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GCPBayes: An R package for studying
Cross-Phenotype Genetic Associations
with Group-level Bayesian Meta-Analysis
by Taban Baghfalaki, Pierre-Emmanuel Sugier, Yazdan Asgari, Thérèse Truong, and Benoit Liquet

Abstract Several R packages have been developed to study cross-phenotypes associations (or pleiotropy)
at the SNP-level, based on summary statistics data from genome-wide association studies (GWAS).
However, none of them allow for consideration of the underlying group structure of the data. We
developed an R package, entitled GCPBayes (Group level Bayesian Meta-Analysis for Studying Cross-
Phenotype Genetic Associations), introduced by Baghfalaki et al. (2021), that implements continuous
and Dirac spike priors for group selection, and also a Bayesian sparse group selection approach
with hierarchical spike and slab priors, to select important variables at the group level and within
the groups. The methods use summary statistics data from association studies or individual level
data as inputs, and perform Bayesian meta-analysis approaches across multiple phenotypes to detect
pleiotropy at both group-level (e.g., at the gene or pathway level) and within group (e.g., at the SNP
level).

1 Introduction

Many cross-phenotype associations have been identified in genome-wide association studies (GWAS),
providing evidence that pleiotropy (the idea that a single genetic variant, usually a Single-Nucleotide
Polymorphism (SNP), is affecting multiple traits) is a common phenomenon in human complex traits
(Watanabe et al. 2019). As a result, pleiotropy has attracted a great deal of attention among genetic
epidemiologists (see, Solovieff et al. 2013; Verma et al. 2016; Hackinger and Zeggini 2017; Liu and
Lin 2018; Majumdar et al. 2018; Krapohl et al. 2018; Lu et al. 2017; Trochet et al. 2019; Ray and
Chatterjee 2020; Baghfalaki et al. 2021; Broc, Truong, and Liquet 2021), and several R packages have
been developed to perform meta-analysis methods adapted for cross-phenotype association detection
based on summary statistics data from GWAS as input (i.e., estimated effect size, standard error, and
p-value of the association between each SNP and a trait, Ray and Chatterjee 2020). It should be noted
that pleiotropy is only one possible explanation of cross-phenotype association, but for simplicity,
we will use the term pleiotropy for cross-phenotype association to describe any cross-phenotype
association in this paper. Below is a list of the most common methods for detecting pleiotropy between
multiple traits.

ASSET (Bhattacharjee et al. 2012) is a frequentist method, which is an extension of standard
fixed effects meta-analysis that considers the effects of a variable (such as a SNP) in each study
(representing a phenotype) to be in either the same direction or opposite directions, allowing for
detection of antagonistic pleiotropic effects. This approach uses summary statistics and does not take
into account group structure. In the case of GWAS, the outputs of this approach are a p-value of the
global association of each SNP with all studies (or phenotypes), and an optimal subset of non-null
studies or phenotypes that are associated with each SNP.

GPA (Chung et al. 2014) implements a flexible statistical framework for the joint analysis of
multiple GWAS and its integration with various genetic and genomic data. It implements a flexible
parametric mixture modeling approach for such integrative analysis and also provides hypothesis
testing procedures for pleiotropy and annotation enrichment. PLACO is a recently created R package
using GWAS summary statistics data to identify pleiotropic signals between two traits (Ray and
Chatterjee 2020). The computed method derives a composite null hypothesis that ‘at most one trait
is associated with the genetic variant’ vs. the alternative that ‘both traits are associated’, based on
the product of the Z-statistics of the genetic variants across two studies. CPBayes (Majumdar et al.
2018) is a Bayesian meta-analysis approach that uses univariate spike and slab prior and performs the
MCMC technique via a Gibbs sampler. CPBayes uses the summary statistics data for a SNP across
multiple traits. Two different measures are estimated for evaluating the overall pleiotropic association:
the local false discovery rate and the Bayes factor. The optimal subset of associated traits underlying a
pleiotropic signal is defined as the maximum a posteriori (MAP) estimate. The marginal trait-specific
posterior probability of association (PPA), the direction of associations, and the credible interval of
true genetic effects, are some examples of additional insights into pleiotropic signals that are provided
by CPBayes.

All packages developed for these summary statistics-based methods are only designed to test
pleiotropy at the variable-level (SNP-level). Though the structure of the common mechanisms shared
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by multiple phenotypes can be more complex, for example, different variants in the same locus can
be associated with multiple traits and affect the same gene, and therefore can have an impact on the
same trait. Thus, extending CPBayes to the gene or pathway level, which takes into account the group
structure of the data, could provide additional power to detect pleiotropic signals between multiple
diseases. By incorporating prior biological information in GWAS, such as group structure information
(gene or pathway), our approaches could uncover new pleiotropic signals (Li et al. 2020; Baghfalaki et
al. 2021).

In this paper, we present the GCPBayes R package (Bayesian meta-analysis of pleiotropic effects
using group structure) for studying pleiotropy between multiple phenotypes using GWAS data by
considering group structure information from prior biological knowledge. This package is able to
consider and detect pleiotropy at both the variable-level and group-level. The inputs to the developed
functions are SNP-level summary statistics data derived from GWAS by considering all the estimated
regression coefficients of the variables (SNPs) in a group (a gene or a pathway) and its covariance
matrix.

The methods that can be performed by the package offer a Bayesian paradigm using multivariate
spike and slab priors for group-level pleiotropy using either continuous spike (CS, George and
McCulloch 1993) or Dirac spike (DS, Mitchell and Beauchamp 1988) formulations. Also, a hierarchical
sparsity prior (HS, Xu, Ghosh, et al. 2015) using two levels of Dirac spike and slab components to
achieve group and within-group selection can be applied. Both tests for the global null hypothesis of
no association and for detecting pleiotropy are included in the package. group-level and variable-level
are considered. The free RStudio interface is advised to be used with GCPBayes. The GCPBayes
package can be installed by typing:

install.packages("GCPBayes")

To be used, the GCPBayes package has to be loaded each time R or RStudio are opened, via the
following code:

library(GCPBayes)

The paper is organized as follows: The next section (“Data structure”) describes how a data
should look in order to be used by functions of the GCPBayes package. The section “Usage” presents
the different functions of GCPBayes. Some details for using different case studies and a practical
guideline for the detection of pleiotropic effects are provided. The “Guidelines” section includes a
statistical inference pipeline and recommendations for carrying out the various stages of a pleiotropy
analysis with CRANpkg and Bayes. The computational time of the functions of the GCPBayes
package is explored using real data in the “Computational time for GCPBayes” section. Finally, in the
“Concluding remarks” section, we discuss some remarks about and limitations of GCPBayes. Besides,
future works for a newer version of the package are discussed at the end of the section. In addition, the
paper includes two appendices. The first is “Material and method”, where notations and models are
described briefly. The second one describes the design of the simulated data and their corresponding
R codes, which are also embedded in the package.

2 Data structure

GCPBayes is intended to work with summary statistics data. Though summary statistics can be
derived from individual-level data when available, this allows for taking into account correlations
between variables to improve the accuracy of the method.

It should be noted that GCPBayes is not restricted to a specific type of outcome. Summary
statistics data can be estimated through various kinds of models (linear, logistic, Cox, etc.) and based
on different types of phenotypes (categorical or continuous traits). Therefore, it is possible to use the
GCPBayes package for genetic studies, gene expression analyses, and other omics of studies.

In this paper, we will illustrate the use of our method in genetic studies of breast and thyroid
cancers. We will explore the cross-phenotype association between these two traits and SNPs located in
one gene in particular, PARP2. So, this section includes two different scenarios. The first part first part
deals with summary statistics on the association between breast cancer risk or thyroid cancer risk and
SNPs located in the PARP2 gene (Example 1). The second part considers the individual level data from
which the summary statistics of Example 1 were derived as input and then explores multicollinearity
through the data (Example 2), and computes summary statistics and the covariance matrix from the
individual-level data for PARP2 gene (Example 3).
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We will consider the estimated regression coefficients and their covariance matrices from all
studies:

β̂k, Σ̂k = cov(β̂k), k = 1, · · · , K.

where β̂k is an m−dimensional vector containing the regression coefficients from the kth study for
a given gene (or pathway) and Σ̂k is the corresponding covariance matrix. If only summary statistics
are available, the covariance matrix is replaced by a diagonal matrix with an estimated variance of the
regression coefficients.

Summary statistics level data

GWAS summary statistics data are available through various public databases such as GWAS Catalog.
In most cases, summary statistics include effect size estimate (beta), standard error, and p-value
for each SNP. The GCPBayes package accepts inputs related to betas and standard errors as lists:
specifically, a list of regression coefficients (betas) and a list of the matrices of the computed estimates
of the variance of the regression coefficients.

Example 1: Inputs of GCPBayes using summary statistics from two case-control studies (on breast
and thyroid cancers) for PARP2 gene GWAS summary statistics are available through various
public databases, such as the GWAS Catalog. In most cases, a summary of the statistical data includes
the effect size estimate (beta), standard error, and p-value for each SNP:

library(GCPBayes)
data(PARP2_summary)
Breast <- PARP2_summary$Breast
Thyroid <- PARP2_summary$Thyroid
genename <- "PARP2"
snpnames <- rownames(Breast)
Betah <- list(Breast$beta,Thyroid$beta)
Sigmah <- list(diag(Breast$se^2),diag(Thyroid$se^2))
print(Betah,digits=2)

#> [[1]]
#> [1] -0.081 0.073 -0.346 -0.222 0.095 0.166
#>
#> [[2]]
#> [1] -0.033 -0.470 0.398 0.276 0.160 0.040

print(Sigmah,digits=2)

#> [[1]]
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.029 0.000 0.000 0.000 0.0000 0.000
#> [2,] 0.000 0.056 0.000 0.000 0.0000 0.000
#> [3,] 0.000 0.000 0.061 0.000 0.0000 0.000
#> [4,] 0.000 0.000 0.000 0.031 0.0000 0.000
#> [5,] 0.000 0.000 0.000 0.000 0.0064 0.000
#> [6,] 0.000 0.000 0.000 0.000 0.0000 0.051
#>
#> [[2]]
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.031 0.00 0.000 0.00 0.0000 0.000
#> [2,] 0.000 0.16 0.000 0.00 0.0000 0.000
#> [3,] 0.000 0.00 0.068 0.00 0.0000 0.000
#> [4,] 0.000 0.00 0.000 0.04 0.0000 0.000
#> [5,] 0.000 0.00 0.000 0.00 0.0063 0.000
#> [6,] 0.000 0.00 0.000 0.00 0.0000 0.043

This gene included six SNPs (rs3093872, rs3093921, rs1713411, rs3093926, rs3093930, and rs878156).
So, the Betah list must include summary statistics for six elements for every study, and Sigmah list
must contain a diagonal matrix of [6 × 6] for each study. A user can check the data using the “print”
method.
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Individual level data

When individual level data are available, summary statistics should be computed using external
packages. Here, we explore the available approaches and R packages for computing the summary
statistics. Let Y1, · · · , YK be the response variables of K studies, and Yk = (Yk1, · · · , Yknk

)′ represent
the nk phenotype observations, k = 1, cdots, YK . For study k, let the genetic information be organized
into G groups for research purposes. For example, this can be a set of SNPs belonging to a gene or a set
of SNPs belonging to a set of genes acting together in the same biological pathway. We denote Zkg as a
nk × mg− matrix of the mg covariates for group g, g = 1, 2, · · · , G. As all inferences are performed
gene by gene, we remove the index g and consider m as the number of variables in each specific
group for simplicity. Considering one of the groups, we assume that a generalized linear model (GLM,
McCullagh 2019) is fitted separately for each study as follows:

η (E (Yk)) = αk1nk + Zkβk, k = 1, · · · , K, (1)

where η(·) is a link function, αk is the intercept of the model and 1nk is a vector of nk ones. Here
βk = (βk1, · · · , βkm)

′ denotes the m-dimensional regression coefficients for the group and the kth

study.

The “glm” function from R can be applied to fit generalized linear models and so get the summary
statistics or parameter estimation of model 1 (Dunn and Smyth 2018). If the phenotype is binary, then 1
is the usual logistic or probit model (Agresti 2018). If the phenotype is continuous, model 1 is reduced
to multiple linear regression and can also be fitted by the “lm” function from R which will provide the
same results as the “glm” function. The “vcov” function can be applied to get the estimated covariance
matrix of the regression coefficients, whereas the “glm” and “lm” functions calculate standard errors,
which yield only the diagonal elements.

Another strategy should be considered in the case of multicollinearity. Multicollinearity is the
presence of near-linear relationships among variables (Malo, Libiger, and Schork 2008). This phe-
nomenon is widespread in genetic data, where non-random association of alleles at different loci in a
given population is frequent, introducing large structures of correlation between SNPs. It is known
as linkage disequilibrium (LD). LD can lead to inaccurate estimates of the regression coefficients,
and also inflate the standard errors of the regression coefficients (Saleh, Arashi, and Kibria 2019).
Multicollinearity can be visualized by drawing pairwise scatter plots of variables or by inspection
of the correlation matrix. The variance inflation factor (VIF) can be used to assess the presence of
multicollinearity (Fox and Weisberg 2018). It can be computed by the “vif” function from the car
package (Fox et al. 2012). Most research papers consider a VIF > 10 as an indicator of multicollinearity
(Menard 2002; Johnston, Jones, and Manley 2018; Gareth et al. 2013; Vittinghoff et al. 2011), but some
choose a more conservative threshold of 5 (Gareth et al. 2013) or even 2.5 (Johnston, Jones, and Manley
2018).

Example 2: Exploring multicollinearity/linkage disequilibrium in PARP2 gene using individual
level data In this example, we show the existence of multicollinearity in the data. Here, we consider
the individual-level data from which the summary statistics of Example 1 were derived. The summary
statistics and the corresponding VIFs for both studies could be obtained using the usual “glm” function
as follows:

library(GCPBayes)
library(car)

#> Loading required package: carData

data(PARP2)
Breast <- PARP2$Breast
Thyroid <- PARP2$Thyroid
Fit1 <- glm(y1~ ., family=binomial(link="logit"),data=Breast)
print(vif(Fit1))

#> rs3093872 rs3093921 rs1713411 rs3093926 rs3093930 rs878156
#> 1.696966 1.584775 3.095049 2.700594 1.347861 4.438011

Fit2 <- glm(y2~ ., family=binomial(link="logit"),data=Thyroid)
print(vif(Fit2))

#> rs3093872 rs3093921 rs1713411 rs3093926 rs3093930 rs878156
#> 1.565507 1.478632 3.552804 3.465883 1.397995 5.490866
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A high VIF value (>5) for one SNP indicates multicollinearity in the data. Hence, the user should
not use the “glm” function to obtain correct estimates of regression coefficients and their standard
errors. Instead, the user could perform Ridge regression (Hilt and Seegrist 1977). Although many
R packages are available to perform Ridge regression, only lrmest, ridge and lmridge can estimate
the standard errors of the regression coefficients. Only lmridge, and only for the linear model, can
compute their covariance matrix using the “vcov” or “vcov.lmridge” functions.

Since a usual approach for obtaining the covariance matrix is to apply a very time-consuming
Bootstrap method (Efron 1992), we recommend performing a Bayesian hierarchical GLM by using
Gaussian priors to get summary statistics of each group (gene/pathway). Thus, a user could apply the
bayesreg package (Makalic and Schmidt 2016) or the BhGLM package (Yi et al. 2019) that provides
fast and stable algorithms to estimate parameters for high-dimensional clinical and genomic data as
well as highly correlated variables.

Example 3: Inputs of GCPBayes using individual level data from two case-control studies (on
breast and thyroid cancers) for PARP2 gene We propose to estimate the regression coefficients and
their covariance matrices using a Bayesian hierarchical logistic model, which would lead to more
powerful inputs for GCPBayes (as we mentioned earlier) than the inputs used in Example 1:

library(GCPBayes)
data(PARP2)
Breast <- PARP2$Breast
Thyroid <- PARP2$Thyroid
Fit1 <- bayesreg::bayesreg(as.factor(y1)~ ., model = "logistic", prior = "ridge",data=Breast)
Betah1 <- Fit1$mu.beta
Sigmah1 <- cov(t(Fit1$beta))
Fit2 <- bayesreg::bayesreg(as.factor(y2)~ ., model = "logistic", prior = "ridge",data=Thyroid)
Betah2 <- Fit2$mu.beta
Sigmah2 <- cov(t(Fit2$beta))
Betah <- list(Betah1,Betah2)
Sigmah <- list(Sigmah1,Sigmah2)
#print(Betah,digits=1)
#print(Sigmah,digits=1)

By running the code above, we can estimate the regression coefficients and their covariance
matrices, using the individual-level data from the two studies. The results can be checked using the
last two “print” commands.

As a final note in this section, we demonstrated in a previous study (Baghfalaki et al. 2021) that
running GCPBayes on summary statistics data could result in a loss of power because it requires
consideration of a diagonal covariance matrix of the effects (without information on off-diagonal
components). So, statistically speaking, when individual-level data are available, we recommend
computing the covariance matrix of the effects and using it as inputs to GCPBayes in order to increase
the power of the method.

3 Usage

In this section, we describe how to use the GCPBayes package that includes four functions: DS,
CS, HS, and MCMCplot. First, Examples 4-7 show the outputs of each of the four functions while
applying GCPBayes to the summary statistics described in Example 1 to test whether the gene PARP2
is associated with both thyroid cancer and breast cancer risk. Then, in Example 8, we compared results
obtained with the DS function applied to summary statistics of PARP2 gene with those obtained with
individual-level data (as described in Examples 2-3) as input. Finally, in Example 9, we show an
example of output for the gene DNAJC1 which was significantly associated with breast and thyroid
cancers using the DS function. The inputs are summary statistics from two larger studies than those
used in Example 1 and will be detailed below. In addition to the real datasets described in Examples
1-3 and Example 9, three more simulated data are provided in Appendix B and are embedded in the
GCPBayes package, including summary statistics level data for K = 5 studies with binary outcome,
individual level data for K = 3 studies with continuous outcome and individual level data for
K = 2 studies for survival outcomes and gene expression data. All commands used for the examples
considered in this section are available through the R documentation of the GCPBayes package.
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DS function

DS runs a Gibbs sampler for a multivariate Bayesian sparse group selection model with a Dirac spike
prior for the detection of pleiotropic effects on the traits. As we mentioned in the previous section,
the DS function is designed to use estimated regression coefficients and their estimated covariance
matrices from K studies. The statistical details of the DS approach are given in Appendix A. Besides,
more details can be found at (Baghfalaki et al. 2021). The DS function and its parameters have the
following format:

DS(Betah, Sigmah, kappa0, sigma20, m, K, niter = 2000, burnin = 1000, nthin = 2,
nchains = 2, a1 = 0.1, a2 = 0.1, d1 = 0.1, d2 = 0.1, snpnames, genename)

where

• Betah: A list containing m-dimensional vectors of the regression coefficients for K studies.
• Sigmah: A list containing the m × m-dimensional positive definite covariance matrices which

are the estimated covariance matrices of K studies. If individual-level data are not available, it
corresponds to the diagonal matrices with the estimated variance of the regression coefficients
for the K studies.

• kappa0: Initial value for kappa such that its dimension is equal to the number of Markov
chains (nchains). Although, the best strategy for choosing the initial values are previous studies,
however, the domain for choosing any value is equal to the domain of the priors which is given
in the hierarchical setup A.2 in Appendix A. Kappa0 can be in range from 0 to 1.

• sigma20: Initial value for sigma2 such that its dimension is equal to nchains. The domain for
initial values of sigma2 is ℜ+.

• m: Number of variables in the group.
• K: Number of traits.
• niter: Number of iterations for the Gibbs sampler.
• burnin: Number of burn-in iterations. The burnin=1000 value is the default.
• nthin: The lag of the iterations used for the posterior analysis (or thinning rate). nthin=2 is the

default value.
• nchains: Number of Markov chains. When nchains > 1, the function calculates the Gelman-

Rubin convergence statistic (Brooks and Gelman 1998; Gelman, Rubin, et al. 1992). Default
value is nchains=2.

• a1, a2: Hyperparameters of kappa. Default values are a1=0.1 and a2=0.1.
• d1, d2: Hyperparameters of sigma2. d1 = 0.1 and d2 = 0.1 are the default values.
• snpnames: Variable names for the group.
• genename: The group’s name.

Example 4: Usage of the DS function to analyse pleiotropy between breast and thyroid cancers at
PARP2 gene Here we consider the individual data for the PARP2 gene from the two case-control
studies on breast and thyroid cancer (Examples 2-3) as input. As we explained earlier, first we
estimated the effect size of the six SNPs in PARP2 and the corresponding covariance matrix for both
studies. Then, we applied the DS function to the results.

library(GCPBayes)
data(PARP2)
Breast <- PARP2$Breast
Thyroid <- PARP2$Thyroid
genename <- "PARP2"
snpnames <- names(PARP2$Breast)[-1]
Fit1 <- bayesreg::bayesreg(as.factor(y1)~ ., model = "logistic", prior = "ridge",data=Breast)
Betah1 <- Fit1$mu.beta
Sigmah1 <- cov(t(Fit1$beta))
Fit2 <- bayesreg::bayesreg(as.factor(y2)~ ., model = "logistic", prior = "ridge",data=Thyroid)
Betah2 <- Fit2$mu.beta
Sigmah2 <- cov(t(Fit2$beta))
Betah <- list(Betah1,Betah2)
Sigmah <- list(Sigmah1,Sigmah2)

To detect pleiotropic effects for this gene, two chains with 2,000 iterations and a burn-in period of
1,000 iterations were used.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 128

set.seed(123)
RES1 <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,2),

m=6, K=2, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

The result of the DS function was saved in the “RES1” list, which includes four lists (MCMCChain,
Summary, Criteria, and Indicator). The “MCMCChain” list contains posterior samples for the unknown
parameters, while the “Summary” list includes summary statistics of the posterior samples for the
unknown parameters including the name of the SNP, the posterior mean, the posterior standard
deviation, the quantile 2.5%, median, the quantile 97.5% and the Gelman-Rubin convergence statistic
(BGR, Brooks and Gelman 1998; Gelman, Rubin, et al. 1992).

Using a “print” command for the “Summary” list would result in two lists showing Bayesian
estimation for all analyzed SNPs in both studies.

print(RES1$Summary,digits=2)

In order to check if the chains converged to a stationary distribution or not, a user could look at
the BGR column. In our example, as the values of BGR are not close to one for some of the variables,
the chains do not converge to a stationary distribution. To check this criteria, we also repeat the DS
function with niter = 20000 and burnin = 10000.

set.seed(123)
RES1 <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,1.5),

m=6, K=2, niter=20000, burnin=10000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

print(RES1$Summary,digits=2)

As it is clear, after running the DS function with new parameters, the values of the BGR column
now confirm convergence to the stationary distribution. Note that in the case of nchain = 1, the BGR
column can never be computed.

The two other output lists of the “RES1” (“Criteria” and “Indicator”) contain information for
checking group and variable pleiotropy, respectively. For each SNP, the ‘Criteria’ list contains the
name of the gene, name of the SNP, the posterior probability of association (PPA), the logarithm (to
base 10) of the Bayes factor (BF), the local false discovery rate (locFDR) and θ of equation (4) of the
Guidelines section. A user could check it with the following command:

print(RES1$Criteria,digits=2)

#> $`Name of Gene`
#> [1] "PARP2"
#>
#> $`Name of SNPs`
#> [1] "rs3093872" "rs3093921" "rs1713411" "rs3093926" "rs3093930" "rs878156"
#>
#> $PPA
#> $PPA[[1]]
#> [1] 0
#>
#> $PPA[[2]]
#> [1] 0.022
#>
#>
#> $log10BF
#> [1] -2.1
#>
#> $lBFDR
#> [1] 0.98
#>
#> $theta
#> [1] 1.8e-05

Based on the PPA1 and PPA2 values, the gene PARP2 isnot significantly associated with the traits
in the study. This is also confirmed by the values of lBFDR and BF. One can conclude that the global
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null hypothesis of no association at the group level cannot be rejected. Now, we can check the results of
the pleiotropic effect at the group level by considering the value of theta. By considering the threshold
of 0.5, it shows that there is no group-level pleiotropic effect for textit{PARP2} gene.

Also, an “Indicator” list is given for checking variable pleiotropy using two different statistics:
(95% credible interval and the median threshold. Each row of the lists includes the name of the SNP,
a binary indicator for the significant regression coefficient of each study (0=no,1=yes) and the total
number of significant regression coefficients in the studies. Finally, the last column indicates whether
the test for pleiotropy at the variable level is significant or not.

print(RES1$Indicator,digits=2)

In addition, summaryDS is a generic function that generates DS function result summaries:

summaryDS(RES1)

#> $`Name of Gene`
#> [1] "PARP2"
#>
#> $`Number of SNPs`
#> [1] 6
#>
#> $`Name of SNPs`
#> [1] "rs3093872" "rs3093921" "rs1713411" "rs3093926" "rs3093930" "rs878156"
#>
#> $log10BF
#> [1] -2.124921
#>
#> $lBFDR
#> [1] 0.9779942
#>
#> $theta
#> [1] 1.830575e-05
#>
#> $`Significance based on CI`
#> Study 1 Study 2 Total Pleiotropic effect
#> rs3093872 0 0 0 No
#> rs3093921 0 0 0 No
#> rs1713411 0 0 0 No
#> rs3093926 0 0 0 No
#> rs3093930 0 0 0 No
#> rs878156 0 0 0 No
#>
#> $`Significance based on median thresholding`
#> Study 1 Study 2 Total Pleiotropic effect
#> rs3093872 0 0 0 No
#> rs3093921 0 0 0 No
#> rs1713411 0 0 0 No
#> rs3093926 0 0 0 No
#> rs3093930 0 0 0 No
#> rs878156 0 0 0 No

As can be seen, there is no variable-level pleiotropic effect for this gene, which means that none of
its SNPs were significant in both studies.

CS function

The CS runs a Gibbs sampler for a multivariate Bayesian sparse group selection model with a continu-
ous spike prior for the detection of pleiotropic effects on K traits. CS uses the same inputs as the DS
function. The details of the approach are given in the material and methods section (Appendix A).
More information can be found at (Baghfalaki et al. 2021). The CS function has the following format in
general:

CS(Betah, Sigmah, kappa0, tau20, zeta0, m, K, niter = 1000, burnin = 500,
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nthin = 2, nchains = 2, a1 = a1, a2 = a2, c1 = c1, c2 = c2, sigma2 = 10^-3,
snpnames = snpnames, genename = genename)

where Betah, Sigmah, kappa0, m, K, niter, burnin, nthin, nchains, a1, a2, snpnames and genename
are the same as those introduced for the DS function. For the other arguments we have

• zeta0: Initial value for zeta. For the elicitation of initial values of zeta, first the regression
coefficients and their standard errors for each study are considered. After that, by adjusting
their p-values, we can find the initial values of zeta, k = 1, cdots, andK. As a result, if one
group contains at least one non-null signal, the group is a non-null and zeta0[k] = 1, otherwise
zeta0[k] = 0.

• c1, c2: Hyperparameters of tau2. Default values are c1=0.1 and c2=0.1.

• sigma2: The variance of the spike (multivariate normal distribution with a diagonal covariance
matrix with small variance) represents the null effect distribution. The default setting is 10 − 3.

Example 5: Using the CS method to analyze pleiotropy between breast and thyroid cancers at
PARP2 gene For this example, we consider the same data used for Example 4 as input. So, first,
we estimated the regression coefficients for each SNP and corresponding covariance matrix for both
studies (the same estimated regression coefficients and covariance matrices were computed in Example
4), and then, we performed the CS function on the results. To get the values for xi(0)k, a user must
first calculate the p-values and initial values of xik for each regression coefficient using the code below
(for more information, see (Baghfalaki et al. 2021):

K <- 2
m <- 6
pvalue <- matrix(0,K,m)
for(k in 1:K){
pvalue[k,] <- 2*pnorm(-abs(Betah[[k]]/sqrt(diag(Sigmah[[k]]))))
}
zinit <- rep(0,K)
for(j in 1:K){
index <- 1:m
PVALUE <- p.adjust(pvalue[j,])
SIGNALS <- index[PVALUE<0.05]
modelf1 <- rep(0,m)
modelf1[SIGNALS] <- 1
if(max(modelf1)==1)(zinit[j] <- 1)
}

The initial value is a two-dimensional vector (as K=2) of 0 or 1:

print(zinit)

#> [1] 0 0

Now, we could use the CS function to look for a pleiotropic signal:

set.seed(123)
RES1 <- CS(Betah, Sigmah, kappa0=c(0.2,0.5), tau20=c(1,2), zeta0=zinit,

m=m, K=K, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, c1=0.1, c2=0.1, sigma2=10^-3, snpnames, genename)

The output of CS (here RES1) is the same as DS and has similar interpretations, summaryCS is a
generic function used to produce result summaries of the CS function.

HS function

The HS function runs a Gibbs sampler for a multivariate Bayesian sparse group selection model with
hierarchical spike prior for the detection of pleiotropic effects associated with the traits at group-level
and variable-level. As in the case of CS and DS, this function is designed to use summary statistics
as inputs, containing estimated regression coefficients and their estimated covariance matrices. The
following is a general usage example of the HS function:
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HS(Betah, Sigmah, kappa0 = kappa0, kappastar0 = kappastar0, sigma20 = sigma20, s20 = s20,
m, K, niter = 1000, burnin = 500, nthin = 2, nchains = 2, a1 = 0.1, a2 = 0.1,
d1 = 0.1, d2 = 0.1, c1 = 1, c2 = 1, e2 = 1, snpnames, genename)

where Betah, Sigmah, kappa0, sigma20, m, K, niter, burnin, nthin, nchains, a1, a2, d1, d2, snpnames,
and genename have similar definitions as the DS function. For the other arguments we have

• kappastar0: Initial value for kappastar such that its dimension is equal to nchains. The domain
for initial values of kappastar0 is (0, 1).

• s20: Initial value for s2 such that its dimension is equal to nchains such that the domain for
initial values of s2 is ℜ+.

• c1, c2: Hyperparameters of the kappastar. Defaults are c1=0.1 and c2=0.1.

• e2: Initial value for doing the Monte Carlo EM algorithm to estimate the hyperparameter of s2.

Example 6: Use of the HS method to analyze pleiotropy between breast and thyroid cancers at
PARP2 gene The same data as in Example 4 is used as input. We used the same estimated regression
coefficients and their covariance matrices.

library(GCPBayes)
data(PARP2)
Breast <- PARP2$Breast
Thyroid <- PARP2$Thyroid
genename <- "PARP2"
snpnames <- names(PARP2$Breast)[-1]
Fit1 <- bayesreg::bayesreg(as.factor(y1)~ ., model = "logistic", prior = "ridge",data=Breast)
Betah1 <- Fit1$mu.beta
Sigmah1 <- cov(t(Fit1$beta))
Fit2 <- bayesreg::bayesreg(as.factor(y2)~ ., model = "logistic", prior = "ridge",data=Thyroid)
Betah2 <- Fit2$mu.beta
Sigmah2 <- cov(t(Fit2$beta))
Betah <- list(Betah1,Betah2)
Sigmah <- list(Sigmah1,Sigmah2)

set.seed(123)
RES <- HS(Betah, Sigmah, kappa0=c(0.5,0.3), kappastar0=c(0.5,0.3), sigma20=c(2,1), s20=c(1,2),

m=6, K=2, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, c1=1, c2=1, e2=1, snpnames, genename)

In this example, the HS function is applied to detect group and variable pleiotropic signals. The
outputs of the HS function based on median threshold are as follows:

summaryHS(RES1)

The overall output of HS (RES1) is the same as that of DS and has similar interpretations.

MCMCplot function

Monitoring the convergence of the MCMC statistic is important and the Gelman-Rubin statistic
is not the only way to assess convergence. MCMCplot presents some visual plots, such as trace,
auto-correlation function (ACF) and posterior density plots to check the convergence of the MCMC
chains. The trace plot is the plot of the generated values over the course of the iterations. If all values
fall within a uniform bandwidth around the posterior mean and do not display any periodicity or
non-stationary trends, we can assume convergence. The density plot represents the signal’s estimated
posterior distribution. Also, monitoring ACF plots is very useful since low or high values indicate
fast or slow convergence, respectively. In fact, we need to monitor the ACF of the MCMC generated
sample and select a sampling lag larger than 1 [=L]. Then, we can produce an independent sample by
keeping the first generated values in every batch of L iterations, which is called the thinning rate. In
practice, the ACF should be close to zero for a sufficiently large number of lags.

The inputs of the MCMCplot function are the generated results by DS, CS, or HS function, the
number of studies for drawing plots, the number of MCMC chains in the result, and the names of
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favorable SNPs for drawing the plots. Up to 10 plots can be plotted simultaneously. In general, a
usage for the MCMCplot function is as follows:

MCMCplot(Result, k, nchains, whichsnps, betatype, acftype, dencol, denlty, denbg)
where

• Result: All of the results produced by the DS, CS, and HS functions.

• k: The number of plotting studies, where k = 1, 2,. . . , K.

• nchains: The number of Markov chains that were run to produce Result.

• which SNPs: The SNPs’ names

• betatype: The type of plot desired. The following values are possible: “p” for points, “l” for
lines, “b” for both points and lines, “c” for empty points joined by lines, “o” for overplotted
points and lines, “s” and “S” for stair steps, and “h” for histogram-like vertical lines. Finally, “n”
does not produce any points or lines.

• acftype: String giving the type of ACF to be computed. Allowed values are “correlation” (the
default), “covariance” or “partial” will be partially matched.

• dencol: The color used to fill out the density plot.

• denlty: The line type to be used in the density plot.

• denbg The color to be used for the background of the density plot.

Example 7: Using the MCMCplot function to check convergence of the DS method For this
example, the output of the DS function for PARP2 gene is used when drawing the MCMCplot. We
select this gene because it is a special case because it required more MCMC iterations to converge.
To run this example, a user needs to run the first fourteen lines of code in Example 4 (briefly, these
commands compute regression coefficients and covariance matrices based on the individual-level
data). Then the DS function needs to be run as follows:

library(GCPBayes)
data(PARP2)
Breast <- PARP2$Breast
Thyroid <- PARP2$Thyroid
genename <- "PARP2"
snpnames <- names(PARP2$Breast)[-1]
Fit1 <- bayesreg::bayesreg(as.factor(y1)~ ., model = "logistic", prior = "ridge",data=Breast)
Betah1 <- Fit1$mu.beta
Sigmah1 <- cov(t(Fit1$beta))
Fit2 <- bayesreg::bayesreg(as.factor(y2)~ ., model = "logistic", prior = "ridge",data=Thyroid)
Betah2 <- Fit2$mu.beta
Sigmah2 <- cov(t(Fit2$beta))
Betah <- list(Betah1,Betah2)
Sigmah <- list(Sigmah1,Sigmah2)

set.seed(123)
RES1 <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,2),

m=6, K=2, niter=200, burnin=100, nthin=1, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

MCMCplot(Result = RES1, k = 2, nchains = 2, whichsnps = snpnames,
betatype = "l",
acftype = "correlation",
dencol = "white", denlty = 1, denbg = "white")

set.seed(123)
RES1 <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,2),

m=6, K=2, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

MCMCplot(Result = RES1, k = 2, nchains = 2, whichsnps = snpnames,
betatype = "l",
acftype = "correlation",
dencol = "white", denlty = 1, denbg = "white")

The plots for the thyroid cancer study with 200 MCMC iterations and 100 burn-in are given in
Figure 2. The top row of the figure shows strong periodicities in the posterior samples for some
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Figure 1: Trace, density and ACF plot for the posterior samples of the regression coefficients (niter=200,
burnin=100, nthin=2) for thyroid study. Based on the top and last rows, the results do not show a
convergence.

SNPs, which are confirmed by their corresponding ACF plots (last row). As a result, more samples
are needed to achieve convergence for the PARP2 gene. In the second DS command, the number of
iterations was increased to 2000; half of this number was considered burn-in, and the thinning rate
was set to 2. The results are shown in Figure 3 and the resulting regularities in the plot implies that
increasing the number of iterations has made the model converge successfully.

Comparing GCPBayes results using summary statistics level versus individual level data
as input

As we mentioned earlier, we showed that the performance of the GCPBayes package is better when
using non-diagonal covariance matrices (individual-level data) compared to diagonal covariance
matrices (summary level data, Baghfalaki et al. (2021)). In this section, we show two examples to deal
with such differences.

Example 8: Comparing DS function outputs using summary statistics level versus individual-level
data of PARP2 gene as inputs First, we consider summary statistics level data for PARP2 gene as an
input of the GCPBayes package and run the DS function for this data as follows:

library(GCPBayes)
data(PARP2_summary)
Breast <- PARP2_summary$Breast
Thyroid <- PARP2_summary$Thyroid
genename <- "PARP2"
snpnames <- rownames(Breast)
Betah <- list(Breast$beta,Thyroid$beta)
Sigmah <- list(diag(Breast$se^2),diag(Thyroid$se^2))
print(Betah,digits=2)
print(Sigmah,digits=2)
set.seed(123)
RES_sum <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,2),

m=6, K=2, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

print(RES_sum$Criteria,digits=2)

Now, we use individual data for the PARP2 gene, then compute regression coefficients and
covariance matrices based on the individual data and used it as the input to the GCPBayes package.
Finally, we run the DS function for this data as follows:
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Figure 2: Trace, density and ACF plot for the posterior samples of the regression coefficients
(niter=2000, burnin=1000, nthin=5) for thyroid study. Based on the top and last rows, the results imply
a convergence.

library(GCPBayes)
data(PARP2)
Breast <- PARP2$Breast
Thyroid <- PARP2$Thyroid
genename <- "PARP2"
snpnames <- names(PARP2$Breast)[-1]
Fit1 <- bayesreg::bayesreg(as.factor(y1)~ ., model = "logistic", prior = "ridge",data=Breast)
Betah1 <- Fit1$mu.beta
Sigmah1 <- cov(t(Fit1$beta))
Fit2 <- bayesreg::bayesreg(as.factor(y2)~ ., model = "logistic", prior = "ridge",data=Thyroid)
Betah2 <- Fit2$mu.beta
Sigmah2 <- cov(t(Fit2$beta))
Betah <- list(Betah1,Betah2)
Sigmah <- list(Sigmah1,Sigmah2)
set.seed(123)
RES_ind <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,2),

m=6, K=2, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

#print(RES_ind$Criteria,digits=2)

By comparing the results for these two scenarios, it is clear that using individual-level data, which
includes more information about the SNP correlations, would lead to less biased results and hence
better signals at the end.

Example 9: Investigation of pleiotropic effect between breast cancer and thyroid cancer at DNAJC1
gene in large datasets For the final example, we consider the summary statistics for the DNAJC1
protein-coding gene, specifically betas and standard errors, for fourteen SNPs from two studies (on
breast and thyroid cancers), and try to investigate any potential pleiotropic signal at group and
individual levels. The summary statistics of the breast and thyroid cancer studies were extracted from
the Breast Cancer Association Consortium (BCAC) (Zhang et al. 2020) and the EPITHYR consortium
(Truong et al. 2021), respectively. The data is embedded in the GCPBayes package, and a user can run
the DS function as follows:

library(GCPBayes)
data(DNAJC1)
Breast <- DNAJC1$Breast
Thyroid <- DNAJC1$Thyroid
genename <- "DNAJC1"

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=GCPBayes


CONTRIBUTED RESEARCH ARTICLE 135

snpnames <- Breast$snp
Betah <- list(Breast$beta,Thyroid$beta)
Sigmah <- list(diag(Breast$se^2),diag(Thyroid$se^2))
K <- 2
m <- 14
set.seed(123)
RES1 <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,2),

m=m, K=K, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

Now, we run the following command for testing the global null hypothesis:

print(RES1$Criteria)

#> $`Name of Gene`
#> [1] "DNAJC1"
#>
#> $`Name of SNPs`
#> [1] "rs10740997" "rs10764330" "rs10828266" "rs12570400" "rs1970467"
#> [6] "rs2666762" "rs2807967" "rs35759613" "rs3951780" "rs4747438"
#> [11] "rs60773921" "rs6650129" "rs7075508" "rs77353976"
#>
#> $PPA
#> $PPA[[1]]
#> [1] 1
#>
#> $PPA[[2]]
#> [1] 1
#>
#>
#> $log10BF
#> [1] 47.29012
#>
#> $lBFDR
#> [1] 1.709075e-48
#>
#> $theta
#> [1] 0.9998224

Based on the values of log10BF and lBFDR, the null hypothesis is rejected. Thus, we check the
value of theta which is equal to 0.999, and conclude that the gene has a group pleiotropic effect.

A user should run the following command to test for variable pleiotropic effects:

print(RES1$Indicator$`Significant studies and Pleiotropic effect based on CI`)

#> Study 1 Study 2 Total Pleiotropic effect
#> rs10740997 1 0 1 No
#> rs10764330 1 0 1 No
#> rs10828266 1 0 1 No
#> rs12570400 1 0 1 No
#> rs1970467 1 0 1 No
#> rs2666762 1 1 2 Yes
#> rs2807967 1 0 1 No
#> rs35759613 1 0 1 No
#> rs3951780 1 0 1 No
#> rs4747438 1 1 2 Yes
#> rs60773921 1 0 1 No
#> rs6650129 1 0 1 No
#> rs7075508 1 0 1 No
#> rs77353976 0 0 0 No

Based on the results, two SNPs are significantly associated with both traits (rs4747438, and
rs2666762).
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4 Guidelines

In this section, we provide some guidelines for working with the GCPBayes package and for extracting
potential pleiotropic effects at group and variable-levels. We first give some practical advice on which
methods to consider and in what order, and then we provide a decision pipeline based on statistical
inferences, firstly for a primary analysis by using DS (or CS), and secondly for a precision analysis by
using HS.

Practical hints

We do not recommend that a user do initial exploration by using the HS function because it may take
a long time to compute when working with large datasets.

Besides, the HS function does not show better power in for detecting group pleiotropy compared
to the other methods (DS and CS). In addition, DS and CS methods have similar strategies, but we
showed that DS performed better than CS during the simulations for all tested scenarios (Baghfalaki
et al. 2021). That is why we suggest the user first performs the the pleiotropic analysis on all groups in
the data by using the DS function (Figure 3). Thus, in order to select groups with probable pleiotropic
effects, we recommend performing a first batch of analyses by using the DS method, with a reasonable
number of iterations such that most of the groups converge, using 2 chains to compute the BGR and
test the convergence of the method. We suggest performing the method with 2,000 iterations and 1,000
burn-in. Then, if the BGR values for one or more SNPs in the group are significantly different from 1
(values between 0.9 and 1.1 are typically used as threshold for reasonable convergence), the method
should be run again for the group using higher number for iterations and burn-in. We recommend to
repeatedly double these values until the convergence threshold is reached.

Statistical inference pipeline for primary analysis

We provide a diagram in Figure 3 that helps the user detect group and variable pleiotropic effects
using the GCPBayes package. The first step for detection of a pleiotropic signal is to test the global
null hypothesis of no association against the global alternative hypothesis of association with at least
one trait by considering DS (or CS).

Considering the CS method of the package (please refer to the corresponding equations in Ap-
pendix A), we define the following global null hypothesis of no association as follows:

H0 : ξ1 = ξ2 = · · · = ξK = 0 versus H1 : at least one ξk ̸= 0, k = 1, · · · , K. (2)

To perform this test, the package computes two quantities. Let et P(H0|D) be the posterior
probability of the null hypothesis, i.e. the probability of making a false discovery for a non-null effect,
which (Efron 2012) refers to as the D local Bayesian false discovery rate (denoted by lBFDR). The
phrase “local” comes from a single point, {0}, as the domain of the null hypothesis tested (Efron 2012).
Note that small values of lBFDR show strong evidence for the existence of a substantive effect. We
recommend using the usual value of 0.05 as a threshold to decide whether to reject the null hypothesis
or not. The Bayes factor (BF), which describes the evidence of H1 versus H0 could also be considered.
In contrast to the lBFDR, a high Bayes factor (BF) value indicates strong evidence in favor of H1. We
recommend considering a value of 1 as a threshold (or log10BF > 0).

The marginal study-specific posterior probability of association (PPA) proposed by Majumdar et
al. (Majumdar et al. 2018) is also computed to quantify the relative contribution of a study underlying

the signal. This is defined for each study k by PPAk = 1
M

M
∑

r=1
ξ
(r)
k . This corresponds to the probability

that the study k was drawn from the slab distribution, i.e. the probability that the group has a non-zero
effect.

For checking any association by using DS, the global test is defined by:

H0 : β1 = · · · = βK = 0, versus H1 : at least one fik ̸= 0, k = 1, · · · , K. (3)

The existence of an association when using DS can be defined in the same way as for CS.

If there is no sufficient evidence for H1 (i.e., a non-null effect in at least one study), then there is
no need to further consider group pleiotropy or variable pleiotropy. If there is evidence for H1, the
user can calculate the value of the DS function’s theta. The strategy to detect group pleiotropic effects
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based on CS is to compute θ as follows:

θ = P

(
K

∑
k=1

ξk ≥ 2|β̂k, Σ̂k, k = 1, · · · , K

)
. (4)

Note that for computing θ for DS, we can follow the same strategy as for CS. Hence, θ represents
the probability of having a non-zero effect in at least two studies. Thus, it is reasonable to consider a
threshold t of 0.5 to statistically determine whether there is pleiotropy or not. However, a user wishing
to generate many tentative hypotheses could choose a less stringent threshold (i.e., 0.1). Conversely,
a user could choose a very strict threshold (i.e., 0.9) to select only the most certain groups. If θ ≤ t,
no pleiotropic effect is detected at the group level, and thus no pleiotropy signal is present at the
variable level. However, if θ > t, we can consider the group to have a pleiotropic effect. It should be
mentioned that when a pleiotropic effect is detected for a group, we can investigate the pleiotropy for
each variable in the group. In this case, as CS and DS are defined group by group, the use of Bayesian
point estimations (the means of the posterior distributions) and 95% credible intervals from the DS
function can be used as criteria for variable selection. The jth variable has a pleiotropic effect if at least
two βkjs are chosen. For example, assume that a pleiotropic effect is detected in an analysis of two
studies. The posterior estimates β̂1j and β̂2j can then be used as a pleiotropy decision tool for the jth

variable j = 1, 2, · · · , m.Hence, if β1j and β2j are two non-zero signals, Then the jth variable is declared
to have a pleiotropic effect; otherwise, the jth variable has no pleiotropic effect.

Statistical inferences for analysis by using HS

Because HS has shown a higher power to detect pleiotropy at the variable-level in simulations, we
recommend using the HS approach for the groups initially detected as pleiotropic via the DS function.
A user can move down the θ threshold in order to explore potential pleiotropic effects that could
have been detected with a larger sample size (i.e. to consider θ ≥ 0.1 from DS). Then, the user can
compare the results at the variable-level for DS and HS (Figure 3). Using this overall strategy, a user
would have to run the HS method on a smaller number of groups and thus avoids dealing with long
computational time of the HS function for all groups at once.

To detect a pleiotropic signal for the jth variable, the posterior estimates β̂kj, j = 1, 2, · · · , m,
k = 1, 2, · · · , K, and k = 1, 2, · · · , K can be used. We consider the variable j to have pleiotropic
effect if and only if there are at least two non-zero signals among the K studies. It should be noted
that, in addition to a 95% CI, the sparseness of the posterior median of the regression coefficient
βkj, k = 1, · · · , K, j = 1, 2, · · · , mg can be used for this purpose.

Pleiotropy should be considered at the variable level based on the posterior median: for example,
the jth variable can be considered pleiotropic if the posterior median of a βkj is different from 0 for at
least two studies k. Finally, pleiotropy is considered at the group level if at least one pleiotropic variable
is found within the group. Moreover, HS allows for the detection of pleiotropy at the group-level in
other situations. Note that the pleiotropy effect can take on different shapes. As presented in (Solovieff
et al. 2013), biological pleiotropy at the gene level can occur when two different signals within the
same gene are associated with two different phenotypes. This can affect both phenotypes in a similar
way. Therefore, we also consider pleiotropy at the group-level when an association is detected (not
necessarily detected as pleiotropic) for different variables within the group in at least two different
studies.

5 Computational time for GCPBayes

In this section, the computational time of GCPBayes package is explored by re-analysing of the
experimental data for nine groups (genes) described in (Baghfalaki et al. 2021). The analysis has
been conducted using a PC with a Core(TM) i5-4690K CPU @ 3.50 GHz processor and 8 GB of
memory. For this purpose, we consider nine genes with different numbers of variables (SNPs). To
fit the models, we used 2,000 MCMC iterations and discarded half as burn-in. Table 1 represents the
results of computational times using the GCPBayes package for analyzing the data. As expected,
the computational time increases when the number of variables within a group increases. The
computational time for the DS method is the shortest, and the more complex HS model HS has the
longest computational time, as expected. Another exploration of computational time for the GCPBayes
package, based on simulation studies, see (Baghfalaki et al. 2021).

We have also applied GCPBayes on whole genome data of breast and ovarian cancers (summary
statistics data). Running GCPBayes over all coding genes (number of genes: 18,244 and number of
SNPs: 1 to 9,595) took about 17 days (on a PC with Intel Core(TM) i7-1165G7 @ 2.80 GHz, 32 GB RAM).
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Figure 3: A diagram for detecting group and variable pleiotropic effects using GCPBayes package. For
more information see the text.

However, the user takes advantage of parallelization (using “foreach” command), the computational
time can be reduced. For instance, the computational time was about 40 hours using the same PC but
running six genes in each loop (i.e., using six CPUs instead of one).

Table 1: Computational time (in mins) of GCPBayes.

Name of gene Number of SNPs CS DS HS
ADH1A 2 0.070 0.030 0.139

ACE 5 0.069 0.036 0.172
ADH1B 10 0.084 0.049 0.243

RFC3 14 0.105 0.066 0.347
AOX1 24 0.158 0.127 0.629

ABCC8 30 0.220 0.190 0.966
BCAT1 50 0.555 0.539 3.123
EBF2 60 0.779 0.775 5.156
EGFR 103 2.697 2.882 30.794

6 Concluding remarks

We have developed the R package GCPBayes that implements several Bayesian meta-analysis methods
for studying cross-phenotype genetic associations (pleiotropy), taking into account group structure
from prior biological knowledge. GCPBayes offers multivariate spike and slab priors for group-
level pleiotropy, using either DS or CS formulations, and for pleiotropy at both group and variable-
level using the hierarchical spike prior (HS) formulation. These approaches take into account the
heterogeneity in size and direction of the genetic effects across traits. Although DS and CS are not
designed for variable selection, these methods do allow us to investigate the pleiotropy for each
variable in the group by using 95% credible intervals and the median threshold as criteria for variable
selection in groups for which a pleiotropic effect has been detected. On the other hand, the posterior
estimates can be used to detect a pleiotropic signal for each variable using HS. Thus, a variable is
considered to have a pleiotropic effect if and only if there are at least two non-zero signals among the
studies. For this purpose, in addition to the 95% credible intervals, the sparseness of the posterior
median of the regression coefficients is reported. Also, it should be mentioned that GCPBayes package
provides marginal trait-specific posterior probability of association of each study (PPA), direction
of associations for each variable, Bayes factor and local Bayesian false discovery rate of the global
hypothesis, a statistical criterion for detection of group pleiotropic signal (θ), credible interval and
median of the variables, summary information of the variables, and the generated MCMC samples.
Besides, as we mentioned, HS allows us to consider the pleiotropy at the group-level if at least one
pleiotropic variable is detected within the group. It also allows detection of pleiotropy at group-level
without pleiotropy at variable-level if two or more different variables are significant in different studies
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(Baghfalaki et al. 2021). This might happen if, for example, the same gene (group) may have a similar
effect on several phenotypes through different genetic markers (Solovieff et al. 2013).

We provided nine examples to demonstrate the different ways of working with the package using
both simulated and real data. In addition, three more examples are provided in Appendix B to show
the ability of the GCPBayes package to deal with various types of input data. As we mentioned
earlier, while the input of the package is summary statistics data, it is possible to use the package
for investigating pleiotropy in various kinds of phenotypes. So, a user look for pleiotropic signals
in different types of phenotypes, including categorical, continuous, mix categorical and continuous,
survival data, without any limitation.

However, there are still some limitations that a user should consider while working with the
package. For example, for more accurate detection of pleiotropic signals, a large enough sample size
for the input data should be provided. This means having a larger sample size in the individual-level
data (from which the summary statistics are calculated from) would lead to better accuracy of the
method for detecting pleiotropic signals. Besides, the GCPBayes package is designed for uncorrelated
studies (no overlapping samples between studies). So, an improvement of the package for correlated
studies could be considered for the future. Also, GCPBayes can deal with correlated samples in
uncorrelated studies as it uses summary statistics. Though the user should exercise caution, the
summary statistics has been calculated using methods which take into account such correlations
between samples. More user-friendly functions for preparing the data, for pre-selecting, and assigning
key variables into groups before applying the GCPBayes methods, are currently in development.
Furthermore, since the main focus of the package is on the detection of pleiotropic effects using GWAS
data, we are currently developing guidelines to optimize the package for use in real-world large-scale
data by taking into account factors such as optimal iterations of the MCMC step for convergence and
the development of a general strategy for dealing with genes with a large number of SNPs or large
sizes.
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