPCA(data, nbasis, ncomp, gp, emodel = c("classical", "robust"))

In the getPCA() function, the data set is provided in the data argument as a matrix. The grid points of
the functional predictors are provided in the gp argument as a vector. nbasis denotes the number of
B-spline basis expansion functions used to approximate the robust functional principal components.
ncomp specifies the number of functional principal components to be computed. The argument emodel
denotes the method used for functional principal component decomposition. If emodel = "classical",
then the classical functional principal component decomposition is performed. On the other hand,
if emodel = "robust", then the RFPCA method of Bali et al. (2011) is used to obtain the functional
principal components and the corresponding principal component scores. Figure 3 presents the plot of
five functional principal components computed from simulated functional data using RFPCA and
nbasis = 20 B-spline basis expansion functions.

Figure 3 can be produced by the following code:

library(robflreg)
# Generate a dataset with five functional predictors and 200
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Figure 3: Plot of the first five functional principal components of the simulated functional data. The
principal components were obtained using the RFPCA and different colors correspond to different
principal components.

# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the function-on-function regression model
set.seed(202)
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101)
# Response variable
Y <- sim.data$Y
gpY <- seq(0, 1, length.out = 101) # grid points

# Perform robust functional principal component analysis on the response variable Y
rob.fpca <- getPCA(data = Y, nbasis = 20, ncomp = 5, gp = gpY, emodel = "robust")

# Principal components
PCs <- rob.fpca$PCAcoef

plot(PCs, xlab = "Grid point", ylab = "Values", lty = 1)

Robust estimation of the SFLRM

In the robust estimation of the SFRM, we first consider the principal component decomposition of the
functional predictors as follows:

Xp(s) =
Kp

∑
k=1

ξpkψpk(s),

where Kp is the truncation constant for the p-th functional predictor Xp(s), ψpk(s) is the k-th eigen-
function obtained by the RFPCA of Bali et al. (2011), and ξpk is the corresponding principal component
score, given by:

ξpk =
∫ 1

0
Xp(s)ψpk(s)ds.

In practice, the eigenfunctions are approximated via a basis expansion function such as B-spline.
Let φp(s) denote the B-spline basis expansion function, and Ap = (apl) be an n × L-dimensional
matrix of basis expansion coefficients for the p-th functional predictor variable. In addition, let φ =∫ 1

0 φp(s)φ⊤
p (s)ds and φ1/2 denote the L × L dimensional matrix of inner products between the basis

expansion functions and its square root, respectively. Then, the infinite-dimensional RFPCA of Xp(s)
is equivalent to the multivariate principal component analysis of Apφ1/2 and the k-th eigenfunction is
given by ψpk(s) = φ−1/2vpk, where vpk denotes the p-th eigenvector of the sample covariance matrix
of Apφ1/2 (see, e.g., Ocana et al., 2007, for more information).

If we assume that the p-th regression coefficient function βp(s) admits the similar functional
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principal decomposition as the functional predictors as follows:

βp(s) =
Kp

∑
k=1

bpkψpk(s),

where bpk =
∫ 1

0 βp(s)ψpk(s)ds. Then, the infinite-dimensional SFRM in (1) is approximated by the
finite-dimensional regression model of scalar response on all the functional principal component
scores as follows:

Y =
P

∑
p=1

Kp

∑
k=1

bpkξpk.

Main functions for the robust estimation of a SFRM and their arguments

The main function for robust estimation of SFRMs is called rob.sf.reg():

rob.sf.reg(Y, X, X.scl = NULL, emodel = c("classical", "robust"),
fmodel = c("LTS", "MM", "S", "tau"), nbasis = NULL, gp = NULL, ncomp = NULL)

In the rob.sf.reg() function, the scalar response is provided in the Y argument as an n × 1-
dimensional column vector, where n is the sample size. The functional predictors, on the other hand,
are provided as a list object in the X argument. Each element of X is an n × Lp-dimensional matrix
containing the observations of p-th functional predictor Xp(s), where Lp is the number of grid points
for Xp(s). The rob.sf.reg() function also allows for scalar predictors, which can be provided in the
X.scl as an n × R-dimensional matrix, where R denotes the number of scalar predictors. In this case,
the following SFRM is considered:

Yi =
∫ 1

0
X⊤

i (s)β(s)ds + X.scliγ + ϵi,

where γ denotes the vector of coefficients for the scalar predictors’ matrix. The functional principal
component decomposition method is provided in the emodel argument. If emodel = "classical",
then the classical functional principal component decomposition is performed to obtain principal
components and the corresponding principal component scores. The coefficient vector of the regression
problem of scalar response on the principal component scores is estimated via the least-squares
method. If emodel = "robust", then the RFPCA of Bali et al. (2011) is performed to obtain the
principal components and the corresponding principal component scores. In this case, the method
used to estimate the coefficient vector of the regression problem constructed by the scalar response
and principal component scores is provided in the fmodel argument. One of the methods among
LTS, MM, S, and tau can be chosen to estimate the parameter vector (by specifying, for example,
fmodel = tau"). The number of B-spline basis expansion functions used to approximate the functional
principal components are provided in the nbasis argument as a vector with length p. Suppose nbasis
= NULL, then min(20, Lp/4) number of B-spline basis expansion functions are used for each functional
predictor. The grid points for the functional predictors are provided in the gp argument as a list object.
The p-th element of gp is a vector containing the grid points of the p-th functional predictor Xp(s). If
gp = NULL, then Lp equally spaced time points in the interval [0, 1] are used for the p-th functional
predictor. The number of principal components to be computed for the functional predictors are
provided in the ncomp argument as a vector with length P. If ncomp = NULL, then, for each functional
predictor, the number whose usage results in at least 95% explained variation is used as the number of
principal components.

The function get.sf.coeffs() can be used to obtain the estimated regression coefficient functions
from a fitted functional principal component regression:

get.sf.coeffs(object)

In this function, the argument object is the output object obtained using the function rob.sf.reg().
The function get.sf.coeffs() produces a list object whose p-th element is a vector with length Lp
containing the p-th regression coefficient function βp(s).

The plots of the estimated regression coefficient functions can be obtained using the function
plot_sf_coeffs():

plot_sf_coeffs(object, b)

In Figure 4, the plots of the regression coefficient functions obtained from simulated data (outlier-
contaminated) using RFPCA and MM estimator, as well as the classical functional principal component
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regression, are presented. In this function, the argument object is the output object obtained by
the function get.sf.coeffs(). On the other hand, the argument b is an integer value indicating
which regression parameter function to plot. It is clear from this figure that, compared with the
classical functional principal component regression, the robust approach produces estimated parameter
functions which are more similar to the true parameter functions.
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Figure 4: A plot of the estimated regression coefficient functions obtained from simulated data (outlier-
contaminated) using RFPCA and MM estimator and the classical functional principal component
regression. Blue lines denote the true parameter functions. On the other hand, black and red lines
denote the estimated parameter functions by the classical functional principal component regression
and robust MM-based functional principal component regression, respectively.

The following code can be used to produce this figure and the results (refer to the supplement
code file for all of the reproducible code):

library(robflreg)
# Generate a dataset with three functional predictors and 400
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the scalar-on-function regression model
set.seed(202)
sim.data <- generate.sf.data(n = 400, n.pred = 3, n.gp = 101, out.p = 0.1)

# True parameter functions
true.b1 <- sim.data\$f.coef[[1]]
true.b2 <- sim.data\$f.coef[[2]]
true.b3 <- sim.data\$f.coef[[3]]

# Response variable
Y <- sim.data\$Y
# Predictors
X <- sim.data\$X

gp <- rep(list(seq(0, 1, length.out = 101)), 3) # grid points of Xs

# Fit a functional principal component regression model for the generated data
# using the classical functional principal component analysis method:
classical.fit <- rob.sf.reg(Y, X, emodel = "classical", gp = gp)

# Fit a functional principal component regression model for the generated data
# using the robust functional principal component analysis method and tau estimator:
robust.fit <- rob.sf.reg(Y, X, emodel = "robust", fmodel = "MM", gp = gp)

# Estimated regression coefficient functions
classical.coefs <- get.sf.coeffs(classical.fit)
robust.coefs <- get.sf.coeffs(robust.fit)

# The first estimated regression coefficient function
plot_sf_coeffs(object = classical.coefs, b = 1)
lines(gp[[1]], robust.coefs\$coefficients[[1]], col = "red")
lines(gp[[1]], true.b1, col = "blue", lwd = 2)
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Robust estimation of the FFLRM

Let us consider the functional principal decompositions of both the functional response and functional
predictor variables as follows:

Y(t) =
K

∑
k=1

ζkϕk(t), Xp(s) =
Kp

∑
j=1

ξpjψpj(s),

where ϕk(t) and ψpj(s) respectively are the k-th and j-th eigenfunctions of Y(t) and Xp(s) obtained by
the RFPCA and ζk and ξpj are the corresponding principal component scores given by

ζk =
∫ 1

0
Y(t)ϕk(t)dt, ξpj =

∫ 1

0
Xp(s)ψpj(s)ds.

If we assume that the p-th bivariate regression coefficient function βp(s, t) admits the principal
component decomposition with the eigenfunctions ϕk(t) and ψpj(s) as follows:

βp(s, t) =
K

∑
k=1

Kp

∑
j=1

bpkjϕk(t)ψpj(s),

where bpkj =
∫ 1

0

∫ 1
0 βp(s, t)ϕk(t)ψpj(s)dtds. Then, the infinite-dimensional FFRM in (2) is approxi-

mated by the finite-dimensional regression model of principal component scores of the functional
response on all the functional principal component scores as follows:

ζk =
P

∑
p=1

Kp

∑
j=1

bpkjξpj.

Finally, the following regression model is obtained for the functional response

Y(t) =
K

∑
k=1

 P

∑
p=1

Kp

∑
j=1

bpkjξpj

 ϕk(t).

Main functions for the robust estimation of a FFRM and their arguments

The main function to estimate the FFRM robustly is called rob.ff.reg():

rob.ff.reg(Y, X, model = c("full", "selected"), emodel = c("classical", "robust"),
fmodel = c("MCD", "MLTS", "MM", "S", "tau"), nbasisY = NULL, nbasisX = NULL,
gpY = NULL, gpX = NULL, ncompY = NULL, ncompX = NULL)

In the rob.ff.reg() function, the functional response is provided via the Y argument as a matrix.
On the other hand, the functional predictors are provided in the argument X as a list object. Each
element of X is a matrix containing the observations of p-th functional predictor. The model type
to be fitted can be chosen with model argument. If model = "full", then all of the functional
predictors are used in the model. On the other hand, if model = "selected", then only the significant
functional predictor variables, determined by the forward variable selection procedure of Beyaztas
and Shang (2021), are used in the model. The functional principal component decomposition method
is provided via the emodel argument. If emodel = "classical", then the classical functional principal
component decomposition is performed to obtain principal components and the corresponding
principal component scores and the coefficient vector of the regression problem of principal component
scores of the functional response on the principal component scores are estimated via the least-squares
method. If emodel = "robust", then the RFPCA of Bali et al. (2011) is performed to obtain the principal
components and the corresponding principal component scores. In this case, the method used to
estimate the coefficient matrix of the regression problem constructed by the principal component scores
is provided in the fmodel argument. Here, one of the methods, among MCD, MLTS, MM, S, and tau
estimators, can be chosen to estimate the parameter matrix. The number of B-spline basis expansion
functions used to approximate the functional principal components of response and predictor variables
are provided in the nbasisY and nbasisX arguments, respectively. The argument nbasisY is a numeric
value while the argument nbasisX is a vector with length P. Suppose nbasisY = NULL and nbasisX =
NULL, then min(20, Ly) and min(20, Lp) B-spline basis expansion functions are used to approximate
the functional principal components of functional response and p-th the functional predictor, where
Ly and Lp respectively denote the number of grid points for Y(t) and Xp(s). The grid points for the
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functional response and functional predictors are provided in the gpY and gpX arguments, respectively.
The argument gpY is a vector consisting of the grid points of the functional response Y(t). On the other
hand, the argument gpX is a list object, and its p-th element is a vector containing the grid points of the
p-th functional predictor Xp(s). If gpY = NULL and If gpX = NULL, then equally spaced time points in
the interval [0, 1] are used for all the functional variables. The number of functional predictors to be
computed for the functional response and functional predictors are provided in the arguments ncompY
and ncompX, respectively. The argument ncompY is a numeric value while the argument ncompX is a
vector with length P. If ncompY = NULL and ncompX = NULL, then the number whose usage results in
at least 95% explained variation is used as the number of principal components for each functional
variable.

The estimated bivariate regression coefficient functions from a fitted functional principal compo-
nent regression model are obtained by the get.ff.coeffs() function:

get.ff.coeffs(object)

In this function, the argument object is the output object obtained using the function rob.ff.reg().
The function get.ff.coeffs() produces a list object whose p-th element is a matrix containing the
p-th bivariate regression coefficient function βp(s, t).

The image plots of the estimated bivariate regression coefficient functions can be obtained using
the function plot_ff_coeffs():

plot_ff_coeffs(object, b)

In Figure 5, the image plots of the regression coefficient functions obtained from simulated data using
RFPCA and MM estimator are presented. In this function, the argument object is the output object
obtained by the function get.ff.coeffs(). The argument b is an integer value indicating which
regression parameter function is to be plotted.
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Figure 5: Image plots of the estimated bivariate regression coefficient functions obtained from simu-
lated data using RFPCA and MM estimator.

This figure and the results can be produced by the following code (refer to the supplement code
file for all the reproducible code):

library(robflreg)
# Generate a dataset with three functional predictors and 200
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the function-on-function regression model
set.seed(202)
sim.data <- generate.ff.data(n.pred = 3, n.curve = 200, n.gp = 101)
# Response variable
Y <- sim.data$Y
# Predictors
X <- sim.data$X

gpY = seq(0, 1, length.out = 101) # grid points of Y
gpX <- rep(list(seq(0, 1, length.out = 101)), 3) # grid points of Xs

# Fit a functional principal component regression model for the generated data
# using the RFPCA and MM estimator:
model.fit <- rob.ff.reg(Y, X, model = "full", emodel = "robust",
fmodel = "MM", gpY = gpY, gpX = gpX)
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# Estimated bivariate regression coefficient functions
coefs <- get.ff.coeffs(model.fit)
# Plot the first bivariate regression coefficient function
plot_ff_coeffs(object = coefs, b = 1)

Outlier detection in the functional response

Detection of outliers in functional data is an important problem (see, e.g., Sun and Genton, 2011;
Arribas-Gil and Romo, 2014; Dai and Genton, 2018). From a fitted functional principal compo-
nent regression for scalar response and scalar predictors, the robflr package with the function
rob.out.detect() allows to detection of outliers in the functional response. This is achieved by
applying the function depth-based outlier detection method of Febrero-Bande et al. (2008) together
with the h-modal depth proposed by Cuaves et al. (2007) to the estimated residual functions obtained
from rob.ff.reg() to determine the outliers in the response variable. In the outlier detection algo-
rithm, the threshold value used to identify outliers is determined by the smoothed bootstrap procedure
proposed by Febrero-Bande et al. (2008). The rob.out.detect() is as follows:

rob.out.detect(object, alpha = 0.01, B = 200, fplot = FALSE)

Herein, the argument object is an output object obtained from rob.ff.reg(). alpha, whose default
value is 0.01, denotes the percentile of the distribution of the functional depth. B denotes the number
of bootstrap samples (the default value is B = 200). fplot is a logical argument, if fplot = TRUE, then
the outlying points flagged by the method are plotted along with the values of functional response
Y(t).

To show how the function rob.ff.reg() works, we simulate an outlier-contaminated dataset for
the FFRM. Then, we apply the outlier detection algorithm with the classical FPCA - least squares
estimator and the RFPCA - MM estimator. The plots of the functional response and detected outlying
observations are presented in Figure 6. The results show that the classical method fails to flag 13
outlying curves, while the robust procedure fails to flag only two outlying curves.
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Figure 6: Plots of the functional response and detected outliers: Classical method (left panel) vs. Robust
method (right panel). The detected outlying curves are denoted by black, while the non-outlying
curves are denoted by grey.

The following code can produce the results and Figure 6.

library(robflreg)
# Generate a dataset with five functional predictors and 200
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the function-on-function regression model
set.seed(202)
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101, out.p = 0.1)
out.indx <- sim.data\$out.indx
# Response variable
Y <- sim.data\$Y
# Predictors
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X <- sim.data\$X

gpY = seq(0, 1, length.out = 101) # grid points of Y
gpX <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs

# Perform classical functional principal component regression using least-squares
model.classical <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "classical",

gpY = gpY, gpX = gpX)

# Perform robust functional principal component regression using MM-estimator
model.MM <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust", fmodel = "MM",

gpY = gpY, gpX = gpX)

# Detect outliers using rob.out.detect function
rob.out.detect(object = model.classical, fplot = TRUE)
# outlying functions are: 16 56 69 70 71 80 92 96 117 138 140 173 188
rob.out.detect(object = model.MM, fplot = TRUE)
# outlying functions are: 2 16 56 69 70 71 80 82 92 96 117 134 138 140
# 173 188 197 199

# Compare with the original outliers
sort(out.indx)
# [1] 2 16 47 56 69 70 71 80 82 92 96 117 134 138 140 162 173 188 197 199

4 Prediction

We review the prediction problem for a new set of functional predictors based on a fitted functional
principal component regression model.

Prediction for the SFRM

When robustly predicting the unknown values of the scalar response variable for a given new set of
functional predictors (X ∗(s)), the principal component scores of the new set of functional predictors
(ξ∗) are obtained as follows:

ξ∗pk =
∫ 1

0
X ∗

pk(s)ψ̂pk(s)ds,

where ψ̂pk(s) is the k-th eigenfunction of the p-the functional predictor obtained by the RFPCA. Then,
the predictions corresponding to the new set of functional predictors are obtained as follows:

Ŷ∗ =
P

∑
p=1

Kp

∑
k=1

b̂pkξ∗pk,

where b̂pk is the estimated parameter vector obtained from the fitted model rob.sf.reg().

Main function for the robust prediction of a SFRM and its arguments

The main function for the robust prediction of a SFRM is called predict_sf_regression():

predict_sf_regression(object, Xnew, Xnew.scl = NULL)

In the function predict_sf_regression(), the argument object is an output object obtained from
rob.sf.reg. The new set of functional predictors is provided in the Xnew argument as a list object
whose p-th element is a matrix denoting the new observations of Xp(s). Xnew must have the same
length and the same structure as the input X of rob.sf.reg. If scalar predictors are used in the SFRM,
then, in the prediction process, the new set of scalar predictors is provided as a matrix in the Xnew.scl
argument. The argument Xnew.scl must have the same length and the same structure as the input
X.scl of rob.sf.reg.

To evaluate the prediction performance of classical and robust methods, we simulate a dataset
with size n = 400 for the SFRM. Then, the simulated data are divided into a training sample with a
size of 280 and a test sample with a size of 120. Random outliers contaminate the training sample, and
both the classical and robust methods with the tau estimator are applied to the training sample to
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predict the values of the response variable in the test sample. To compare both methods, we compute
the mean squared prediction error (MSPE):

MSPE =
1

200

200

∑
i=1

(Y∗
i − Ŷ∗

i )
2,

where Y∗
i and Ŷ∗

i denote the observed and predicted values of the scalar response in the test sample.
Our results indicate that the robust method considerably outperforms the classical method. The MSPE
computed from the classical method is 20.9388, while the MSPE obtained from the robust method is
1.868. The reproducible code to obtain those results is as follows:

library(robflreg)
# Generate a dataset with five functional predictors and 400
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the scalar-on-function regression model
set.seed(202)
sim.data <- generate.sf.data(n = 400, n.pred = 5, n.gp = 101, out.p = 0.1)
out.indx <- sim.data\$out.indx
# Response variable
Y <- sim.data\$Y
# Predictors
X <- sim.data\$X

# Split the data into training and test samples.
indx.test <- sample(c(1:400)[-out.indx], 120)
indx.train <- c(1:400)[-indx.test]

Y.train <- Y[indx.train,]
Y.test <- Y[indx.test,]
X.train <- X.test <- list()
for(i in 1:5){
X.train[[i]] <- X[[i]][indx.train,]
X.test[[i]] <- X[[i]][indx.test,]

}

gp <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs

# Perform classical functional principal component regression model using training samples
model.classical <- rob.sf.reg(Y.train, X.train, emodel = "classical", gp = gp)
# Perform robust functional principal component regression model
# using training samples and tau-estimator
model.tau <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "tau", gp = gp)
# Predict the observations in Y.test using model.classical
pred.classical <- predict_sf_regression(object = model.classical, Xnew = X.test)
# Predict the observations in Y.test using model.tau
pred.tau <- predict_sf_regression(object = model.tau, Xnew = X.test)
# Compute mean squared errors for the test sample
round(mean((Y.test - pred.classical)^2), 4) # 2.49 (classical method)
round(mean((Y.test - pred.tau)^2), 4) # 1.1457 (tau method)

Prediction for the FFRM

In the robust prediction of the FFRM for a given new set of functional predictors, as in the scalar-on-
function regression case, the principal component scores of the new set of functional predictors are
first obtained:

ξ∗pk =
∫ 1

0
X ∗

pk(s)ψ̂pk(s)ds,

where ψ̂pk(s) is the k-th eigenfunction of the p-the functional predictor obtained by the RFPCA. Then,
the predictions of functional response (Ŷ(t)) corresponding to the new set of functional predictors are
obtained as follows:

Ŷ∗(t) =
K

∑
k=1

 P

∑
p=1

Kp

∑
j=1

b̂pkjξ
∗
pj

 ϕ̂k(t),
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where ϕ̂k(t) is the k-th eigenfunction of the functional response obtained by RFPCA and b̂pkj is the
estimated parameter matrix obtained from the fitted model rob.ff.reg().

Main function for the robust prediction of a FFRM and its arguments

The main function for the robust prediction of a FFRM is called predict_ff_regression():

predict_ff_regression(object, Xnew)

Here, the argument object is an output object obtained from rob.ff.reg. The new set of functional
predictors is provided in the Xnew argument as a list object whose p-th element is a matrix denoting
the new observations of Xp(s). Xnew must have the same length and the same structure as the input X
of rob.ff.reg.

We simulate a dataset with size n = 200 for the FFRM to investigate and compare the prediction
performance of the classical and robust methods. The simulated data are divided into a training
sample with a size of 140 and a test sample with a size of 60. Random outliers contaminate the training
sample, and both the classical and robust methods with MM estimator are applied to the training
sample to predict the values of the response variable in the test sample. To compare both methods, we
compute the following MSPE:

MSPE =
1

100

200

∑
i=1

∥Y∗
i (t)− Ŷ∗

i (t))∥
2
L2

,

where Y∗
i (t) and Ŷ∗

i (t)) denote the observed and predicted values of the functional response in the
test sample. Our results show that the robust method produces a significantly smaller MSPE value
than the classical method. The MSPE computed from the classical method is 3.3213, while the MSPE
obtained from the robust method is 0.5925. The reproducible code to obtain those results is as follows:

library(robflreg)
# Generate a dataset with five functional predictors and 200
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the function-on-function regression model
set.seed(202)
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101, out.p = 0.1)
out.indx <- sim.data\$out.indx
# Response variable
Y <- sim.data\$Y
# Predictor variables
X <- sim.data\$X
# Split the data into training and test samples.
indx.test <- sample(c(1:200)[-out.indx], 60)
indx.train <- c(1:200)[-indx.test]
Y.train <- Y[indx.train,]
Y.test <- Y[indx.test,]
X.train <- X.test <- list()
for(i in 1:5){
X.train[[i]] <- X[[i]][indx.train,]
X.test[[i]] <- X[[i]][indx.test,]

}

gpY = seq(0, 1, length.out = 101) # grid points of Y
gpX <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs

# Perform classical functional principal component regression model using training samples
model.classical <- rob.ff.reg(Y = Y.train, X = X.train, model = "full",

emodel = "classical", gpY = gpY, gpX = gpX)
# Perform robust functional principal component regression
# using training samples and MM-estimator
model.MM <- rob.ff.reg(Y = Y.train, X = X.train, model = "full", emodel = "robust",

fmodel = "MM", gpY = gpY, gpX = gpX)
# Predict the functions in Y.test using model.classical
pred.classical <- predict_ff_regression(object = model.classical, Xnew = X.test)
# Predict the functions in Y.test using model.MM
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pred.MM <- predict_ff_regression(object = model.MM, Xnew = X.test)
# Compute mean squared errors for the test sample
round(mean((Y.test - pred.classical)^2), 4) # 1.5705 (classical method)
round(mean((Y.test - pred.MM)^2), 4) # 0.8166 (MM method)

5 Data analysis

We consider the MaryRiverFlow dataset available in the robflreg package to present the superiority
of the robust functional principal component regression models over the classical model when the
dataset includes outliers. The MaryRiverFlow dataset consists of hourly river-flow measurements
obtained from January 2009 to December 2014 (6 years in total) in the Mary River, Australia. River-flow
time series varies throughout the years due to the variation of the seasons and the amount of rainfall
received at particular catchments. This problem still needs to be solved in the hydrological domain to
be addressed appropriately using theoretical models.

Our first aim with the MaryRiverFlow dataset is to assess how the previous river flow curve time
series, Xi(s), affects the current day’s maximum river flow, Yi. Here, the observations of predictor are
assumed to be functions of hours, i.e., there are 2188 functional observations Xi(t)

(
1 ≤ t ≤ 24, i =

1, . . . , 2188
)

while the response is a scalar predictor. A graphical display of the response and predictor
is presented in Figure 7. From this figure, both the scalar response and functional predictor include
clear outliers, which motivates us to apply the robust functional principal component regression
models to better model this dataset.
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Figure 7: Plot of the daily maximum river flow measurement (left panel) and the functional time series
plot (right panel) of the flow level in the Mary River.

Figure 7 can be produced by the following code:

library(robflreg)
library(fda.usc)
data("MaryRiverFlow")
X <- MaryRiverFlow[1:2188,]
Y <- apply(MaryRiverFlow[2:2189,], 1, max)
Day <- seq(as.Date("2009/01/01"), as.Date("2014/12/28"), by="days")
plot(Day, Y, type = "p", pch = 16, ylab = "Level (m)", main = "Response")
X <- fdata(X, argvals = 1:24)
plot(X, lty = 1, ylab = "", xlab = "Hour", col = "black",

main = "Predictor", mgp = c(2, 0.5, 0))

We assume the SFLRM, Yi = β0 +
∫
Xi(s)β(s)ds, where Yi is the maximum river flow measurement

for the current day and Xi(s) is the true river flow measurements recorded in the previous day. An
expanding-window approach is considered to compare the predictive performance of the robust
methods with the classical one. While doing so, The entire data are divided into two parts: a training
sample containing the days from 01/01/2009 to 20/12/2014 and a test sample including days from
21/12/2014 to 30/12/2014. First, the models are constructed using the entire training data to forecast
the maximum river flow measurement on 21/12/2014. Then, the maximum river flow measurement is
forecasted by increasing the training samples by one day. This procedure is repeated until the training
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samples cover the entire dataset. The MSPE is computed for each method, and the computed mean
MSPEs (×10−3) along with standard errors (×10−3 given in bracket) are 7.559 (5.674), 1.635 (1.303),
1.671 (1.376), 1.617 (1.274), and 1.617 (1.274) for the classical, LTS, MM, S, and tau-estimator based
SFLRM, respectively. From the results, all the robust methods produce significantly smaller MSPE
values than the classical method. These results can be obtained by the following code:

library(robflreg)
data("MaryRiverFlow")
MaryRiverFlow <- as.matrix(MaryRiverFlow)
X <- list(MaryRiverFlow[1:2188,])
Y <- apply(MaryRiverFlow[2:2189,], 1, max)
gp <- rep(list(1:24), 1)

MSPE <- matrix(, ncol = 5, nrow = 10)
colnames(MSPE) <- c("classical","LTS","MM","S","tau")
starting_value <- 2178

for(i in 1:10){

# Divide the data into training and test samples
Y.train <- Y[1:starting_value]
Y.test <- Y[(starting_value+1)]

X.train <- list(X[[1]][1:starting_value,])
X.test <- list(matrix(X[[1]][(starting_value+1),], nrow = 1))

# Perform classical and robust functional principal component regression models
model.classical <- rob.sf.reg(Y.train, X.train, emodel = "classical", gp = gp)
model.LTS <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "LTS", gp = gp)
model.MM <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "MM", gp = gp)
model.S <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "S", gp = gp)
model.tau <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "tau", gp = gp)

# Predict the maximum river flow measurement of the current day
pred.classical <- predict_sf_regression(object = model.classical, Xnew = X.test)
pred.LST <- predict_sf_regression(object = model.LTS, Xnew = X.test)
pred.MM <- predict_sf_regression(object = model.MM, Xnew = X.test)
pred.S <- predict_sf_regression(object = model.tau, Xnew = X.test)
pred.tau <- predict_sf_regression(object = model.tau, Xnew = X.test)

# Record the MSPE values
MSPE[i,1] <- (Y.test - pred.classical)^2
MSPE[i,2] <- (Y.test - pred.LST)^2
MSPE[i,3] <- (Y.test - pred.MM)^2
MSPE[i,4] <- (Y.test - pred.S)^2
MSPE[i,5] <- (Y.test - pred.tau)^2
starting_value <- starting_value + 1

}

apply(MSPE, 2, mean); apply(MSPE, 2, sd)

Our second aim with the MaryRiverFlow dataset is to assess how the previous river flow curve
time series, Xi(s) affects the current day’s river flow curve time series, Yi(t). In this case, the elements
of both the response and predictor are assumed to be functions of hours. Here, we assume the FFLRM,
Yi(t) = β0(t) +

∫
Xi(s)β(s, t)dsdt. The similar expanding-window approach used in the SFLRM

example is considered, i.e., the entire dataset is divided into two parts: a training sample containing
the days from 01/01/2009 to 20/12/2014 and a test sample including days from 21/12/2014 to
30/12/2014. The functional principal component regression models are constructed using the entire
training data to forecast the river flow curve time series on 21/12/2014. Then, the river flow curve
time series is forecasted by increasing the training samples by one day. This procedure is repeated
until the training samples cover the entire dataset. The MSPE is computed for each method, and
the computed mean MSPEs (×10−3) along with standard errors (×10−3 given in bracket) are 5.721
(3.884), 1.565 (0.965), 1.377 (0.847), 1.546 (0.949), 1.511 (0.920), and 1.377 (0.849) for the classical, MCD,
MLTS, MM, S, and tau-estimator based FFLRMs, respectively. From the results, the robust methods
produce improved MSPEs over the classical FFLRM, i.e., the robust method models the MaryRiverFlow
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data better than the classical functional principal component regression model. These results can be
obtained by the following code:

library(robflreg)
data("MaryRiverFlow")
MaryRiverFlow <- as.matrix(MaryRiverFlow)

# The following function is used to obtain the functional response and predictor
var_fun = function(data,order){
n = dim(data)[1]
y = data[((order+1):n),]
x=list()
a=1
b=order
for(i in 1:order){
x[[i]] = data[(a:(n-b)),]
a = a+1
b = b-1

}
return(list(x=x,y=y))

}

# Grid points for the functional response and predictor
gpY <- 1:24 # grid points of Y
gpX <- rep(list(1:24), 1) # grid points of Xs

MSPE <- matrix(, ncol = 6, nrow = 10)
colnames(MSPE) <- c("classical","MCD","MLTS","MM","S","tau")
starting_value <- 2179
# In two cases (when i = 3 and i = 6) the covariance is not decomposed.
# Thus, try() is used to ignore these two cases.
for(i in 1:10){
try({
data.i <- MaryRiverFlow[1:starting_value,]
# Obtain the functional response and predictor
XY = var_fun(data=data.i, order=1)
X = XY$x
Y = XY$y

# Perform classical and robust functional principal component regression models
model.classical <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "classical",

gpY = gpY, gpX = gpX)
model.MCD <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust",

fmodel = "MCD", gpY = gpY, gpX = gpX)
model.MLTS <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust",

fmodel = "MLTS", gpY = gpY, gpX = gpX)
model.MM <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust",

fmodel = "MM", gpY = gpY, gpX = gpX)
model.S <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust",

fmodel = "S", gpY = gpY, gpX = gpX)
model.tau <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust",

fmodel = "tau", gpY = gpY, gpX = gpX)
Xnew = list(t(as.matrix(Y[dim(Y)[1],])))

# Predict the maximum river flow measurement of the current day
predict.classical <- predict_ff_regression(object = model.classical, Xnew = Xnew)
predict.MCD <- predict_ff_regression(object = model.MCD, Xnew = Xnew)
predict.MLTS <- predict_ff_regression(object = model.MLTS, Xnew = Xnew)
predict.MM <- predict_ff_regression(object = model.MM, Xnew = Xnew)
predict.S <- predict_ff_regression(object = model.S, Xnew = Xnew)
predict.tau <- predict_ff_regression(object = model.tau, Xnew = Xnew)

# Record the MSPE values
MSPE[i,1] <- mean((predict.classical - MaryRiverFlow[starting_value+1,])^2)
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MSPE[i,2] <- mean((predict.MCD - MaryRiverFlow[starting_value+1,])^2)
MSPE[i,3] <- mean((predict.MLTS - MaryRiverFlow[starting_value+1,])^2)
MSPE[i,4] <- mean((predict.MM - MaryRiverFlow[starting_value+1,])^2)
MSPE[i,5] <- mean((predict.S - MaryRiverFlow[starting_value+1,])^2)
MSPE[i,6] <- mean((predict.tau - MaryRiverFlow[starting_value+1,])^2)
starting_value <- starting_value +1
},silent=T)

}

apply(MSPE, 2, mean, na.rm=TRUE); apply(MSPE, 2, sd, na.rm=TRUE)

6 Conclusion

The R package robflreg provides an implementation of functional principal component regression
model based on several robust procedures to fit and predict SFLRM and FFLRM. These methods
are centered on the RFPCA of Bali et al. (2011), a popular robust dimension reduction technique in
functional data, and several robust regression parameter estimators. In addition, the package robflreg
allows us to fit and predict SFLRM and FFLRM via the classical FPCA and least-squares estimator.
Several simulation examples and empirical data analysis show that the robust procedures provide
better inference for functional linear regression models when outliers are present in the response and
predictor variables. The robflreg package code can be found at: https://github.com/cran/robflreg.

The aspects that the current version of the R package robflreg that may be improved upon in the
future are listed below.

1) In the current version, the scalar predictors are allowed in the SFLRM only. In the next versions
of the package, it is planned to improve the functions rob.ff.reg and predict_ff_regression
to include scalar predictors (whose effects are constant and/or vary along the continuum of the
functional predictor).

2) The current package version does not allow for modeling the function-on-scalar regression
model, where the response consists of random functions, and the predictors include scalar
observations. The robust procedures used in the FFLRM are planned to extend the function-on-
scalar regression model in the subsequent versions of the package.

3) In the current version, the observations of the functional variables are assumed to be densely
observed. In the next versions of the package, the robust methods are planned to extend the
models where the elements of functional variables can also be observed over irregular and
curve-specific grids.
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