
CONTRIBUTED RESEARCH ARTICLE 173

Onlineforecast: An R Package for
Adaptive and Recursive Forecasting
by Peder Bacher, Hjörleifur G. Bergsteinsson, Linde Frölke, Mikkel L. Sørensen, Julian Lemos-Vinasco,
Jon Liisberg, Jan Kloppenborg Møller, Henrik Aalborg Nielsen and Henrik Madsen

Abstract Systems that rely on forecasts to make decisions, e.g. control or energy trading systems, re-
quire frequent updates of the forecasts. Usually, the forecasts are updated whenever new observations
become available, hence in an online setting. We present the R package onlineforecast that provides a
generalized setup of data and models for online forecasting. It has functionality for time-adaptive
fitting of dynamical and non-linear models. The setup is tailored to enable the effective use of forecasts
as model inputs, e.g. numerical weather forecast. Users can create new models for their particular
applications and run models in an operational setting. The package also allows users to easily replace
parts of the setup, e.g. using new methods for estimation. The package comes with comprehensive
vignettes and examples of online forecasting applications in energy systems, but can easily be applied
for online forecasting in all fields.

1 Introduction

Time series analysis and forecasting are indispensable to numerous applied fields such as business,
finance, science and engineering (Cryer and Chan, 2008). Time series analysis is the process of
statistical modelling of time series, i.e. data which is sampled at different points in time over a period –
often with a constant increment between the time-points, i.e. equidistant. Classical time series models
for a single equidistant time series use past values of the response variable (model output) as the
predictors (inputs). In this way, appropriate models describing the inherent auto-correlation structure
of the time series can be realized. Examples of these models include exponential smoothing (e.g.
Holt-Winters), AutoRegressive (AR), Moving Average (MA), and the combination of the latter two
known as ARMA models. When multiple correlated time series are available, they can be used as
simultaneous model inputs to improve the forecast. They are then called exogenous variables and
the classical model becomes an ARMAX – hence the X indicates that exogenous input variables
are included. ARMAX models are optimal for forecasting the output of linear time invariant (LTI)
systems, however for most forecasting applications models that can handle non-linear systems are
needed. A wide range of techniques for modelling non-linear systems exists, either based on input
transformations or local fitting methods. The onlineforecast package implements an advanced model
setup for modelling and forecasting the output of non-linear time varying systems. The setup was
developed for applications such as forecasting wind power (Nielsen et al., 2002) and thermal loads in
district heating (Nielsen and Madsen, 2006). The significance of the package is in the “online” term,
indicating that at each sampling point the model parameter estimates are updated in an effective way
for generating multi-step forecasts.

The use of ARMAX models and their variations for forecasting is still widespread (De Gooijer and
Hyndman, 2006), especially for energy systems due to the high dependency between variables such
as weather, load, renewable generation, and periodic phenomena. Load forecasting is an obvious
example. A nice overview of electric load forecasting is given by Alfares and Nazeeruddin (2002)
and Hong and Fan (2016), and for heat load by Dotzauer (2002) who demonstrates the dependency
between the response variable, heat load, and the predictor – ambient temperature – using a piecewise
linear function. It is also proposed to model the daily and weekly diurnal using hours of the week as
inputs.

Bacher et al. (2009) demonstrated that solar power forecasting (Kleissl, 2013) can be improved by
moving from a standard AR model to an AR model with an exogenous input (ARX), specifically by
using numerical weather predictions (NWPs) as the exogenous inputs. The ARX model uses past
observations and NWPs of global irradiance to forecast the power production from PV systems and
the ARX model obtains higher accuracy than the AR model. Bacher et al. (2013) identified exogenous
variables that are suitable for forecasting the heat load of a building, via similar models.

Energy systems are time-varying systems as they usually change over time due to wear and contami-
nation, like dirt on solar panels or changes in usage. For example, with new tenants in a house, the
dependency between heat load and other variables, such as calendar time and temperature, changes.
Therefore, a forecast model needs to adapt: the model coefficients are not optimal if they are constant,

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org
https://onlineforecasting.org

CONTRIBUTED RESEARCH ARTICLE 174

they need to be updated and allowed to change over time. The Recursive Least Square (RLS) method
provides a recursive estimation scheme for the coefficients in regression models, where they are
updated at each step, when new data becomes available. A forgetting factor can be introduced to
RLS to allow for the control of how fast the coefficients can change over time – this is referred to as
adaptive recursive estimation, with exponential forgetting, in linear regression and autoregressive
models. The method is described by Ljung and Söderström (1983), for advances that has been made
since then see e.g. (Engel et al., 2004).

The objective of the onlineforecast package is to make it easy to set up and optimize non-linear models
for generating online multi-step forecasts. The package contains functionalities not directly available
elsewhere, such as:

• Use of forecasts, e.g. NWPs, as input to multi-step forecast models.

• Optimal tuning of models for multi-step horizons.

• Recursive estimation for tracking time-varying systems.

The package provides a framework for handling data and setting up models, which makes it easy to
apply it in a wide range of forecasting applications.

Time series modelling and forecasting in R

A wide range of existing software for time series forecasting is currently available (Chatfield and Xing,
2019; Siebert et al., 2021). Below, an overview of the currently most relevant R packages for forecasting
is given – generally, the same functionalities are available in Python packages.

Classical ARMAX models can be fitted with the arima() function from the stats package and the
Arima() function from the forecast package (Hyndman and Khandakar, 2008) provides automatic
model selection with arima(). R Packages like marima (Spliid, 1983), KFAS, sysid and dlm (Petris, 2010)
can also be used for fitting ARMAX models. Spliid (1983) proposed a very fast and simple method for
parameter estimation in large multivariate ARMAX models with a pseudo-regression method that
repeats the regression estimation until it converges. The other packages represent time series and
regression models as state-space models and use a Kalman or Bayesian filter to include exogenous
variables in the model, and optimally reconstruct and predict the states. Compared to these classical
ARMAX models, onlineforecast models offers several advantages, first and foremost the recursive
fitting scheme which allows for much faster and adaptive fitting. Furthermore, model coefficients are
tuned as a function of the forecast horizon. This optimize the use of multi-step forecasts as models
inputs, such functionality is not available for ARMAX models.

State-space modelling is frequently used to describe time series data from a dynamical system, e.g. a
falling body, see (Madsen, 2007). The dynamical system can in such cases be written as a system of
differential equations or difference equations. State-space models use filter techniques to optimally
reconstruct and predict the states, with examples including the Kalman filter, the extended Kalman
filter, and other Bayesian filters. This gives the possibility of tracking the coefficients over time, i.e.
time-varying parameter estimation. The KFAS package (Helske, 2017) provides state-space modelling,
where the observations come from the exponential family, e.g. Gaussian or Poisson. The ctsm-r package
provides a framework for identifying and estimating partially observed continuous-discrete time state
space models, referred to as grey-box models. This modelling approach bridges the gap between
physical and statistical modelling using Stochastic Differential Equations (SDEs) to model the system
equations in continuous time and the measurement equations in discrete time. Packages for discrete
time state-space modelling are: dlm for Bayesian analysis of dynamic linear models, MARSS and
SSsimple for fitting multivariate state-space models. The onlineforecast models are basically fitted
using a Kalman filter, as explained in Section Regression, thus existing packages could be applied.
However, the use of forecasts as model inputs would be very cumbersome and is made very easy with
the onlineforecast setup.

For non-parametric time series models, the number of available packages is growing rapidly. NTS
provides simulation, estimation, prediction and identification for non-linear time series data. It also
includes threshold autoregressive models (e.g. self-exciting threshold autoregressive models) and
neural network estimation. tsDyn provides methods for estimating non-parametric time series models,
including neural network estimation. Neural network, deep learning and machine learning methods
are available in R. Recurrent neural networks are available in the rnn, the keras and tensorflow packages.
Additive time series models, where non-linear trends are fitted with seasonality patterns, are available
in prophet. Time adaptive neural networks, i.e. with recursive updating, can be implemented in various
ways (Yang et al., 2019), however currently no effective implementation is available.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
https://pkg.robjhyndman.com/forecast/
https://CRAN.R-project.org/package=marima
https://cran.r-project.org/package=KFAS
https://cran.r-project.org/package=sysid
https://cran.r-project.org/package=dlm
https://onlineforecasting.org
https://cran.r-project.org/package=KFAS
http://ctsm.info/
https://cran.r-project.org/package=dlm
https://nwfsc-timeseries.github.io/MARSS/
https://cran.r-project.org/package=SSsimple
https://onlineforecasting.org
https://cran.r-project.org/package=NTS
https://cran.r-project.org/package=tsDyn
http://qua.st/rnn
https://keras.rstudio.com/
https://github.com/rstudio/tensorflow
https://github.com/facebook/prophet

CONTRIBUTED RESEARCH ARTICLE 175

Some packages can be useful for forecast evaluation, e.g. ForecastTB presented in (Bokde et al., 2020).
Packages like forecastML and modeltime (Alexandrov et al., 2020) provide functionality that simplifies
the process of multi-step-ahead forecasting with machine learning algorithms. The handling of multi-
step-ahead forecasts is also a key feature of the onlineforecast package. The classical time series models,
such as ARMAX and Exponential Smoothing models, are mostly optimal for modelling Linear Time
Invariant (LTI) systems, however, most systems are not LTI. Furthermore, since a model is always a
simplification of reality, optimal multi-step forecasting is often not possible with the classical models,
especially when using exogenous inputs. For optimal multi-step ahead forecasting the models must
be tuned for each horizon – which is exactly what the onlineforecast package does.

Functionality of onlineforecast

A model is an approximation to the real world, thus it will always be a simplification and can never
predict real-world data. One of the main challenges of identifying a good forecast model is to find
the most informative input variables and the best structure of the model. The onlineforecast package
provides functionality for defining, validating and selecting models in a systematic way.

To introduce the onlineforecast models consider the simplest model with one input. It is the linear
model for the k’th horizon

Yt+k|t = β0,k + β1,kut+k|t + εt+k|t (1)

where Yt+k|t is the response variable and ut+k|t is the input variable. The coefficients are β0,k and β1,k,
note that they are subscripted with k to indicate that they are estimated for individually for every
horizon. The error εt+k|t represents the difference between the model prediction and the observed
value for the k-step horizon. The interpretation of the subscript notation t + k|t on a variable is, that it
is the k-step prediction calculated using only available information at time t, usually referred to either
“conditional on time t” or “given time t”.

The options for estimating the coefficients in the package are either the Least Squares (LS) or Recursive
Least Squares (RLS) method. In the LS method, the coefficients are constant, while the in RLS method
the coefficients can change over time

Yt+k|t = β0,k,t + β1,k,tut+k|t + εt+k|t (2)

as indicated by the subscript t on the coefficients. This allows for tracking changes occurring over
time.

The package allows for easy definition of transformations and thus the possibility to fit non-linear
models e.g.

Yt+k|t = β0,k,t + β1,k,t f (ut+k|t; α) + εt+k|t (3)

where the function f (ut+k|t; α) is some non-linear function of the input ut+k|t with parameter α, e.g. a
low pass filter on the outdoor temperature to model building heat dynamics. The package sets up
tuning of the non-linear function parameters, e.g. if the parameter α determines the degree of low-pass
filtering it can be tuned with an optimizer to match the dynamics of the system at hand.

An example of generated forecasts can be appreciated in Figure 1. Hourly forecasts up to 36 steps
ahead of heat load in a single building are shown for three consecutive steps. This is the typical
structure of forecasts generated with the package. It can be seen how the forecasts change slightly as
they are updated in each step, e.g. around 12:00 the second day, hence horizon k = 23 in the upper
plot, which corresponds to k = 21 in the lower plot.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://cran.r-project.org/package=ForecastTB
https://cran.r-project.org/package=forecastML
https://CRAN.R-project.org/package=modeltime
https://onlineforecasting.org
https://onlineforecasting.org
https://onlineforecasting.org
https://onlineforecasting.org

CONTRIBUTED RESEARCH ARTICLE 176

5
6

7
8

9
10

H
ea

t (
kW

)

12:00 18:00 00:00 06:00 12:00 18:00 00:00
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Observation
Forecast

5
6

7
8

9
10

H
ea

t (
kW

)

13:00 18:00 00:00 06:00 12:00 18:00 00:00
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

5
6

7
8

9
10

H
ea

t (
kW

)

14:00 18:00 00:00 06:00 12:00 18:00 00:00
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Horizon and time

Figure 1: Example of hourly load forecasts at three consecutive time steps. The upper is calculated at
12:00, the middle is calculated at 13:00 and the lower at 14:00. It can be seen how the forecasts change
slightly as they are updated in each step, most clearly seen around 12:00 on the second day.

Vignettes

A great way to get hands-on experience with the package is through vignettes. They are available
when installing the package and on the website onlineforecasting.org, where also examples of different
forecast applications can be found. The package vignettes are:

• setup-data covers how data must be set up. The vignette goes into detail on how observations
and model inputs (forecasts) are set up. The vignette also focuses on the importance of aligning
forecasts correctly in time.

• setup-and-use-model focus on how to set up a model and use it to generate forecasts.

• model-selection demonstrates how model selection can be carried out.

• forecast-evaluation covers the evaluation of forecasts, and how to use this information to
improve a model.

• online-updating demonstrates how to update an operational model when new observations
become available. This functionality is not covered in the R examples in the present paper.

Furthermore, one vignette is available only on the website:

• nice-tricks provides some useful tips on how to make the workflow easier with the package.

Paper structure

The paper is structured as follows: In Section Notation and forecast matrices the notation used in
the paper and how to set up data is introduced. The core methodology is presented in Section
Two-stage modelling procedure and important aspects of forecast modelling are outlined in Section
Model selection and validation. In Section Example with R code examples with R code are presented
to provide a short hands-on tutorial. The paper ends with a summary and conclusions in Section
Discussion and conclusion.

In addition, three appendices are included with the paper. In Appendix Forecast model notation some
guidelines on the mathematical notation of forecast models are provided. In Appendix Regression the
regression schemes are covered in full detail.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org
https://onlineforecasting.org/vignettes/setup-data.html
https://onlineforecasting.org/vignettes/setup-and-use-model.html
https://onlineforecasting.org/vignettes/model-selection.html
https://onlineforecasting.org/vignettes/forecast-evaluation.html
https://onlineforecasting.org/vignettes/online-updating.html
https://onlineforecasting.org/vignettes/nice-tricks.html

CONTRIBUTED RESEARCH ARTICLE 177

2 Notation and forecast matrices

The notation in this article follows Madsen (2007) as close as possible. All time series considered are
equidistantly sampled and the sampling period is normalized to 1. Hence, the time t is simply an
integer indexing the value of a variable at time t. The same goes for k which indexes the forecast
horizon k steps ahead. In the onlineforecast setup, forecasts are calculated at time t for each horizon up
to nk steps ahead. To achieve the desired notation that can deal with overlapping time series, a two
dimensional index is required. The notation used is

ut+k|t (4)

which translates to: the value of variable u at time t + k conditional on the information available at time
t. The conditional term is indicated by the bar |. Thus, for k > 0 this is a forecast available at t and k is
the horizon. When writing a forecast model the following convention is used

Yt+k|t = β0,k + β1,kut+k|t + εt+k|t (5)

where Yt+k|t is the model output, β0,k and β1,k are the coefficients and εt+k|t with Var(εt+k|t) = σ2
k is

the error. The error process and variance σ2
k is thus separate for each horizon. Note, that the model is

fitted separately for each horizon, so the coefficients take different values for each horizon, and the
predictions and errors are separated for each horizon. This was a simplified example, see Appendix
Forecast model notation on how to write the full forecast models.

Forecast matrix

A forecast matrix is the format of forecast data in the onlineforecast setup. See examples in the
setup-data vignette. Data must have this format in order to be used as model input, and the forecasts
are generated in this format. The forecast matrix holds for any time past the latest available forecast along
the row for the corresponding time

un =

k0 k1 k2 . . . knk → horizon/time ↓

u1|1 u2|1 u3|1 . . . u1+nk |1 1

u2|2 u3|2 u4|2 . . . u2+nk |2 2

...
...

...
...

...

ut−1|t−1 ut|t−1 ut+1|t−1 . . . ut−1+nk |t−1 t − 1

ut|t ut+1|t ut+2|t . . . ut+nk |t t
...

...
...

...
...

un|n un+1|n un+2|n . . . un+nk |n n

(6)

where

• t is the counter of time for equidistant time points with sampling period of 1 (note that t is not
included in the matrix, it is simply the row number).

• n is the number of time points in the matrix. Hence, the data is available and can be used as
model input at time t = n.

• nk is the longest forecasting horizon.

• The column names (in R) are indicated above the matrix, they are simply a ’k’ concatenated
with the value of k, e.g. nk in the last column.

Note, that the k0 column holds values with forecast horizon k = 0, which could be real time observa-
tions. Usually, only the horizons to be forecasted should be included, hence often k0 is not needed.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org
https://onlineforecasting.org/vignettes/setup-data.html

CONTRIBUTED RESEARCH ARTICLE 178

For example with a prediction horizon nk = 24 at t = 100, we will have the forecast matrix

u100 =

k0 k1 k2 . . . k24 → horizon/time ↓

u1|1 u2|1 u3|1 . . . u25|1 1

u2|2 u3|2 u4|2 . . . u26|2 2

...
...

...
...

...

u99|99 u100|99 u101|99 . . . u123|99 99

u100|100 u101|100 u102|100 . . . u124|100 100

(7)

In Section Setup of data examples of how data and forecast matrices are set up in R are given.

3 Two-stage modelling procedure

Two-stage modelling procedure is a widespread approach to modelling non-linear functional relations
between inputs and outputs (see e.g. Breiman and Friedman (1985) and Weisberg (2005) for direct
transformation of predictor variables, and Hastie et al. (2009) for non-parametric transformation
techniques). Using transformations allows for fitting complex models with robust and fast estimation
techniques. In the first stage, the transformation stage, the inputs are mapped by some function –
potentially into a higher dimensional space. In the second stage, the regression stage, a linear regression
model1 is applied between the transformed inputs and the output.

As an example, a model with two inputs is presented. In this model the transformation stage consists
of generating an intercept and mapping the two inputs (they are set up as forecast matrices u1,t and
u2,t)

Intercept: x0,t+k|t = 1 (8)

Input 1: x1,t+k|t = f1(u1,t+k|t, α1) (9)

Input 2: x2,t+k|t = f2(u2,t+k|t, α2) (10)

where the f ’s are transformation functions that map the inputs to regressors. Note, that the intercept
is simply a constant passed on to the regression. The transformations result in multiple inputs for
the regression – the latter actually as multiple variables indicated by the bold font notation. In the
regression stage the linear model

Yt+k|t = β0,kx0,t+k|t + β1,kx1,t+k|t + βT
2,kx2,t+k|t + εt+k|t (11)

is fitted. The regression is carried out separately for each horizon k. Thus, the combined model has:

• An intercept

• Two inputs: u1,t+k|t and u2,t+k|t

• Output: Yt+k|t

• Transformation functions: f1 and f2

• Transformation parameters: α1 and α2

• Regression coefficients: β0,k, β1,k and β2,k

Some transformation parameters should be optimized for the data at hand, e.g. a low-pass filter
coefficient depends on the system dynamics. The same goes for some parameters related to the
regression scheme, e.g. the forgetting factor (introduced below). We will refer to them together as
offline parameters. The onlineforecast package provides a setup, where the offline parameters can be
optimized using a heuristic optimization (e.g. a BFGS quasi-Newton method). The default score, which
is minimized, is the Root Mean Square Error (RMSE) of the predictions – hence offline parameters in

1In the remaining of the text, when the term “regression” is used it is implicit that it is “linear regression”.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org

CONTRIBUTED RESEARCH ARTICLE 179

the model above, given data from the period, t = 1, 2, . . . , n, are optimized by solving

min
α1,α2

1
n − k

n−k

∑
t=1

(yt+k − ŷt+k|t(α1, α2))
2 (12)

Naturally, other scores can be minimized (e.g. MAE or the Huber psi-function, however the regression
schemes should be modified accordingly, which is not trivial).

The regression coefficients are calculated with a closed-form scheme: either with the Least-Squares
(LS) or the Recursive Least-Squares (RLS) scheme – in the latter the coefficients are allowed to vary
over time. In both schemes the coefficients are gathered in the vector βk and calculated separately for
each horizon k. In Appendix Regression both schemes are presented in full detail.

In the LS scheme the coefficients are constant during the entire period. The output vector is yk,n and for
a given value of the transformation parameters (i.e. here α1 and α2) the transformed data is calculated
and set up in the design matrix Xk,n. The LS coefficients are then calculated by

β̂k = (Xk,nXk,n)
−1Xk,nyk,n (13)

and the predictions calculated by

ŷk,n = Xk,n β̂k (14)

where ŷk,n =
[
ŷ1+k|1 ŷ2+k|2 . . . ŷn|n−k

]T
are the predictions. Note, that for the LS scheme the

predictions are “in-sample”, since data from the entire period is used for the coefficient calculation.

In the RLS scheme the coefficients are calculated recursively, meaning that they are updated in every
time step – the RLS is actually a Kalman filter with the model coefficients in the state vector. At each
time t the coefficients are updated by

Rk,t = λRk,t−1 + xk,tx
T
k,t (15)

β̂k,t = β̂k,t−1 + R−1
k,t xk,t(yt − xT

k,t β̂k,t−1) (16)

and the predictions by

ŷt+k|t = xt+k|t β̂k,t (17)

where xk,t is the data available for horizon k at time t (a row in the design matrix Xk,n), and xt+k|t is
the k’th horizon transformed input forecast available at time t, see the appendix for all details. The
coefficients adapts to data over time and the level of adaptivity is controlled by the forgetting factor λ
(with value between 0 and 1). When λ = 1, all past data at t is equally weighted. When λ < 1, higher
weight is put on recent data – the smaller the value, the faster the model adapts to recent data. By
optimizing the forgetting factor as an offline parameter, the model adaptivity can be tuned.

An important point to notice is that the offline parameters are always constant for the given period,
hence all predictions are essentially “in-sample”. However, depending on the regression scheme there
is a difference: with the LS scheme the regression coefficients are calculated once using all data, thus
the predictions are (fully) “in-sample”, where as with the RLS scheme they adapt through the period
and the predictions are “out-of-sample” (except for the offline parameters). This makes a difference,
since model overfitting is less of a problem when using the RLS scheme.

The typical onlineforecast setup is to optimize the (usually few) offline parameters in an “offline” setting,
but calculate the regression coefficients adaptively with the RLS. This has the advantage that the
model adapts and tracks the systematic changes in input-output relations, while keeping the setup
computationally very effective – updating the coefficients and calculating a forecast at each time t
takes few operations. The optimization of offline parameters can be carried out when computational
resources are available (e.g. every week for hourly forecasts).

Transformations

In the transformation stage the inputs are mapped using some function as demonstrated above,
for more examples, see the setup-and-use-model vignette. The onlineforecast package has functions
available for most common use, however it is easy to write and use new functions as they are simply
R functions. The main functionality they have to fulfil is to return a forecast matrix (or a list of them),
which is also the reason why some of the regular R functions and operators has been extended for the

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org
https://onlineforecasting.org/vignettes/setup-and-use-model.html
https://onlineforecasting.org

CONTRIBUTED RESEARCH ARTICLE 180

multi-horizon setup, e.g. for splines as explained below. For R examples, see Section Defining a model
and the vignettes. The currently available transformation functions are:

• Low-pass filtering, lp(): A low-pass filtering for modelling linear dynamics as a simple RC-
model. See e.g. Nielsen and Madsen (2006) for further information.

• Basis splines, bspline(): Use the bs function for calculating regression splines basis functions.

• Periodic basis splines, pbspline(): Use the pbs function for calculating periodic regression
splines basis functions.

• Fourier series, fs(): Fourier series as periodic regression basis functions.

• Auto-regressive, AR(): For including Auto-Regressive (AR) terms.

• Intercept, one(): Generates a forecast matrix of ones, i.e. intercept.

In the following section, the low-pass filtering is shortly described below. For more examples of
transformations, see the package vignettes.

The implementation in onlineforecast allows all parameters which are used in some way (except the
regression coefficients) to be included in an optimization, using any available optimizer i R. This
includes e.g. the RLS forgetting factor, knot points or order of splines, i.e. both continuous and integer
variables. This functionality is achieved using a simple syntax as explained in Section Example with R
code.

Low-pass filtering

When modelling time series from linear dynamical systems, the classical ARMAX model is often
the optimal choice (Madsen, 2007). However, for multi-step forecasting, this is often not the case,
especially for longer horizons. In the onlineforecast setup, where the regression model is fitted for
each horizon, a “trick” can be used for modelling linear dynamics: simply apply a filter on the input
and then use the filtered input in the regression stage. For example, dynamics between ambient air
temperature and heat demand are slow due to the thermal mass of the building. Thus they can be
modelled using a low-pass filter, see Nielsen and Madsen (2006) for modelling heat load in district
heating and Bacher et al. (2013) for forecasting single buildings heat load.

In the package the simple low-pass filter

xt+k|t =
(1 − a)ut+k|t

1 − axt−1+k|t−1
(18)

is implemented. The filter coefficient a must take a value between 0 and 1 and should be tuned to
match the time constant optimal for the particular data. When the current implemented low-pass
filter is applied in the transformation stage on some forecast matrix ut+k|t, the filter is applied on each
column, i.e. independently for each horizon k. More advanced filters can also be implemented.

4 Model selection and validation

Model selection

In statistics, different model selection procedures are used (Madsen and Thyregod, 2010). Essentially,
a backward or a forward selection procedure can be applied, or some combined approach. In the
onlineforecast package both procedures are implemented, as well as a combined approach (see the
model-selection vignette for examples).

In each step of the selection process two properties of the model can be modified:

• Model inputs: In each step, inputs can either be removed or added.

• Integer offline parameters: In each step integer parameters, such as the number of knot points in
a basis spline or the number of harmonics in a Fourier series can be incremented or decremented.

In each step of the process, the offline parameters are first optimized to minimize the score for each
modified model (in most cases the appropriate score is the RMSE in Equation (12) summed for selected

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org
https://onlineforecasting.org
https://onlineforecasting.org
https://onlineforecasting.org/vignettes/model-selection.html

CONTRIBUTED RESEARCH ARTICLE 181

horizons). Then the scores of the modified models are compared with the score of the currently
selected model and the model with the lowest score is selected for the next step. This continues until
no further improvement of the score is achieved and the model with the lowest score is selected. It is
important to note, that the implemented procedure should only be used with the RLS scheme, with
the LS scheme the score is calculated fully in-sample leading to overfitting.

Model validation

The most important aspects of validation of forecast models are discussed in this section (see the
forecast-evaluation vignette for examples).

Training and test set

One fundamental problem in data-driven modelling is overfitting. This can easily happen when the
model is fitted (trained) and evaluated on the same data. There are essentially two ways of dealing
with this: penalize increased model complexity (regularization) or divide the data into a training set
and test set (cross-validation) (Tashman, 2000). In most forecasting applications the easiest and most
transparent approach is cross-validation – many methods for dividing into sets are possible. In the
onlineforecast setup, when a model is fitted recursively using the RLS, only past data is used when
calculating the regression coefficients, so there is little need for dividing into a training and a test set.

The offline parameters (like the forgetting factor and low-pass filter coefficients) are optimized on a
particular period, hence overfitting is possible, however, typically, only very few parameters compared
with the number of observations are estimated – so it is very unlikely that a recursively-fitted model
will overfit.

Scoring

The scoring of forecasts can be done in many ways, however in the onlineforecast package, where the
conditional mean is estimated and when using the RLS scheme, we recommend choosing the Root
Mean Square Error (RMSE) in Equation (12) as the best score to use. When using the LS scheme it can
be favourable to include regularization penalty to avoid overfitting, hence AIC or BIC is preferable.
One important point when comparing forecasts is to only include the complete cases, i.e. forecasts at
time points with no missing values across all horizons and across all evaluated models. A function for
easy selection of only complete cases given multiple forecasts is implemented, see the examples in
Section Evaluation.

Residual analysis

Analysing the residuals is an important way of validating that a model cannot be further improved or
learning how it can improved. The main difference from classical time series model validation, where
only the one-step ahead error is examined, is that multiple horizons should be included in the analysis.
The two most important ways of analyzing the residuals are to:

• Plot residual time series to find where large forecast errors occur.

• Plot scatter plots of the residuals vs. other variables to see if there are any apparent dependencies
not captured by the model.

In order to dig a bit more into the result of a recursive estimation, the regression coefficients can be
plotted over time. In this way, it is possible to learn how the relations between the variables in the
model evolve over time. If large changes are found in some periods it might be worthwhile to zoom
into those periods to learn what causes these changes and how to potentially improve the model. In
case auto-correlation is left in the residuals, an error model can be used to improve the forecasts by
applying an auto-regressive model on the residuals. This is somewhat equivalent to include an MA
part in the original model.

As summarizing measures for validation of how well dynamics are modelled:

• Plot the auto-correlation function (ACF) of the one-step residuals.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org/vignettes/forecast-evaluation.html
https://onlineforecasting.org
https://onlineforecasting.org

CONTRIBUTED RESEARCH ARTICLE 182

• Plot cross-correlation functions from one-step residuals to other variables, see (Bacher et al.,
2013).

Systematic patterns found in these functions lead to direct knowledge on how to improve the model,
see for example the table on page 155 in Madsen (2007).

5 Example with R code

A short introduction to the functionalities and steps in setting up a model is given in the following –
for more details, see the vignettes listed in Section Vignettes and the website onlineforecasting.org.

First, a few remarks on the implementation. onlineforecast models are set up using an object-oriented
R6 class. The main reason for this is that R6 objects use reference pointers, which allows to make
minimum changes in computer memory when updating a model fit with new data – this would not
be possible with the regular S3 class objects, as they are always copied in memory when updated by a
function.

Furthermore, it is noted, that model inputs and transformations simply are defined using R code.
The regular formula class is not used, since it cannot operate as needed on the multi-horizon forecast
matrices. The provided code for the inputs defines the transformations etc. and is executed for each
input to generate the data used for regression.

Setup of data

Data must be set as variables in a list, here we have loaded D with the data for the examples:

class(D)

[1] "data.list" "list"

As seen its class is data.list, which is inherited from the list class. Hence, it is simply a list
extended with some modified and new functions (can be listed with methods(class="data.list")).

All inputs to be used must be formatted as forecast matrices and set in the list as data.frames. For
example the ambient temperature forecasts:

class(D$Ta)

[1] "data.frame"

head(D$Ta[,1:8], 4)

k1 k2 k3 k4 k5 k6 k7 k8
1 -2.82340 -3.20275 -3.1185 -3.0896 -3.13200 -3.16130 -3.16645 -3.08885
2 -2.90405 -3.11850 -3.0896 -3.1320 -3.16130 -3.16645 -3.08885 -2.77165
3 -2.93590 -3.08960 -3.1320 -3.1613 -3.16645 -3.08885 -2.77165 -2.32185
4 -2.89315 -3.11285 -3.0484 -3.1090 -3.11600 -2.80990 -2.36895 -2.00945

The time must be in a POSIXct vector named t:

D$t[1:4]

[1] "2010-12-15 01:00:00 UTC" "2010-12-15 02:00:00 UTC"
[3] "2010-12-15 03:00:00 UTC" "2010-12-15 04:00:00 UTC"

Observations must be in a numeric vector:

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org
https://onlineforecasting.org

CONTRIBUTED RESEARCH ARTICLE 183

D$heatload[1:4]

[1] 5.916667 5.850000 5.850000 5.883333

For more details on the data.list class, see the setup-data vignette – which demonstrates useful
functions for manipulating, validating and exploring forecast data.

Defining a model

Models are set up using the R6 class forecastmodel. An object of the class is instantiated by:

model <- forecastmodel$new()

It holds variables and functions for representing and manipulating a model.

If we want to forecast the observed heatload variable in the data list D, we set that as the model output
by:

model$output <- "heatload"

The model inputs must then be defined. We can add an input as a linear function by:

model$add_inputs(Ta = "Ta")

The code given as text simply evaluates into the Ta forecast matrix, which will lead to the k-step
forecast of ambient temperature (i.e. a column in Ta) will be set directly into the design matrix for the
k horizon regression (more explanation of this is given in the end of the current section).

Adding an intercept to a model can be done by:

model$add_inputs(mu = "one()")

where the function one() evaluates into a forecast matrix of 1’s, which will be inserted in the design
matrix, see details in Appendix Regression.

Functions for a range of useful transformations were already listed in Section Transformations. Dy-
namics can be modelled using filters, for example low-pass filtering of a variable with:

model$add_inputs(Ta = "lp(Ta, a1=0.9)")

will apply a low-pass filter along each column of Ta and return a forecast matrix with the modified
data. The filter coefficient is set to a = 0.9. To illustrate the effect of this, see the vignette setup-and-
use-model.

Non-linear effects can be modelled using basis functions. For mapping an input to basis splines the
function bspline() is provided. It is a wrapper of the bs() function from the splines package and has
the same arguments. To e.g. include a non-linear function of the ambient temperature:

model$add_inputs(Ta = "bspline(Ta, df=5)")

where df is the degrees of freedom of the spline function.

Functions can be nested, e.g. first a low-pass filter before mapping to basis splines:

model$add_inputs(Ta = "bspline(lp(Ta, a1=0.9), df=5)")

Varying-coefficient models can be realized with multiplication of inputs (Hastie and Tibshirani, 1993).
For more details, see the solar-power-forecasting example on the website. For more examples of input
transformations, e.g. fourier-series and auto-regressive inputs, see the setup-and-use-model vignette.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org/vignettes/setup-data.html
https://onlineforecasting.org/vignettes/setup-and-use-model.html#input-transformations
https://onlineforecasting.org/vignettes/setup-and-use-model.html#input-transformations
https://www.rdocumentation.org/search?q=splines
https://onlineforecasting.org/examples/solar-power-forecasting.html
https://onlineforecasting.org/vignettes/setup-and-use-model.html#input-transformations

CONTRIBUTED RESEARCH ARTICLE 184

Execution of the input transformations

As seen above, R code is given for each input. The code is given as text and will simply be executed to
calculate the data for regression. This is carried out with the function model$transform_data(data),
inside which:

eval(parse(text=frml), data)

is executed for each input. The frml is the R code for the input (as a character e.g. as "Ta" or
"bspline(Ta,df=5)" in the examples) and data is the list containing the variables used in the frml
code (as D in the examples).

This way of defining the input formulas simply as code is very flexible. It also allows for easy
debugging, for example a function used in the code can be set for debug and it is possible to step
through its execution during the transformation – or even by setting "browser();" directly into in the
input code to stop and step through the execution.

The only constraint to an inputs code is that it must just return a forecast matrix as a data.frame (or
list of them). The regression can then be carried out separately for every horizon by, for the k horizon
taking the k column from each of the returned matrices and bind these together into a design matrix,
on which LS or RLS can be applied to calculate the k horizon forecasts.

Model fitting and offline parameter tuning

After setting up a model it can be fitted to data by carrying out the transformation and regression
steps. To simply the code, functions of fitting the model are provided. Different functions implement
different regression schemes. The two currently available fitting functions are lm_fit() and rls_fit()
– they take offline parameters as a vector, fit a model and return the RMSE score (summed across all
fitted horizons).

To demonstrate the model-fitting process, we first replace the inputs on the model defined above with
two inputs by:

model$inputs <- NULL
model$add_inputs(mu = "one()",

Ta = "lp(Ta, a1=0.9)")

We also have to set the “score period”, which is simply a logical vector that specifies the observations
to be included in the score calculation. It is useful for defining a burn-in period and dividing the data
into test and training sets. For the current linear regression we simply include all points by:

D$scoreperiod <- rep(TRUE, length(D$t))

Now the summed RMSE for the horizons 1 to 6 steps ahead can be obtained by:

model$kseq <- 1:6
lm_fit(c(Ta__a1=0.8), model, D, scorefun=rmse, returnanalysis=FALSE)

[1] 5.039611

The function can be passed to an optimizer, which can then find the parameter value(s) which
minimizes the score.

Any optimizer function in R can be used, but, again to simplify the code, wrappers for optim() are
included – similar wrappers can easily be made for other optimizers. The parameter(s) to optimize
within the wrapper function is defined by:

model$add_prmbounds(Ta__a1 = c(min=0.8, init=0.95, max=0.9999))

Note, the double underscore syntax. The double underscore separates the input name and the name
of the parameter. So in the case above the value of a1 in the R code for input Ta will be optimized,
starting at an initial value of 0.95 and staying within the specified bounds.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 185

We can then run the optimization calculating scores (to save computational time run on only a horizons
3 and 18 steps ahead):

lm_optim(model, D, kseq=c(3,18))

The lm_optim() function is a wrapper for the R optimizer function optim(). It returns the result from
optim() and sets optimized parameters in:

model$prm

Ta__a1
0.8926346

i.e. a lower low-pass coefficient than the initial value of 0.95.

For more details, see the setup-and-use-model vignette.

Calculating forecasts

While developing models it is most convenient to use the fit functions for calculating predictions, e.g.:

model$kseq <- 1:24
fit <- lm_fit(model$prm, model, D)

will return a list holding the forecasts (in the forecast matrix fit$Yhat) and other useful information.
Forecasts can also be calculated directly with the predict function:

lm_predict(model, model$transform_data(D))

will return a forecast matrix using the input data in D.

Evaluation

Finally, it can be worthwhile to evaluate the forecasts and inspect the model for potential improvements.
For a more comprehensive introduction, see the forecast-evaluation vignette.

First, it is always a good idea to plot the model’s forecasts over time and see how well it predicts:

D$Yhat <- fit$Yhat
plot_ts(subset(D,D$scoreperiod), "heatload$|Yhat", kseq=c(1,5,24), p=p)

4
6

8
10

12

2011−01−01 2011−01−15 2011−02−01 2011−02−15 2011−03−01

heatload: 2.4 to 12
Yhat_k1: 3.9 to 6.8
Yhat_k5: 3.9 to 6.8
Yhat_k24: 4 to 6.8

We can plot the ACF of the one-step residuals by:

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org/vignettes/setup-and-use-model.html#input-transformations
https://onlineforecasting.org/vignettes/forecast-evaluation.html

CONTRIBUTED RESEARCH ARTICLE 186

acf(residuals(fit)$h1, na.action=na.pass, lag.max=96, main="")

0 20 40 60 80

0.
0

0.
4

0.
8

Lag

A
C

F

The ACF plot suggests that there remains a diurnal pattern to be modelled. It can be achieved by
adding a diurnal curve to the model, e.g. with Fourier series basis functions. This is demonstrated in
the vignette setup-and-use-model.

We may also want to calculate the score as a function of the horizon:

inscore <- D$scoreperiod & complete_cases(fit$Yhat)
RMSE <- score(residuals(fit), scoreperiod = inscore)
plot(RMSE, ylim=c(0.75,0.88), xlab="Horizon")

5 10 15 20

0.
76

0.
80

0.
84

0.
88

Horizon

R
M

S
E

The trend is relatively constant, which makes sense since the model is very simple. The offline
parameters were optimized for k = 3 and k = 18, which can explain why it is not monotonic increasing
with the horizon.

6 Discussion and conclusion

Extending functionality

The current package is designed to make it easy to implement new transformation functions and
regression schemes, as well as using other optimizers for tuning parameters.

Implementing a new transformation function is straightforward. The function must receive either a
forecast matrix or a list of forecast matrices and return either after processing. Furthermore, when used
in an online operational setup, where the transformation is executed whenever new data arrives, it is
possible to save state information inside a transformation function, such that next time the function
is called, the state can be read and used. See the lp() function for inspiration when writing a new
transformation function.

A new regression scheme, e.g. a kernel or quantile regression, can also be implemented. A fitting func-
tion should be implemented in similar way as lm_fit() and rls_fit(), such that the first argument is
the parameter vector and it returns a score value, which can be passed to an optimizer.

It is very easy to use other optimizers. The current fitting functions can simply be passed to any

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org/vignettes/setup-and-use-model.html

CONTRIBUTED RESEARCH ARTICLE 187

optimizer in R, which follows the optim() way of receiving a function for optimization, see the code
in lm_optim().

In future versions of the package, new regression techniques, e.g. kernel regression (local fitting) and
quantile regression, might be added. The latter opens up the possibilities to calculate probabilistic
forecasts, see (Nielsen et al., 2006) and (Bjerregaard et al., 2021), as well as carry out normalization
and Copula transformations, which can be very useful for spatio-temporal forecast models, see (Tastu
et al., 2011) or (Lemos-Vinasco et al., 2021).

Summary and conclusion

This paper provides an entry point and reference for working with the onlineforecast package. The
paper covers version 1.0 of the package, which has been available on CRAN for almost one year at the
time of writing.

The main contribution of the package is to make it easy to generate online multi-step forecasts in a
flexible way. The package contains functionalities not directly available elsewhere, such as:

• Enabling the use of input variables given as forecasts, e.g. NWPs, in an easy and flexible way.

• Optimal tuning of non-linear models for multi-step horizons.

• Recursive estimation for tracking time-varying systems computationally efficient for multiple
horizons.

The onlineforecast package has a significant value for anyone who needs to carry out operational
online forecasting, for example, in energy scheduling, where recursive updated forecasts are needed
as input to optimal decision making and real-time control of systems. It can also be very useful for
companies that need online forecasts for other monitoring and real-time applications – specifically,
the functionality for model updating with very little computational costs when new data becomes
available, is a unique feature of the package.

Computational details

We have tried to make the onlineforecast package depend on as few other packages as possible. Only a
few additional packages are used in the core functionalities: R6 for the “usual” OOP functionalities
and Rcpp (Eddelbuettel and Balamuta, 2018) along with RcppArmadillo (Eddelbuettel and Sanderson,
2014) for easy integration of fast compiled code. For extending the modelling possibilities the splines
and pbs packages are essential, and for nice caching the digest package was used. We acknowledge
the devtools and knitr (Xie, 2015), rmarkdown (Xie et al., 2018), R.rsp, testthat (Wickham, 2011)
packages, which are indispensable for developing a package. We acknowledge the R community and
the amazing work behind R done by many people over the years!

The results in this paper were obtained using R 4.3.1. R itself and all packages used are available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.

Acknowledgments

The software has been developed with funding from multiple projects: PTXHeatUtilisation (Energy
Cluster Denmark), Flexible Energy Denmark, Heat 4.0 and Decision support tools for smart home
energy management systems (Innovation Fund Denmark, No. 9045-00017B, 8090-00046B and 8053-
00156B), TOP-UP (Innovation Fund Denmark and ERA-NET, No. 9045-00017B), Digital-twin, IEA
Annex 71 and 83 Danish participation (EUDP, No. 64019-0570, 64017-05139 and 64020-1007), and
finally SCA+ (EU Interreg, No. 20293290).

Bibliography

A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus, T. Januschowski, D. C.
Maddix, S. S. Rangapuram, D. Salinas, J. Schulz, et al. Gluonts: Probabilistic and neural time series
modeling in python. J. Mach. Learn. Res., 21(116):1–6, 2020. [p175]

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org
https://onlineforecasting.org
https://onlineforecasting.org
https://CRAN.R-project.org/

CONTRIBUTED RESEARCH ARTICLE 188

H. K. Alfares and M. Nazeeruddin. Electric load forecasting: Literature survey and classification of
methods. International Journal of Systems Science, 33(1):23–34, 2002. doi: 10.1080/00207720110067421.
URL https://doi.org/10.1080/00207720110067421. [p173]

P. Bacher, H. Madsen, and H. A. Nielsen. Online short-term solar power forecasting. Solar Energy, 83
(10):1772 – 1783, 2009. ISSN 0038-092X. doi: https://doi.org/10.1016/j.solener.2009.05.016. [p173]

P. Bacher, H. Madsen, H. A. Nielsen, and B. Perers. Short-term heat load forecasting for single family
houses. Energy and buildings, 65:101–112, 2013. [p173, 180, 182]

M. B. Bjerregaard, J. K. Møller, and H. Madsen. An introduction to multivariate probabilistic forecast
evaluation. Energy and AI, page 100058, 2021. [p187]

N. D. Bokde, Z. M. Yaseen, and G. B. Andersen. Forecasttb—an r package as a test-bench for time
series forecasting—application of wind speed and solar radiation modeling. Energies, 13(10):2578,
2020. [p175]

L. Breiman and J. H. Friedman. Estimating optimal transformations for multiple regression and
correlation. Journal of the American statistical Association, 80(391):580–598, 1985. [p178]

C. Chatfield and H. Xing. The analysis of time series: an introduction with R. Chapman and hall/CRC,
2019. [p174]

J. D. Cryer and K.-S. Chan. Time series analysis: with applications in R, volume 2. Springer, 2008. [p173]

J. G. De Gooijer and R. J. Hyndman. 25 years of time series forecasting. International journal of forecasting,
22(3):443–473, 2006. [p173]

E. Dotzauer. Simple model for prediction of loads in district - heating systems. Applied Energy, 73(3-4):
277–284, 2002. doi: 10.1016/S0306-2619(02)00078-8. [p173]

D. Eddelbuettel and J. J. Balamuta. Extending extitR with extitC++: A Brief Introduction to extitRcpp.
The American Statistician, 72(1):28–36, 2018. doi: 10.1080/00031305.2017.1375990. [p187]

D. Eddelbuettel and C. Sanderson. Rcpparmadillo: Accelerating r with high-performance c++ linear
algebra. Computational Statistics and Data Analysis, 71:1054–1063, March 2014. URL http://dx.doi.
org/10.1016/j.csda.2013.02.005. [p187]

Y. Engel, S. Mannor, and R. Meir. The kernel recursive least-squares algorithm. IEEE Transactions on
signal processing, 52(8):2275–2285, 2004. [p174]

T. Hastie and R. Tibshirani. Varying-coefficient models. Journal of the Royal Statistical Society: Series B
(Methodological), 55(4):757–779, 1993. [p183]

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining, inference, and
prediction. Springer Science & Business Media, 2009. [p178]

J. Helske. KFAS: Exponential family state space models in R. Journal of Statistical Software, 78(10):1–39,
2017. doi: 10.18637/jss.v078.i10. [p174]

T. Hong and S. Fan. Probabilistic electric load forecasting: A tutorial review. International Journal of
Forecasting, 32(3):914–938, 2016. [p173]

R. J. Hyndman and Y. Khandakar. Automatic time series forecasting: the forecast package for R. Journal
of Statistical Software, 26(3):1–22, 2008. URL https://www.jstatsoft.org/article/view/v027i03.
[p174]

J. Kleissl. Solar energy forecasting and resource assessment. Academic Press, 2013. [p173]

J. Lemos-Vinasco, P. Bacher, and J. K. Møller. Probabilistic load forecasting considering temporal
correlation: Online models for the prediction of households’ electrical load. Applied Energy, 303:
117594, 2021. [p187]

L. Ljung and T. Söderström. Theory and practice of recursive identification. MIT press, 1983. [p174]

H. Madsen. Time series analysis. CRC Press, 2007. [p174, 177, 180, 182]

H. Madsen and P. Thyregod. Introduction to general and generalized linear models. CRC Press, 2010.
[p180]

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://doi.org/10.1080/00207720110067421
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005
https://www.jstatsoft.org/article/view/v027i03

CONTRIBUTED RESEARCH ARTICLE 189

H. A. Nielsen and H. Madsen. Modelling the heat consumption in district heating systems using a
grey-box approach. Energy and buildings, 38(1):63–71, 2006. [p173, 180]

H. A. Nielsen, H. Madsen, and T. S. Nielsen. Using quantile regression to extend an existing wind
power forecasting system with probabilistic forecasts. Wind Energy: An International Journal for
Progress and Applications in Wind Power Conversion Technology, 9(1-2):95–108, 2006. [p187]

T. S. Nielsen, H. A. Nielsen, and H. Madsen. Prediction of wind power using time-varying coefficient
functions. In Proceedings of the XV IFAC World Congress, 2002. [p173]

G. Petris. An r package for dynamic linear models. Journal of Statistical Software, 36(1):1–16, 2010.
[p174]

A. H. Sayed and T. Kailath. A state-space approach to adaptive rls filtering. IEEE signal processing
magazine, 11(3):18–60, 1994. [p193]

S. L. Shah and W. R. Cluett. Recursive least squares based estimation schemes for self-tuning control.
The Canadian Journal of Chemical Engineering, 69(1):89–96, 1991. [p193]

J. Siebert, J. Groß, and C. Schroth. A systematic review of python packages for time series analysis.
arXiv preprint arXiv:2104.07406, 2021. [p174]

H. Spliid. A fast estimation method for the vector autoregressive moving average model with
exogenous variables. Journal of the American Statistical Association, 78(384):843–849, 1983. [p174]

L. J. Tashman. Out-of-sample tests of forecasting accuracy: an analysis and review. International journal
of forecasting, 16(4):437–450, 2000. [p181]

J. Tastu, P. Pinson, E. Kotwa, H. Madsen, and H. A. Nielsen. Spatio-temporal analysis and modelling
of short-term wind power forecast errors. Wind Energy, 14(1):43–60, 2011. [p187]

S. Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005. [p178]

H. Wickham. testthat: Get started with testing. The R Journal, 3:5–10, 2011. URL https://journal.r-
project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf. [p187]

Y. Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition,
2015. URL https://yihui.org/knitr/. ISBN 978-1498716963. [p187]

Y. Xie, J. Allaire, and G. Grolemund. R Markdown: The Definitive Guide. Chapman and Hall/CRC, Boca
Raton, Florida, 2018. URL https://bookdown.org/yihui/rmarkdown. ISBN 9781138359338. [p187]

C. Yang, J. Qiao, Z. Ahmad, K. Nie, and L. Wang. Online sequential echo state network with sparse rls
algorithm for time series prediction. Neural Networks, 118:32–42, 2019. [p174]

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://yihui.org/knitr/
https://bookdown.org/yihui/rmarkdown

CONTRIBUTED RESEARCH ARTICLE 190

1 Forecast model notation

In this section it is shown how to write onlineforecast models in mathematical notation. Both in a full
description and how to write a shorter summarized description. Note, that when variables are noted
in bold font it indicates that they are multi-variate.

A model can be described in full detail as presented in the following.

The transformation stage

Intercept: µt+k|t = 1 (19)

Periodic: xper,t+k|t = ffs(t; nhar) (20)

Part 1: x1,t+k|t = H(B; a)u1,t+k|t (21)

Part 2: x23,t+k|t = fbs(u2,t+k|t; ndeg)u3,t+k|t (22)

Part 3: x4,t+k|t = u4,t (23)

and the regression stage

Yt+k|t = β0,kµt+k|t + βT
1,kxper,t+k|t + β2,kx1,t+k|t + βT

3,kx23,t+k|t + β4,kx4,t+k|t + εt+k|t (24)

Thus the model inputs are:

• t is simply the time value.

• u1,t+k|t some forecast input (e.g. NWP variable).

• u2,t+k|t some forecast input (e.g. could be a deterministic value, e.g. time of day which is always
know (the |t could be omitted)).

• u3,t+k|t some forecast input (e.g. NWP variable).

• u4,t some value at time t (e.g. an observation variable).

The functions which maps the inputs (u’s) to the regression inputs (x’s) are:

• ffs(t; nhar) is a function generating Fourier series of some implicit period length.

• H(B; a) is a low-pass filter.

• fbs(u2,t+k|t; ndeg) is a function generating basis splines.

Their parameters are the transformation parameters:

• nhar is the number of harmonics.

• a is the low-pass filter coefficient.

• ndeg is the degrees of freedom of the spline function.

which must be set or optimized.

The regression coefficients are

βk =
[

β0,k βT
1,k β2,k βT

3,k β4,k

]T
(25)

=
[

β0,k β1,1,k β1,2,k . . . β1,2nhar,k β2,k β3,1,k β3,2,k . . . β3,ndeg,k β4,k

]T
(26)

If the model is fitted with a recursive scheme, thus the coefficients change over time, it should be
indicated by adding a t to the subscript, e.g. β0,k,t. Furthermore, other parameters can exist, which can
enter an optimization at the transformation stage, e.g. the RLS forgetting factor λ. The parameters
which are optimized in the transformation stage should be presented together.

Specifying the model in all details can be cumbersome to include in some texts, so it makes sense to
simplify the notation. When using a simpler notation, as suggested below, it should be stated, what
is implicit (e.g. the regression stage). Referencing the present text should be sufficient when using a
simpler notation. Naturally, all inputs, functions, etc., should be described in some way.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org

CONTRIBUTED RESEARCH ARTICLE 191

A model can be specified in a simpler way, e.g. the model above in one equation

Yt+k|t = β0,k + βT
1,k ffs,k(t; nhar) + β2,k Hk(B; a)u1,t+k|t + βT

3,k fbs,k(u2,t+k; ndeg)u3,t+k|t

+ β4,k u4,t + εt+k|t (27)

or writing the regression stage implicitly by removing the regression coefficients where it is meaningful

Yt+k|t = µk + ffs,k(t; nhar) + Hk(B; a)u1,t+k|t + fbs,k(u2,t+k|t; ndeg)u3,t+k|t + βku4,t + εt+k|t (28)

It is then implicit that the functions are different from the previous stated functions, since they include
the regression coefficients. Again, if fitted with a recursive scheme, then it can be indicated by adding
a t subscript, e.g. ffs,k,t(t; nhar).

To simplify further the k on the functions can be implicit

Yt+k|t = µ + ffs(t; nhar) + H(B; a)u1,t+k|t + fbs(u2,t+k|t; ndeg)u3,t+k|t + βu4,t + εt+k|t (29)

and similarly the transformation parameters can be implicit

Yt+k|t = µ + ffs(t) + H(B)u1,t+k|t + fbs(u2,t+k|t)u3,t+k|t + βu4,t + εt+k|t (30)

Then the functions and their parameters, and the fitting scheme (i.e. with either LS or RLS for each
horizon) should be described in some other way.

Finally, the most simplified notation would be to even remove the time indexing

Y = µ + ffs(t) + H(B)u1 + fbs(u2)u3 + βu4 + ε (31)

after making clear how all the variables are defined.

2 Regression

In this section the two regression schemes implemented in onlineforecast are described. When fitting
a model, thus estimating the regression coefficients, data from a period t ∈ (1, 2, . . . , n) is used and
passed on to either: the lm_fit() function which implements the Least Squares (LS) scheme, or the
rls_fit() function, which implements the Recursive Least Squares (RLS) scheme.

One important difference between the two implementations is that in the LS the coefficients are
estimated using data from the entire period, thus they are constant during the period and the calculated
predictions are “in-sample”. This is opposed to the RLS, where the coefficients are updated through
the period using only past data at each time t. In that case the coefficients vary over time and the
calculated predictions are “out-of-sample”.

This difference is explained in the following and indicated by subscripting the coefficient vector with t
only for the RLS.

Least squares

The regression coefficients for the k’th horizon is set in the vector

βk =
[

β0,k β1,k . . . βp,k

]T
(32)

Note, that t is not included in the subscript.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org

CONTRIBUTED RESEARCH ARTICLE 192

The input data for the k horizon is the design matrix

Xk,t =

x0,1+k|1 x1,1+k|1 . . . xp,1+k|1

x0,2+k|2 x1,2+k|2 . . . xp,2+k|2
...

...
...

x0,n−1|n−1−k x1,n−1|n−1−k . . . xp,n−1|n−1−k

x0,n|n−k x1,n|n−k . . . xp,n|n−k

(33)

The output observations are in the vector

yk,n = [y1+k y2+k . . . yn−1 yn]
T (34)

The LS estimates of the coefficients are

β̂k = (Xk,nXk,n)
−1Xk,nyk,n (35)

The predictions are “in-sample” and calculated by

ŷk,n = Xk,n β̂k (36)

and returned when fitting a model with lm_fit().

The estimated coefficients may now be used for “out-of-sample” prediction (for tnew ≥ n), with the
input

xtnew+k|tnew
=

[
x0,tnew+k|tnew

x1,tnew+k|tnew
. . . xp,tnew+k|tnew

]T
(37)

by

ŷtnew+k|tnew
= xtnew+k|tnew

β̂k (38)

This can be done by providing new data to the lm_predict() function.

Recursive least squares

In the RLS scheme the coefficients are recursively updated through the period. Time t steps from 1
to n and in each step the “newly” obtained data at t is used for calculating updated coefficients. The
coefficient vector has the same structure as for LS

βk,t =
[

β0,k,t β1,k,t . . . βp,k,t

]T
(39)

The only difference is that we now subscript with t because it varies over time.

Only the most recent input data at t (the row at t from the LS design matrix in Equation (33)) is used
in each update

xk,t =
[

x0,t|t−k x1,t|t−k . . . xp,t|t−k

]T
(40)

and similarly the most recent output observation yt. At each time t the coefficients are updated by

Rk,t = λRk,t−1 + xk,tx
T
k,t (41)

β̂k,t = β̂k,t−1 + R−1
k,t xk,t(yt − xT

k,t β̂k,t−1) (42)

Hence, when applying RLS for data from the period t ∈ (1, 2, . . . , n) the RLS provides a new value of
the coefficients for each time t (opposed to LS).

The predictions are calculated recursively as well by using the updated coefficients at each time t.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 193

Given the inputs

xt+k|t =
[

x0,t+k|t x1,t+k|t . . . xp,t+k|t
]T

(43)

the prediction is

ŷt+k|t = xt+k|t β̂k,t (44)

Only past data has been used when calculating the predictions through the period, hence they are
“out-of-sample” predictions (these predictions are returned by rls_fit()).

The initial value of R is set simply set to a zero matrix with diagonal 1/10000 and β set to a zero vector.

An alternative updating scheme, which is actually the implemented scheme (gives the same results as
the scheme above), is the Kalman gain scheme (Sayed and Kailath, 1994), where matrix inversion is
avoided

Kk,t =
Pk,t−1xk,t

λ + xT
k,tPk,t−1xk,t

(45)

β̂k,t = β̂k,t−1 + Kk,t(yt − xT
k,t β̂k,t−1) (46)

Pk,t =
1
λ

(
Pk,t−1 − Kk,tx

T
k,tPk,t−1

)
(47)

This actually opens up the possibilities for self-tuned variable forgetting (Shah and Cluett, 1991).

Peder Bacher
Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of
Denmark
Asmussens Allé, Building 303B
2800 Kgs. Lyngby, Denmark
E-mail: pbac@dtu.dk
URL: https://www.compute.dtu.dk/english/research/research-sections/dynsys/

Hjörleifur G. Bergsteinsson
Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of
Denmark
Asmussens Allé, Building 303B
2800 Kgs. Lyngby, Denmark
E-mail: hgbe@dtu.dk
URL: https://www.compute.dtu.dk/english/research/research-sections/dynsys/

Linde Frölke
Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of
Denmark
Asmussens Allé, Building 303B
2800 Kgs. Lyngby, Denmark
E-mail: hgbe@dtu.dk
URL: https://www.compute.dtu.dk/english/research/research-sections/dynsys/

Mikkel L. Sørensen
Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of
Denmark
Asmussens Allé, Building 303B
2800 Kgs. Lyngby, Denmark
E-mail: mliso@dtu.dk
URL: https://www.compute.dtu.dk/english/research/research-sections/dynsys/

Julian Lemos-Vinasco
Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of
Denmark
Asmussens Allé, Building 303B
2800 Kgs. Lyngby, Denmark

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

mailto:pbac@dtu.dk
https://www.compute.dtu.dk/english/research/research-sections/dynsys/
mailto:hgbe@dtu.dk
https://www.compute.dtu.dk/english/research/research-sections/dynsys/
mailto:hgbe@dtu.dk
https://www.compute.dtu.dk/english/research/research-sections/dynsys/
mailto:mliso@dtu.dk
https://www.compute.dtu.dk/english/research/research-sections/dynsys/

CONTRIBUTED RESEARCH ARTICLE 194

E-mail: jlvi@dtu.dk
URL: https://www.compute.dtu.dk/english/research/research-sections/dynsys/

Jon Liisberg
Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of
Denmark
Asmussens Allé, Building 303B
2800 Kgs. Lyngby, Denmark
E-mail: jlvi@dtu.dk
URL: https://www.compute.dtu.dk/english/research/research-sections/dynsys/

Jan Kloppenborg Møller
Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of
Denmark
Asmussens Allé, Building 303B
2800 Kgs. Lyngby, Denmark
E-mail: jkmo@dtu.dk
URL: https://www.compute.dtu.dk/english/research/research-sections/dynsys/

Henrik Aalborg Nielsen
ENFOR A/S
Røjelskær 11, 3.
2840 Holte, Denmark
E-mail: han@enfor.dk
URL: https://www.enfor.dk

Henrik Madsen
Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of
Denmark
Asmussens Allé, Building 303B
2800 Kgs. Lyngby, Denmark
E-mail: hmad@dtu.dk
URL: https://www.compute.dtu.dk/english/research/research-sections/dynsys/

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

mailto:jlvi@dtu.dk
https://www.compute.dtu.dk/english/research/research-sections/dynsys/
mailto:jlvi@dtu.dk
https://www.compute.dtu.dk/english/research/research-sections/dynsys/
mailto:jkmo@dtu.dk
https://www.compute.dtu.dk/english/research/research-sections/dynsys/
mailto:han@enfor.dk
https://www.enfor.dk
mailto:hmad@dtu.dk
https://www.compute.dtu.dk/english/research/research-sections/dynsys/

	Onlineforecast: An R Package for Adaptive and Recursive Forecasting
	Introduction
	Time series modelling and forecasting in R
	Functionality of onlineforecast
	Vignettes
	Paper structure

	Notation and forecast matrices
	Forecast matrix

	Two-stage modelling procedure
	Transformations

	Model selection and validation
	Model selection
	Model validation

	Example with R code
	Setup of data
	Defining a model
	Model fitting and offline parameter tuning
	Evaluation

	Discussion and conclusion
	Extending functionality
	Summary and conclusion

	Forecast model notation
	Regression
	Least squares
	Recursive least squares

