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Factorial Designs
by Frank Konietschke, Markus Pauly, Arne C. Bathke, Sarah Friedrich and Edgar Brunner

Abstract Many experiments can be modeled by a factorial design which allows statistical analysis
of main factors and their interactions. A plethora of parametric inference procedures have been
developed, for instance based on normality and additivity of the effects. However, often, it is not
reasonable to assume a parametric model, or even normality, and effects may not be expressed
well in terms of location shifts. In these situations, the use of a fully nonparametric model may be
advisable. Nevertheless, until very recently, the straightforward application of nonparametric methods
in complex designs has been hampered by the lack of a comprehensive R package. This gap has now
been closed by the novel R-package rankFD that implements current state of the art nonparametric
ranking methods for the analysis of factorial designs. In this paper, we describe its use, along with
detailed interpretations of the results.

1 Introduction

Nonparametric methods and in particular rank-based methods are commonly used for the analysis
of experiments when it cannot be assumed that the observations derive from a normal population
distribution. In online discussion fora regarding the application of statistical methods one can often
find questions such as: “Does anybody know whether there is a nonparametric analog of ANOVA?”.
The common response is: “You may use rank methods” which usually prompts the next question:
“Does anybody know a software package performing the computations for a nonparametric ANOVA /
rank ANOVA?”. The answers to this question vary: some list more or less popular statistical software
packages, others give the heuristic advice of simply replacing the observations by their ranks and
then performing regular ANOVA on the ranks. This suggests that there is a lack of clear advice
on not just how to implement rank-based methods, but also how to interpret and understand the
theoretical background. As such, the goal of the present article is to both explain when and how to use
the procedures implemented in rankFD, and also provide the reader with enough of the theoretical
background so that they can interpret the results correctly.

In order to provide a more precise answer regarding the nonparametric analog of ANOVA, one
has to discuss the quantities by which a potential effect in a trial can be intuitively described. Such
effects may be the differences or ratios of the means of the observations or of some other parameter or
estimand defined in a semi-parametric model. To compare the differences of means in semi-parametric
models where the normal distribution cannot be assumed, the so-called studentized permutation
procedures (Janssen, 1997; Pauly et al., 2015; Smaga, 2015) are appropriate. These procedures provide
quite accurate results even in case of small to moderate sample sizes, depending on the type of the data
and the underlying population distribution. However, there are several situations where differences
or linear combinations of means may not be appropriate to describe intuitive treatment effects – for
example if the data have floor and ceiling effects or if the distributions have completely different
shapes. In case of ordinal data, means are not even defined, and using a numerical encoding of the
ordered categories as seemingly metric data may lead to incorrect conclusions (Kahler et al., 2008).
In such cases, treatment effects can reasonably be described by the so-called relative effect which was
introduced by Mann and Whitney (1947) and Putter (1955). For independent observations X ∼ F1
and Y ∼ F2, the relative effect is defined as θ = P(X < Y) + 1

2 P(X = Y), which can be equivalently
written as θ =

∫
F1dF2. It may be noted that this effect has been known under many different names

in the literature, for example Wilcoxon functional (Janssen, 1999a), Mann-Whitney type effect (Dobler
et al., 2019), stochastic superiority (D’Agostino et al., 2006), or probabilistic index (Acion et al., 2006;
Thas et al., 2012). We prefer the expression “relative effect” or “nonparametric relative treatment effect”
with reference to Birnbaum and Klose (1957).

The relative effect θ can be estimated by replacing the distribution functions F1 and F2 with their
empirical counterparts, F̂1 and F̂2, the so-called empirical distribution functions. This leads to the

estimator θ̂ =
∫

F̂1dF̂2 = 1
n1

(
R2· − n2+1

2

)
, where R2· =

1
n2

∑n2
k=1 R2k denotes the mean of the overall

ranks R2k of the observations X21, . . . , X2n2 among all N = n1 + n2 observations in the experiment. It
is well-known that θ̂ is an unbiased and L2-consistent estimator of the relative effect θ and thus, the
mean of the ranks provides the basis for estimating θ and for statistical inference regarding θ.
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For two random variables X and Y, a relative effect θ > 1/2 indicates a tendency that X takes
smaller values than Y, while θ < 1/2 means that X tends to have larger values than Y. No tendency in
either direction corresponds to a relative effect of θ = 1

2 . Crucially, the presence of a relative effect does
not translate to a difference in means, and likewise, the absence of a relative effect does not suggest
that the means are the same. In other words, if X has a mean µx and Y has a mean µy, then we may
have θ ̸= 1/2 when µx = µy, or θ = 1

2 when µx ̸= µy. Analogously, for the medians µ̃x and µ̃y, it
is possible that θ ̸= 1

2 and µ̃x = µ̃y, or that θ = 1
2 and µ̃x ̸= µ̃y. Thus, from a significant result of a

rank test it cannot be concluded that µx ̸= µy or µ̃x ̸= µ̃y. In this sense, rank tests based on θ̂ (e.g.,
the Wilcoxon-Mann-Whitney test, the Fligner-Policello test, or the Brunner-Munzel test) are not tests
of the equality of means or medians, and therefore not simply nonparametric analogs of the t-test
since the hypotheses and consistency regions of these tests are not identical. Note that the consistency
region contains all distribution functions for which the power of the test tends to 1 as sample sizes
tend to ∞. In most parametric models, the set of distribution functions contained in the hypothesis
and in the consistency region are complementary. In some nonparametric models, however this is
in general not the case which may lead to difficulties interpreting “significant” results obtained by
rank-based tests (Brunner et al., 2020). Some details will be explained in Section 2.2. Similar remarks
apply to rank tests for multiple samples or even in factorial designs. This is ultimately the reason why
the heuristic approach of replacing the observations by their ranks may lead to non-valid procedures
in general (Conover and Iman, 1981). Especially in factorial designs, linear combinations of means
may have different meanings than linear combinations of relative effects. With this in mind, users of
the R-package for rank tests described in this paper should know that they might get different results
than obtained by using a common ANOVA package.

The second question often read in discussion fora —’what software package should I use’ —can
be answered more easily. Most statistical software packages provide options for the classical nonpara-
metric rank-based methods, however, these can still be quite limited and more contemporary and/or
appropriate methods may not be available. For example, most statistical software packages offer the
Wilcoxon-Mann-Whitney and the Kruskal-Wallis test for independent observations, as well as some
particular procedures from the literature. However, more modern nonparametric rank-based methods
developed during the last decades (Ruymgaart, 1980; Akritas and Arnold, 1994; Akritas et al., 1997;
Brunner and Puri, 1996; Konietschke et al., 2012; Brunner et al., 2017, 2019) are not mplemented in
most packages. Moreover, in software tools following a more classical paradigm, ties (i.e., two or more
different observations with exactly the same value, as frequently is the case in ordinal or count data)
are often considered in form of “corrections” that are added to the case of no ties, instead of considering
the situation of no ties as a special case of a general model allowing for arbitrary ties (only the trivial
case of one-point distributions should generally be excluded). Also, quick algorithms (Streitberg
and Röhmel, 1986; Mehta et al., 1988) for the computation of exact p values for permutation-based
procedures are rarely used, and general methods for purely nonparametric effects in factorial designs
are not provided in standard implementations. However, exactly such procedures are often needed in
applications. Researchers are then tempted to use heuristic procedures as described above, although
the conclusions drawn from them might be misleading.

Finally, confidence intervals for purely nonparametric effects, such as the relative effect θ, are
not provided in standard software, in spite of the fact that appropriate confidence intervals for the
effect measures being used in the analysis have been required by the pertinent guidelines for decades.
Instead, some software packages offer confidence intervals for location shift effects which in general
may be neither compatible to the decisions of the rank tests nor justified regarding the types of
alternatives or the scales of the measurements in the experiment. Recall that the relative effect is not
a measure of mean or median differences, and therefore confidence intervals for mean or median
shifts are not congruent with hypothesis tests based on the relative treatment effect, such as the
Wilcoxon-Mann-Whitney and the Kruskal-Wallis tests, among others.

The R package rankFD intends to close these gaps. It includes the classical rank tests for continuous
observations as special cases, allows for situations with arbitrary ties, and extends these procedures
to factorial designs. The hypotheses tested in factorial designs are expressed as linear hypotheses in
terms of the distribution functions as introduced in Akritas et al. (1997) or as linear combinations of
the relative effects as discussed in Brunner et al. (2017). Ranking procedures for testing equalities of
distribution functions in factorial longitudinal data (repeated measures) and multivariate data are
implemented in R packages nparLD (Noguchi et al., 2012), npmv and nparMD (Burchett et al., 2017;
Kiefel et al., 2022), respectively. Semiparametric methods for testing null hypotheses in general factorial
designs in means are implemented in the R packages GFD (Friedrich et al., 2017) and MANOVA.RM
(Friedrich et al., 2019b).

In any case, it must be clearly noted that rank methods, especially in factorial designs, answer
different questions than those considered by the ANOVA in common factorial designs. The relations
between linear combinations of the expectations of the observations and their respective counterparts
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expressed in terms of rank or pseudo-rank means depend on the underlying distribution functions.
Questions investigated by parametric factorial designs are related to the expected values of the
observations, while questions investigated by using rank- and pseudo-rank-based methods are related
to relative effects. The latter compare the distributions in the different treatment groups to an average
distribution. Thus, it should not be a surprise to obtain different answers if different questions are
posed. This must be kept in mind when responding to the seemingly simple question: “Does anybody
know whether there is a nonparametric analog of ANOVA?”.

The paper is organized as follows. Section 2.2 discusses the statistical models and explains the
concepts and methodology underlying the inferential procedures provided by the package rankFD
while the corresponding test statistics are described in Section 2.3. Section 2.4 lists and explains
the different functions used in this package, as well as examples demonstrating the usage of these
functions on real-life data. The paper closes with a discussion of the meaning and interpretation of
these methods and their relations to some procedures implemented in other R packages

2 Statistical models, effects, and hypotheses

First we consider the simple experimental design involving only one factor A with a levels involving
ni independent observations in each level i. These are modeled as

Xik ∼ Fi, i = 1, . . . , a; k = 1, . . . , ni. (1)

Throughout, we assume that the observations Xik are measured at least on an ordinal scale,
whereas Fi denotes an arbitrary distribution (or its cdf), with the exception of one-point distributions.
In total, there are N = ∑a

i=1 ni observations in the trial. This statistical model does not involve any
explicit parameters or parametrization that could be used to describe appropriate treatment effects. To
describe effects in such a general model, we therefore define weighted and unweighted relative effects

θi =
∫

HNdFi = P(Y < Xik) +
1
2

P(Y = Xik), i = 1, . . . , a, (2)

ψi =
∫

GdFi = P(Z < Xik) +
1
2

P(Z = Xik), i = 1, . . . , a. (3)

In this general definition of a relative treatment effect, each distribution function Fi is compared
either to a weighted average HN = 1

N ∑a
i=1 niFi or an unweighted average G = 1

a ∑a
i=1 Fi of the

distribution functions. This can be regarded as comparing each observation Xik ∼ Fi with either
an artificial independent observation Y ∼ HN of the weighted mean distribution or Z ∼ G of the
unweighted mean distribution. The former leads to the weighted relative effect θi, while the latter
leads to the unweighted relative effect ψi. In case of equal sample sizes, both effects coincide.

The unweighted relative effects ψi can be interpreted as follows: If ψi <
1
2 , then the observations

in group i tend to be smaller than those coming from the average distribution G. If ψi = ψj, then in
relation to the average distribution G, the observations coming from distributions Fi and Fj have the
exact same tendency towards smaller or larger observations. Thus, it is reasonable to consider the case
of ψi = ψj as no (relative) treatment effect between levels i and j. The relations and interpretations for
the weighted effects θi and θj follow analogously. In the following, we collect all distribution functions
and relative effects in the vectors F = (F1, . . . , Fa)⊤ and ψ = (ψ1, . . . , ψa)⊤ or θ = (θ1, . . . , θa)⊤,
respectively.

Estimators of the weighted relative effects θi defined in (2) can be obtained using the ranks Rik of

the observations Xik. In fact, θ̂i =
1
N

(
Ri· − 1

2

)
is an unbiased and consistent estimator of θi, where

Ri· =
1
ni

∑ni
k=1 Rik, and Rik denotes the rank of Xik among all N = ∑d

i=1 ni observations. In case of ties,
mid-ranks must be used. Formally, the mid-rank Rik is obtained from the empirical weighted average
distribution function ĤN(x) = 1

N ∑d
i=1 ni F̂i(x) by Rik = 1

2 + NĤ(Xik).

In the same way, the unweighted relative effects ψi defined in (3) are estimated using the so-called
pseudo-ranks Rψ

ik = 1
2 + NĜ(Xik), where Ĝ(x) denotes the empirical unweighted average distribution

function. An unbiased and consistent estimator ψ̂i of ψi is given by

ψ̂i =
1
N

(
Rψ

i· −
1
2

)
, (4)

where Rψ
i· =

1
ni

∑ni
k=1 Rψ

ik. For details we refer to Brunner et al. (2019), Section 2.3.2 or to Happ et al.

(2020), Section 2. Basically, the estimators θ̂ = (θ̂1, . . . , θ̂a)⊤ and ψ̂ = (ψ̂1, . . . , ψ̂a)⊤ are vectors whose
components are linear functions of the rank means Ri· or the pseudo-rank means Rψ

i· , respectively.
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Thus, rank tests are related to the weighted relative effects θi in (2), while pseudo-rank tests are related
to the unweighted relative effects ψi in (3).

Hypotheses formulated in terms of distribution functions

Classical rank-based methods for a one-way layout, (e.g., Kruskal-Wallis test, Kruskal (1952); Kruskal
and Wallis (1952); or Hettmansperger-Norton test, Hettmansperger and Norton (1987)) can be used to
test null hypotheses formulated in terms of the distribution functions, such as

HF
0 : F1 = . . . = Fa, (5)

where obviously, equal distribution functions imply equal variances if HF
0 in (5) is true (if second

moments exist).

Two- and higher way layouts are covered within model (1) by sub-indexing the index i, similar to
the theory of linear models. For instance, a two-way design involving a factor A with a levels and a
factor B with b levels, respectively, can be written as

Xijk ∼ Fij, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , nij, (6)

and the distribution functions and relative effects are then collected in the structured vectors F =
(F11, . . . , Fab)

⊤ and ψ = (ψ11, . . . , ψab)
⊤ or θ = (θ11, . . . , θab)

⊤, respectively.

Consequently, Akritas and Arnold (1994), Brunner and Puri (1996), and Akritas et al. (1997)
suggested to formulate null hypotheses in two- and higher-way layouts in a similar way as in linear
models, with the expected values being replaced by the corresponding distribution functions. In a
two-way layout, for example, hypotheses of no (distribution-)main effects A or B and no (distribution-
)interaction (AB) are written as

HF
0 (A) : F1· = · · · = Fa·, Fi· =

1
b

b

∑
j=1

Fij, i = 1, . . . , a,

HF
0 (B) : F·1 = · · · = F·b, F·j =

1
a

a

∑
i=1

Fij, j = 1, . . . , b,

HF
0 (AB) : Fij = Fi· + F·j − F··, F·· =

1
ab

a

∑
r=1

b

∑
s=1

Frs, i = 1, . . . , a; j = 1, . . . , b . (7)

In order to extend the hypotheses in (5) or (7) to higher-way layouts, general hypotheses are written
using matrix notation as

HF
0 (C) : CF = 0, (8)

where C denotes an appropriate hypothesis matrix, in the same way as in linear models, only replacing
means with the respective distribution functions. Note that 0 is here understood to be a vector of
functions which are identically 0. Testing these hypotheses HF

0 of no distribution effects can be
performed using the argument hypothesis="H0F" in the rankFD function. More details are provided
in Section 2.4.

Hypotheses formulated in terms of relative effects

In general, researchers may not be interested in detecting the somewhat abstract alternative HF
1 : CF ̸=

0 that HF
0 in (8) is not true, but instead they want to detect whether a tendency to smaller or larger

values exists between treatment levels. In a one-way layout, for example, the latter corresponds to the
testing problem

HP
0 : ψ1 = . . . = ψa, (9)

formulated in terms of the relative effects ψi. Here, the symbol HP
0 refers to the probabilities ψi in (3).

Remark: Of course, one can also state the hypothesis

HP
0 : θ1 = . . . = θa, (10)

but it must be kept in mind that the hypothesis (10) depends on the relative sample sizes ni/N in
groups i = 1, . . . , a. Thus, the rejection region of such a test is not invariant, but it changes with the
ratios ni/N of the sample sizes. In extreme cases, this might lead to surprising results when compared
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to the results obtained in designs with equal sample sizes. For details we refer to Brunner et al. (2020)
and Brunner et al. (2019). The unweighted mean distribution is, however, one reference distribution of
choice that helps in reducing the issues obtained with the weighted version. Whether the unweighted
version is the “best” one, can not be answered and guaranteed, in general (Zimmermann et al., 2022).

In a two-way layout, for example, the hypotheses of no main effects or no interactions in terms of
the relative effects ψij =

∫
GdFij are written as

HP
0 (A) : ψ1· = · · · = ψa·, i = 1, . . . , a,

HP
0 (B) : ψ·1 = · · · = ψ·b, j = 1, . . . , b,

HP
0 (AB) : ψij = ψi· + ψ·j − ψ··, i = 1, . . . , a; j = 1, . . . , b, (11)

where ψi· =
1
b ∑b

j=1 ψij, ψ·j =
1
a ∑a

i=1 ψij, and ψ·· =
1
2 . The matrix notation of these hypotheses is,

analogously to (7) and (8),

HP
0 (C) : Cψ = 0, (12)

where ψ denotes the vector of unweighted relative effects. For a detailed explanation of using matrix
notation in factorial designs we refer to, e.g., Brunner et al. (2017) or Brunner et al. (2019), Sect. 5.2 and
Sect. 8.7.1.

In a similar way as in the one-way layout, the hypotheses involving the weighted relative effects
θij in the two-way layout can be stated by replacing ψij, ψi·, and ψ·j in (11) with θij, θi·, and θ·j,
respectively. It may be noted, however, that – unlike in the one-way layout – in two- or higher-way
layouts surprising results may already be obtained in case of moderate unequal samples sizes in
simple shift-effect models. These basic models cannot be considered “extreme cases”. This means that
unequal sample sizes in two- or higher-way layouts constitute a serious challenge for rank tests while
this is not the case for pseudo-rank tests. For more details we refer to Brunner et al. (2019), Chapter 5
and Brunner et al. (2020), Section 4.

Note that HP
0 in (12) neither implies variance homogeneity nor equal shapes of the distributions.

In the case of two samples, this situation is also known as the nonparametric Behrens-Fisher problem
(Fligner and Policello, 1981; Brunner and Munzel, 2000; Konietschke et al., 2012). In general, it is easier
to estimate the covariance matrix of the empirical relative effects under the stronger null hypothesis
HF

0 than under HP
0 . Therefore, statements about the sampling distribution of test statistics based on

ranks have traditionally been formulated under HF
0 , even though it is well-known that those test

statistics can only detect alternatives of the form HP
1 : Cθ ̸= 0 or HP

1 : Cψ ̸= 0.

Remark: The rankFD package implements the current state-of-the-art methods for testing HP
0

(using ranks as well as pseudo-ranks) in general factorial designs (Konietschke et al., 2012; Brunner
et al., 2017), and it allows for the computation of a wide range of nonparametric test statistics. It
explicitly also includes the classical tests based on weighted relative effects θi (using ranks) and on
unweighted relative effects ψi (using pseudo-ranks). Both types of ranking procedures are included in
rankFD. A reason for including the former tests is that it allows users to reproduce findings that have
been obtained by other researchers using rank tests. Also, it offers the possibility to directly compare
procedures which may facilitate a transparent discussion in that regard.

Multiple comparisons

So far, both null hypotheses HF
0 and HP

0 have been written as global null hypotheses. If they get
rejected, one may only conclude that some factor level differs from the others (at corresponding
significance level α). However, it still remains unknown specifically which one differs. Therefore,
testing global null hypotheses often does not answer the particular research question of interest to
scientists applying statistical methods, namely the specific localization of those treatment groups that
are “driving” the significant results. In order to accomplish this goal, testing linear contrasts using a
q × a contrast matrix

C =


c⊤1
...

c⊤q

 =


c11 c12 · · · c1a
c21 c22 · · · c2a
...

...
...

...
cq1 cq2 · · · cqa

 ;
a

∑
i=1

cℓi = 0, ℓ = 1, . . . , q,

in terms of multiple null hypotheses H(ℓ)
0 : c⊤ℓ ψ = 0 (or H(ℓ)

0 : c⊤ℓ F = 0) is the key. Here, each row
vector c⊤ℓ describes one of q different contrasts reflecting the researcher’s particular question. For
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instance, in a one-way layout with a = 4 levels, many-to-one (Dunnett-type) (Dunnett, 1955) or all
pairwise (Tukey-type) comparisons are performed with the contrast matrices

C =

 1 −1 0 0
1 0 −1 0
1 0 0 −1

 or C =


1 −1 0 0
1 0 −1 0
1 0 0 1
0 1 −1 0
0 1 0 −1
0 0 1 −1


Note: left shows many-to-one (Dunnett-type); right shows all-pairwise (Tukey-type) contrast matrix

respectively. Which contrast to use depends on the respective research question of interest. Bretz
et al. (2001) provide a broad overview of different contrast matrices, which are numerically available
within the contrMat function of the multcomp package in R (Hothorn et al., 2008). In general factorial
designs involving more than one factor, multiple comparisons in terms of means of the levels of the
main effects are a meaningful and valuable asset of a fundamental data analysis. For instance, in a
2 × 4 two-way design, many-to-one comparisons to the control group (j = 1 of factor B) are expressed
as

HP(1)
0 : ψ·1 = ψ·2

HP(2)
0 : ψ·1 = ψ·3 C =


ψ11 ψ12 ψ13 ψ14 ψ21 ψ22 ψ23 ψ24

1/2 −1/2 0 0 1/2 −1/2 0 0
1/2 0 −1/2 0 1/2 0 −1/2 0
1/2 0 0 −1/2 1/2 0 0 −1/2

.

HP(3)
0 : ψ·1 = ψ·4

The rankFD function implements a broad list of pre-defined contrasts as well as flexible options
allowing for user-defined contrast matrices for making multiple comparisons of the levels of the main
or interaction effects. We provide computational details in Section 2.4.

Confidence intervals

To comply with the basic principle “no test without a confidence interval”, the rankFD package also
provides confidence intervals for the nonparametric quantities upon which the test is based. Two-sided
(1 − α)-confidence intervals for ψi and θ = ψ2 − ψ1 are obtained from the asymptotic distribution of
the estimators ψ̂i in (4) by

CI =
[

ψ̂i ∓ z1−α/2
ŝi√
N

]
, (13)

where z1−α/2 denotes the (1 − α/2) quantile of the standard normal distribution. Here, the variance
estimator ŝ2

i is a quite involved linear combination of different quadratic forms obtained from different
rankings of the observations Xik. For details we refer to Brunner et al. (2019), Sect. 4.6.1.

The confidence intervals in (13) may suffer from poor coverage probability if ψi is close to the
limits 0 or 1 and, moreover, the limits of the confidence interval may exceed the boundaries 0 or 1. In
this case, so-called range preserving intervals can be obtained by using the logit-transformation. The
limits thus obtained are then “back-transformed” using the expit-transformation. For details we refer
to Brunner et al. (2019), Sect. 4.6.2.

In rankFD, these confidence intervals are computed by the function rankFD() using the options
CI.method = ”normal” for the limits in (13) or CI.method = ”logit” for the range preserving confidence
intervals obtained by the logit-transformation. By default, rankFD() provides confidence intervals
for both, ψi and θi. Regarding the confidence intervals for θi the same remarks as in Sect. 2.2.2 apply.
Furthermore, since the Wilcoxon-Mann-Whitney test (and relative methods) use variance estimators
that are only consistent under the respective null hypothesis HF

0 formulated in terms of the distribution
functions, the tests cannot be inverted into confidence intervals for ψi.

3 Test statistics

The rankFD package implements a broad class of different test statistics for testing the general null
hypotheses HF

0 : CF = 0, HP
0 : Cψ = 0, and HP

0 : Cθ = 0, respectively. They include global test
procedures (quadratic forms) and multiple contrast tests (linear statistics) for the analysis of data
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from general factorial designs, as well as methods specifically designed for the evaluation of two
independent samples including the classical rank tests.

In the following, we will briefly explain these procedures. They are all based on the (asymptotic)
distribution of standardized vectors of point estimators θ̂ = (θ̂1, . . . , θ̂d)

⊤ or ψ̂ = (ψ̂1, . . . , ψ̂d)
⊤ of the

weighted or unweighted relative effects as defined in (2) and (3), respectively. Since both of them denote
the probabilities (appropriately weighted) of data being smaller in group i than in the joint sample,
estimators can be constructed using the (usual) ranks Rik or the so-called pseudo-ranks Rψ

ik (Happ et al.,
2020). In rankFD these point estimators are obtained by

effect=weighted (scaled) mean of ranks Rik

effect=unweighted (scaled) mean of pseudo-ranks Rψ
ik

For more details, we refer to (Brunner et al., 2019, Section 2.3.2). Besides the vectors of point
estimators θ̂ or ψ̂, their (estimated) covariance matrices are needed for the computation of test
statistics. In the general nonparametric setup considered here, we can take advantage of the type of
hypothesis we aim to test. Assuming HF

0 to hold, then the covariance matrices of
√

N(θ̂− θ) and of√
N(ψ̂ − ψ) have (much) simpler structures than under HP

0 (Konietschke et al., 2012). This property
carries over to its estimation and therefore the estimators used in the statistics for testing HF

0 or HP
0

are different. However, for the ease of notation, we denote with V̂N their estimators in a general way
having both versions in mind. In the following, we therefore provide the statistics using ψ̂ (and in turn
the pseudo-ranks) for the ease of convenience only. For more details we refer to Brunner et al. (2020).

Global test procedures

In order to test the null hypothesis HF
0 as given in (8), the rankFD package implements the Wald-type

statistic

WN(C) = Nψ̂⊤C⊤
[
CV̂NC⊤

]+
Cψ̂. (14)

Here, the matrix [A]+ denotes the Moore-Penrose inverse of the matrix A. Under the hypothesis
HF

0 , the statistic WN(C) follows, for large sample sizes, a χ2
w-distribution with w = rank(CV̂NC⊤)

degrees of freedom. Since the statistic involves the estimators and the known contrast matrix only,
its numerical computation is feasible. However, very large sample sizes (ni ≥ 50; depending on the
actual design) are necessary for an accurate type-1 error rate control. Therefore, Akritas et al. (1997)
and Brunner et al. (2017) propose the so-called ANOVA-type statistic

AN(C) = N · ψ̂⊤Aψ̂

trace(AV̂N)
, A = C⊤

[
CC⊤

]+
C, (15)

and approximate its distribution by an F-distribution with f̂1 and f̂2 degrees of freedom (obtained
via Box-type approximation as derived by Brunner et al. (1997)). In comparison with the Wald-type
statistic WN(C) in (14), the ANOVA-type statistic AN(C) controls the type-I error much better in small
sample sizes; ni ≥ 15 depending on the design and hypothesis of interest.

Moreover, the approximation of the distribution of AN(C) is also valid under the more general
hypothesis HP

0 . We note that, basically, both statistics can also be computed using the ranks Rik instead
of the pseudo-ranks Rψ

ik. But the general remarks in Sections 2.2.2 regarding the usual ranks Rik must
be carefully considered. We also note that the asymptotic distribution of the Wald-type statistic WN(C)
under the more general hypothesis HP

0 is not the χ2
w-distribution with w = rank(CV̂NC⊤) in general.

This would require an additional assumption on the sequence of the empirical covariance matrices
V̂N which cannot be verified in practice.

The preceeding comments and discussion might appear somewhat difficult to understand but
they are necessary to explain the different options in the printout of rankFD. At this point, it becomes
evident that the question “Does anybody know whether there is a nonparametric analog of ANOVA?”
cannot be answered by some simple statements and that the heuristic technique replacing observations
by their ranks and then performing an ’ANOVA on the ranks’ may lead to non valid procedures and
incorrect conclusions in general.
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Multiple contrast test procedures

Both the Wald-type and ANOVA-type statistics are global tests, i.e. if the respective hypothesis HF
0 or

HP
0 is rejected, the only available information is that any of the factor levels (or their combinations)

differ at pre-assigned significance level α. The identification of the factor levels which are responsible
for the difference is, however, often of major interest and a key research question. Local test decisions in
terms of adjusted p-values and simultaneous confidence intervals are of primary importance and key
elements of a complete data evaluation. These can be exposed using Multiple Contrast Test Procedures
(MCTP) (Bretz et al., 2001; Hothorn et al., 2008; Konietschke et al., 2012), which are also known as
max-t-test type procedures in parametric models (Konietschke et al., 2021). In order to test the local

null hypothesis H(ℓ)
0 : c⊤ℓ ψ = 0, we use the test statistic

Tℓ =
√

N
c⊤ℓ ψ̂

c⊤ℓ V̂Ncℓ
, (16)

where the contrast vector cℓ reflects the researcher’s particular question. Typical contrast vectors are
discussed by Bretz et al. (2001).

Since the statistics Tℓ and Tℓ′ are not necessarily independent when ℓ ̸= ℓ′, we collect them in the
vector T = (T1, . . . , Tq)⊤, which follows, asymptotically, as N → ∞, a multivariate normal distribution
with expectation 0 and correlation matrix R. Since R is unknown, we replace it with the estimator R̂
obtained from standardizing C⊤V̂NC, see Konietschke et al. (2012). For large sample sizes, we reject

the individual null hypothesis H(ℓ)
0 at significance level α, if |Tℓ| ≥ z1−α(R̂), where z1−α(R̂) denotes

the two-sided (1 − α)-equicoordinate quantile from the N(0, R̂) distribution. For details we refer to
Konietschke et al. (2012); Umlauft et al. (2019). Compatible (1 − α)× 100% simultaneous confidence

intervals are obtained by CIℓ =
[

c⊤ℓ ψ̂ ∓ z1−α(R̂)√
N

√
c⊤ℓ V̂Ncℓ

]
. Finally, the global null hypothesis HP

0 (or

HF
0 ) is rejected, if

T0 = max{|T1|, . . . , |Tq|} ≥ z1−α(R̂). (17)

For small sample sizes, Konietschke et al. (2012) suggest to use t quantiles rather than normal and
the Fisher-transformation for the computation of range-preserving confidence intervals. The rankFD
function implements all of the different procedures.

4 Software and examples

In the following, we will analyze different data sets to illustrate the application of the implemented
functions in rankFD. They differ in their complexity and cover two- and several samples as well as a
factorial design, respectively. We note that the wrapper function rankFD() realizes the actual statistical
design from the given formula argument. However, few of the statistical methods are available for
two independent samples only and we therefore implemented the function rank.two.samples for
their exclusive analysis. First, we will explain the syntax of the two functions and then illustrate their
application using real data sets.

Syntax

Two samples: The rank.two.samples() function implements current state of the art methods for
testing the null hypothesis H0 : θ = 1

2 versus H1 : θ ̸= 1
2 along with the computation of (1− α)× 100%

confidence intervals for θ. Its most important arguments are

rank.two.samples(formula, data, method = c("t.app", "logit", "probit","normal"),
permu = TRUE, alternative = c("two.sided", "less", "greater"),
wilcoxon = c("asymptotic","exact"),shift.int = TRUE,
nperm = 10000,conf.level = 0.95, info = TRUE,rounds = 4)

• formula plus data
is the standard way of specifying regression relationships in R/S introduced in Chambers and
Hastie (1992).

• method
specifies the approximate method, where t.app computes the Brunner-Munzel test (Brunner
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and Munzel, 2000) with t-approximation, normal uses the standard normal quantiles and range-
preserving confidence intervals are obtained by logit or probit tranformation functions (Pauly
et al., 2016).

• permu
indicates whether additional studentized permutation tests shall be computed (Janssen, 1999b;
Neubert and Brunner, 2007; Pauly et al., 2016)

• alternative
Two-sided and one-sided tests and confidence intervals are available using the argument
alternative.

• wilcoxon
gives the option to compute additional Wilcoxon-Mann-Whitney tests for testing the equality
of the two distributions HF

0 : F1 = F2 of the two samples. We use the coin package for these
computations (Zeileis et al., 2008). Both the asymptotic as well as exact distribution of the test is
available.

• shift.int
can be used for the computation of a confidence interval for the shift-effect (Hodges-Lehmann).

• nperm, conf.level, info and rounds
list optional arguments specifying the numbers of permutation, coverage probability, output
explanation and decimals.

The use of the plot() function to a rank.two.samples object displays a plot of the confidence
interval for θ.

Several samples and factorial designs: In addition, rankFD() implements statistical methods for
the analysis of general nonparametric factorial designs. Its most important arguments are:

rankFD(formula, data, CI.method = c("logit", "normal"),
effect = c("unweighted", "weighted"), hypothesis = c("H0F", "H0P"),
contrast = NULL, sci.method = c("fisher", "multi.t"),
info = TRUE, rounds=4)

• formula plus data
is the standard way of specifying regression relationships in R/S introduced in Chambers and
Hastie (1992).

• CI.method
specifies the computational method of the confidence intervals, either using the normal approxi-
mation or the logit transformation function.

• effect
defines the effect to be estimated, in particular,

effect = "weighted" or effect = "unweighted"
estimate the weighted or unweighted relative effect, respectively. As explained above, this
choice either leads to using traditional ranks (weighted) or pseudo-ranks (unweighted).

• hypothesis
defines the null hypothesis of interest (either HF

0 or HP
0 formulated in terms of distribution

functions or relative effects, respectively).
• contrast

is specified to perform multiple contrast tests. The argument must be given as a list() spec-
ifying the factor level and the kind of contrast (optional). The user can chose from a pre-
implemented list of possible contrasts or commit a user-specific contrast matrix.

• sci.method
defines the computational method of the simultaneous confidence intervals.

• Factor.Information
is a logical argument whether descriptive information (effect estimators, standard error and
confidence intervals) for each factor and interaction effect is of interest and shall be displayed.

• info and rounds
list optional arguments specifying the numbers of output explanation and decimals.

Plot options: In order to visualize the results of the analysis, the confidence intervals can be plotted
by using the generic plot() function (being applied to a rankFD object). In two- and higher way
layouts, the user is asked to type the name of the main or interaction effect the confidence intervals
of which should be drawn. All standard font, width and color arguments apply (lwd, pch, cex, etc.).
Furthermore, the argument cex.ci sets the ”cex” (number indicating the amount by which plotting
text and symbols should be scaled relative to the default) of the confidence interval limits.
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Figure 1: Boxplots (left) and 95%-confidence interval (right) for the relative effect of the reaction time
data.

Two independent samples

As an illustrating example, we use a part of the reaction time data provided by Shirley (1977). In this
animal experiment, N = 40 mice were randomized to a = 4 dose groups (n = 10 animals per group).
The observations are the reaction times [in seconds] of mice to stimuli applied to their tails. Here, we
only use the data from dose group 0 (negative control) and dose group 1 and thus reduce the data set
to two independent samples. The boxplots of the reaction times as displayed in Figure 1 confirm our
initial conjecture of quite skewed distributions. In this case, the Wilcoxon-Mann-Whitney effect:

θ = P(X01 < X11) +
1
2 P(X01 = X11),

may have a better interpretation for the researcher than the difference of the two means. Recall that
for θ < 1

2 the observations coming from the control group tend to be larger than those from group
1. If θ = 1

2 , then none of the observations tend to be smaller or larger. No treatment effect is therefore
indicated by θ = 1

2 . The reaction time data set is analyzed with the rank.two.samples() function. As
approximate method, we use the logit approach, compute the exact Wilcoxon-Mann-Whitney test
but omit estimation of shift effects:

library("rankFD")
data("reaction")

A <- rank.two.samples(Time ~ Group, data = reaction, method = "logit",
+ wilcoxon = "exact", shift.int = FALSE)

Nonparametric Methods for 2 Independent Samples

#Alternative: Relative Effect is unequal to 1/2
#Method: Logit Transformation
#Interpretation: If p(0,1) >1/2, then data in group 1 tend to be

larger than those in group 0
#Confidence Level: 95 %
#Number of permutations: 10000
#Wilcoxon-Mann-Whitney Test: exact
#Shift-Effect: NA
---------------------------------------------------------------------------
Call:
Time ~ Group

Descriptive:
Sample Size

0 0 10
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Figure 2: Boxplots (left) and (local) 95%-confidence intervals for the relative effects of the EEG values
(right) .

1 1 10
----------------------Analysis of Relative Effects-------------------------
Test Results:
Effect Estimator Std.Error T Lower Upper p.Value
p(0,1) 0.88 0.0801 2.6277 0.6239 0.9701 0.0086

Studentized Permutation Test:
Effect Estimator Std.Error T Lower Upper p.Value
p(0,1) 0.88 0.0801 2.6277 0.6551 0.9673 0.0016

-------------------Analysis of Distribution Functions-----------------------

Wilcoxon-Mann-Whitney Test:
Effect Estimator Statistic p.Value
p(0,1) 0.88 143 0.0029

plot(A)

The estimated relative effect θ̂ = 0.88 and thus, the estimated probability that untreated mice react
faster than treated ones is 88%. Furthermore, the data provide the evidence to reject Hθ

0 : θ = 1
2 at

5% level of significance (p < 5%) which is also evident in the compatible confidence interval (not
containing 1/2).

A one-way factorial design

As an example of a one-way factorial design we use the data set EEG that is included in the package
MANOVA.RM (Friedrich et al., 2019a, 2021). The data set contains EEG measurements of 160 patients
who were diagnosed with either Alzheimer’s Disease (AD), mild cognitive impairments (MCI), or
subjective cognitive complaints without clinically significant deficits (SCC), based on neuropsycho-
logical diagnostics (Bathke et al., 2018). For demonstration purposes, we restrict our analysis to the
measurement of Hjorth complexity (represents change in frequency) obtained at central electrode
positions. The question of interest is whether this EEG value tends to be larger or smaller than the
mean Mann-Whitney effect across the different diseases and therefore, the relative effects defined in
(3) are used for the analysis.

The EEG data is analyzed using the function rankFD(). Here, we calculate confidence intervals with
the logit approach and estimate the unweighted relative treatment effects to test the null hypothesis
HP

0 . Moreover, we specify a multiple contrast test based on Tukey-type contrasts for the pairwise
comparisons of the three diagnosis groups.

library("MANOVA.RM")
data("EEGwide")
B <- rankFD(complexity_central ~ diagnosis, data = EEGwide,
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+ CI.method = "logit", effect = "unweighted", hypothesis = "H0p",
+ contrast = list("diagnosis", "Tukey"))

Nonparametric Methods for General Factorial Designs

---------------------------------------------------------------------------
#Hypotheses: Tested in Relative Effects
#Ranking Method: Pseudo-Ranks
#Confidence Intervals: 95 % with Logit-Transformation

#MCTP: Fisher Transformation and multivariate T-Approximation
---------------------------------------------------------------------------

Call:
complexity_central ~ diagnosis

Descriptive:
diagnosis Size Rel.Effect Std.Error Lower Upper

1 AD 36 0.4091 0.0400 0.3335 0.4893
2 MCI 57 0.4357 0.0304 0.3773 0.4960
3 SCC 67 0.6551 0.0272 0.6002 0.7063

Wald.Type.Statistic:
Statistic df p-Value

diagnosis 36.2624 2 0

ANOVA.Type.Statistic:
Statistic df1 df2 p-Value

diagnosis 11.1605 1.6222 80.9562 2e-04

MCTP:
$Contrast.Matrix
1 2 3
C1 -1 1 0
C2 -1 0 1
C3 0 -1 1

$Local.Results
Effect Std.Error T Lower Upper p.value

C1 0.0266 0.0657 0.4044 -0.1308 0.1827 0.9119
C2 0.2460 0.0613 3.8510 0.0941 0.3868 0.0010
C3 0.2194 0.0415 5.1125 0.1176 0.3167 0.0000

$Global.Result
T0 p.value

1 5.1125 0

$DF
[1] 46

$Quantile
[1] 2.4042

plot(B)

The output consists of several parts: First, a brief description of the methods is given. B$Descriptive
returns the sample sizes, the estimated relative effects as well as their standard errors and confidence
intervals for the factor levels. B$ Wald.Type.Statistic and B$ANOVA.Type.Statistic return the
results of the Wald-type and ANOVA-type test as described in Section 2.3, respectively. Since we
specified our null hypothesis in terms of HP

0 , Kruskal-Wallis test is not performed. The part B$MCTP
finally contains the results of the multiple contrast test: the contrast matrix (Tukey-type), the local test
results Tℓ as well as the global results T0 along with the t-quantile and the corresponding degrees of
freedom (Konietschke et al., 2012) are reported, see Section 2.3.2 for details. The significant difference
between the diagnosis groups and the results of the post-hoc tests reveal that SCC patients differ
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Figure 3: Barplots (percent) of the nasal mucosa scores.

significantly from the other two groups, see also Figure 2.

A two-way factorial design

As an illustrative example of a two-way factorial design, we chose the Irritation of the Nasal Mucosa
trial provided by Brunner et al. (2019, Chapter B.3.2) and included in the package. In this trial, the
researchers investigated the damage of two gaseous substances (factor A) on the nasal mucous mem-
brane of mice. Hereby, both substances were given in three different concentrations (1[ppm], 2[ppm]
and 5[ppm]) (factor B) to 25 mice each. The degree of irritation and damage was histopathologically
assessed using an ordinal score ranging from 0 to 4 with 0 = “no irritation”, 1 = “mild irritation”, 2 =
“strong irritation”, 3 = “severe irritation” and 4 = “irreversible damage”, respectively. The outcome is
displayed in Figure 3. The code to analyze this data is similar to that provided above, but we addition-
ally include an interaction term in the formula. In this example, we formulate the null hypothesis in
terms of the distribution functions to show the R-code for testing this hypothesis. Note that due to the
balanced design, both weighted and unweighted estimators give the same results.

data(nms)
rankFD(score ~ conc * subst, data = nms,
+ hypothesis = "H0F")

Nonparametric Methods for General Factorial Designs

---------------------------------------------------------------------------
#Hypotheses: Tested in Distribution Functions
#Ranking Method: Pseudo-Ranks
#Confidence Intervals: 95 % with Logit-Transformation

---------------------------------------------------------------------------

Call:
score ~ conc * subst

Descriptive:
conc subst Size Rel.Effect Std.Error Lower Upper

1 1 1 25 0.3053 0.0310 0.2481 0.3693
2 1 2 25 0.3193 0.0320 0.2601 0.3851
3 2 1 25 0.3927 0.0386 0.3200 0.4704
4 2 2 25 0.5296 0.0459 0.4397 0.6176
5 5 1 25 0.6925 0.0429 0.6027 0.7698
6 5 2 25 0.7605 0.0310 0.6947 0.8159

Wald.Type.Statistic:
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Figure 4: Local 95%-confidence interval for the (relative) main and interaction effects of the reaction
time data.

Statistic df p-Value
conc 114.9046 2 0.0000
subst 4.5200 1 0.0335
conc:subst 2.2174 2 0.3300

ANOVA.Type.Statistic:
Statistic df1 df2 p-Value

conc 49.8167 1.9289 127.0195 0.0000
subst 4.5200 1.0000 127.0195 0.0354
conc:subst 1.0741 1.9289 127.0195 0.3428

The right plot in Figure 4 shows that the relative effects increase at a similar rate in both levels of the
main effect suggesting no qualitative interaction between the factor substance and the concentration.

5 Summary

The rankFD-package implements current state of the art rank methods for nonparametric inference
in general factorial designs with independent observations. It comprises of functions for computing
various test statistics for testing null hypotheses formulated either in distribution functions or in
relative effects using ranks or pseudo-ranks, respectively. Up until now, no other software package
for testing null hypotheses in relative effects in general factorial designs have existed. Besides global
procedures (Wald-type and ANOVA-type statistics) using quadratic forms, rankFD implements
multiple contrast tests and simultaneous confidence intervals for relative effects. The possibility
of testing contrasts between the main and interaction effects makes rankFD a powerful tool for the
application of nonparametric methods in data analysis and a useful addition to nparcomp (Konietschke
et al., 2015). Besides the inference methods discussed above, rankFD furthermore implements formulas
for computing sample sizes using the functions WMWSSP() and noether() (Happ et al., 2019). Since
these methods apply for two independent samples only, we did not discuss them in the present
manuscript.

We designed the package and its functions to be similar to the well known R-functions lm(), aov()
for the analysis of linear models and the glht() function of the multcomp package for the computation
of multiple contrast tests in means. Both rankFD and multcomp use the mvtnorm package (Genz et al.,
2021) for the computation of critical values. However, as explained in detail in the Introduction, the
effect measures used in multcomp and mvtnorm are different from those used in rankFD. In general
parlance, this means that the parametric and nonparametric methods are not comparable at hand.

We plan to update rankFD frequently with novel procedures. For instance, various international
research groups are currently investigating rank-based methods for the analysis of clustered data, see
also the package clusrank Jiang et al. (2020) for the analysis of two samples, sample size planning,
as well as analysis of covariance methods. We plan to add these methods in the future. The package
rankFD is online available on CRAN.
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