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Likelihood Ratio Test-Based Drug Safety
Assessment using R Package pvLRT
by Saptarshi Chakraborty, Marianthi Markatou, and Robert Ball

Abstract Medical product safety continues to be a key concern of the twenty-first century. Several
spontaneous adverse events reporting databases established across the world continuously collect
and archive adverse events data on various medical products. Determining signals of disproportional
reporting (SDR) of product/adverse event pairs from these large-scale databases require the use
of principled statistical techniques. Likelihood ratio test (LRT)-based approaches are particularly
noteworthy in this context as they permit objective SDR detection without requiring ad hoc thresholds.
However, their implementation is non-trivial due to analytical complexities, which necessitate the use
of computation-heavy methods. Here we introduce R package pvLRT which implements a suite of
LRT approaches, along with various post-processing and graphical summary functions, to facilitate
simplified use of the methodologies. Detailed examples are provided to illustrate the package through
analyses of three real product safety datasets obtained from publicly available FDA FAERS and VAERS
databases.

1 Introduction

Adverse events of medical products are a major concern worldwide, with serious global health
implications particularly in the post-pandemic world. While clinical trials conducted pre-licensure
remain the primary source of safety information about medical products, and other data sources
such as claims and electronic health records are increasingly being used post-licensure, they exhibit
several limitations. First, detecting extremely rare adverse events in clinical trials is difficult due to
their strict inclusion/exclusion criteria and their relatively small counts compared to the population
which will eventually receive the product. Second, randomized clinical trials for detecting multiple
adverse events may be logistically and ethically infeasible. Despite having known issues such as
self-selection, confounding, and missing data, etc., large-scale observational studies have been used in
surveillance and post-licensure epidemiological studies to supplement traditional clinical trial-based
approaches (Markatou and Ball 2014). Thanks to the proliferation of electronic health record systems
worldwide, a vast trove of such data are now available and can collectively provide critical first alerts
for emerging medical product safety concerns. Curated large-scale databases such as US Food and
Drug Administration (FDA)’s Adverse Event Reporting System (FAERS) and Vaccine Adverse Event
Reporting System (VAERS), the European Medicines Agency’s Eudravigilance, and the World Health
Organization’s VigiBase provide collective lists of drugs/vaccines and adverse events from large
number of reports, and thus are invaluable resources for product safety assessment.

Mining these databases to assess medical product safety is however challenging due to limitations
of the data (e.g., biases in reporting, presence of duplicate reports, and missing/incomplete informa-
tion) and the lack of a universally accepted statistical methodology. Several approaches to detecting
signals of disproportionate reporting (SDR) as an indicator of a possible safety concern from adverse
event data exist; these constitute a part of the pharmacovigilance process for assessing whether a
medical product is the cause of an adverse event. Of the existing approaches, Proportional Relative
Reporting Proportion (PRR), Reporting Odds Ratio (ROR), Multi-item Gamma Poisson Shrinker
(MGPS), Bayesian Confidence Propagation Neural Network (BCPNN) and their false discovery rate
(FDR)-adjusted variants are notable. Many of these approaches require one or both types of thresh-
olding: (a) on the number of reports needed for the method to operate, and (b) on the underlying
statistic to identify important/severe adverse events. However, determining appropriate thresholds
remains a key challenge for these approaches, and in practice ad hoc thresholds are often used. This is
problematic because both too low and too high thresholds lead to drastically different detection rates,
and no separate measure is usually available to assess correctness of the detected signals. A principled
approach permitting data-driven threshold determination with optimal guarantees on the detected
signals is therefore essential to ensure statistical validity of results.

The LRT-based approaches to signal detection in the medical product safety datasets (Ding,
Markatou, and Ball 2020; Huang, Zalkikar, and Tiwari 2011; Huang et al. 2017; Zhao, Yi, and Tiwari
2018; Chakraborty et al. 2022) provide a highly rigorous suite of statistical methods to address these
problems. To provide a high-level summary, these methods assume a Poisson/zero-inflated Poisson
model to parametrize associations between drugs and their adverse events. Then conditional on
the total reported number of cases for each adverse event and each medical product, these methods
quantify signal strength in the observed number of reports per adverse event/medical product pair
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Table 1: Existing R packages on CRAN with functionalities for pharmacovigilance.

Package Method Notes

PhViD: Pharmacovigilance
Signal Detection

PRR, ROR, BCPNN, GPS

openEBGM: EBGM Dispro-
portionality Scores for Ad-
verse Event Data Mining

MGPS Aimed towards drug safety.

sglr: An R package for
power and boundary calcu-
lations in pre-licensure vac-
cine trials using a sequen-
tial generalized likelihood
ratio test

Sequential Generalized
Likelihood Ratio decision
boundaries

Sequential: Exact sequen-
tial analysis for Binomial
and Poisson data

Max SPRT statistic

AEenrich: Vaccine adverse
event enrichment tests

a) Modified Fisher’s exact
test (for pre-selected signifi-
cant AEs); b) Modified Kol-
mogorov Smirnov statistic

Aimed towards sequential
testing-based vaccine safety

as used by the FDA

mds: Medical Devices
Surveillance

Data preprocessing Provides functions for han-
dling messy/unstructured
medical devices data.

pvLRT: A suite of likeli-
hood ratio test based meth-
ods to use in pharmacovigi-
lance

(Pseudo) LRT approaches
based on log-linear models

Our package.

through a (likelihood ratio) test statistic. Finally, significance of the pair is determined by comparing
the observed test statistic to its null (independence) sampling distribution. There are several key
advantages of these formal hypothesis test-based approaches which make them ideal for practical
use. First, they aid coherent frequetist sampling distribution-based quantification of signal strengths,
ensuring strong statistical and probabilistic rigor of the results. Second, they do not require the
use of ad hoc thresholds for the observed report counts; instead, they quantify significance through
probabilistic measures of uncertainty, e.g., p-values. This ensures that the identified signals are valid
up to a pre-specified level of tolerance (usually 0.05). Third, because they are based on the highly
formal likelihood ratio test theory for null hypothesis significance testing, they can rigorously control
the type I error and the false discovery rate, while ensuring high power and sensitivity for signal
detection. Moreover, by appropriately defining a maximum likelihood ratio test statistic, the method
achieves automated FDR adjustment without requiring any separate p-value adjustment step.

There currently exist a few R packages in CRAN with functionalities relevant for medical product
safety. This includes the packages PhViD (Ahmed and Poncet 2016), openEBGM (Canida and Ihrie
2017), AEenrich (Li et al. 2021), Sequential (Silva and Kulldorff 2021), sglr (Narasimhan and Shih
2012), and mds (Chung 2020). Among these PhViD and openEBGM provide functionalities for
spontaneous adverse event data-driven pharmacovigilance: PhViD implements methods such as
PRR, ROR, and BCPNN, and openEBGM implements the method of MGPS. By contrast, the other
packages provide sequential testing-based approaches to vaccine safety. Table 1 lists these packages
and their functionalities together with some high-level notes on their targeted uses. We note however
that none of these packages implement LRT-based approaches to drug safety based on spontaneous
adverse event data as considered in pvLRT. Indeed the development of pvLRT was motivated by
the lack of easily accessible and comprehensive open source computational solutions to the LRT-
based pharmacovigilance approaches. An important common ingredient of these LRT-based methods
is a computation-intensive Monte Carlo simulation step required to facilitate (exact/non-asymptotic)
inference from the analytically intractable null sampling distributions of the relevant test statistics.
However, this requirement precludes immediate applications of the methods by pharmacovigilance
practitioners in the absence of easily accessible software implementations. This is particularly relevant
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for zero-inflation based models where, in addition to the computation-heavy Monte Carlo step
additional numerical optimization steps are necessary for the estimation of the zero-inflation parameter.
We have developed pvLRT (Chakraborty and Markatou 2022) to cater to these needs while ensuring
proper statistical rigor in the implementations.

The following are the major contributions of the pvLRT package. First, the package serves as
a comprehensive software implementation of several LRT-based methods proposed over the past
decade, including some recently developed methods. Both Poisson and Zero-inflated Poisson (ZIP)
based models are implemented, and tests of both single and multiple simultaneous drugs (or medical
products) are provided. Formal model comparison methods, such as Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC), can be used on the model fits to aid data-driven
selection of Poisson vs. ZIP models on individual datasets. Second, three visual summary plots for
the test results , namely bubble plot, barplot, and heatmap, are provided for immediate visualization.
These plots provide information on sample size and test statistic and p-values for all AE/drug pairs
tested, and hence permit quick exploration of signals in a (possibly large) dataset. These visualizations
use ggplot2 (Wickham 2016) as the plotting engine, and hence its attributes (color, text size, etc.)
can be easily modified post hoc by changing some of the ggplot2 graphical sttributes. In addition,
leveraging the modern R ecosystem, the resultant plots can be easily made interactive via additional
functions from other packages, such as ggplotly() from the package plotly (Sievert 2020). Third,
aside from implementations of likelihood ratio tests, simple functions for random contingency table
data generation from the Poisson and zero-inflated Poisson models are provided. This is particularly
helpful in simulation experiments where different statistical methods for pharmacovigilance are
compared. Finally, we have included processed contingency tables of AE/drug reports for two specific
drug groups, viz. statins and Gadolinium-based Contrast Agents (GBCA; Zhao, Yi, and Tiwari (2018)),
raw AE/drug incidence data, and a vaccine/AE dataset on rotavirus vaccines as R datasets. The drug
data were obtained from the publicly available FDA FAERS database for the quarters 2014 Q1 – 2020
Q3 (for the processed contingency tables) and 2022 Q3 (raw incidence data), and the vaccine data
were obtained from the FDA VAERS database for the year 1999; the package provides a convenient
approach to accessing these processed data, particularly beneficial in methodological studies.

We note here that pvLRT is primarily an analysis package providing functions implementing
statistical methodologies and subsequent post-processing and visualizations of results. The input
data for the main analysis functions in pvLRT are always assumed to be pre-processed contingency
tables (matrix-like objects) enumerating adverse event report counts with AEs along the rows and
Drugs (or other medical products) along the columns. The package provides a convenience function
to convert raw AE/drug incidence data (e.g., those downloaded from the FDA FAERS database)
into analysis-ready processed contingency tables; however, no other functions for input raw data
exploration and pre-processing, e.g. for filtering specific AEs or Drugs of interest or grouping specific
AEs or drugs together are provided. We have deliberately made this design choice to (a) make the
scope of the package well-defined, and (b) encourage the user to explore the raw adverse event data
well before analyzing them. The modern R ecosystem contains several excellent general-purpose
packages/package-collections, including data.table (Dowle and Srinivasan 2021) and tidyverse (Wick-
ham et al. 2019) that provide a suite of principled and easy to use data pre-processing, munging, and
visualization functions. We highly recommend leveraging these packages/functions to understand
and preprocess the data well, before likelihood ratio tests are performed using pvLRT.

The purpose of the current article is to provide a high-level overview of the pvLRT package with
detailed notes on its use, and guided examples with real world adverse event data exemplifying the
use of LRT-based methodologies for pharmacovigilance. We note however that this article is not
meant to serve as a comprehensive manual for pvLRT; all functions/objects provided in pvLRT come
with detailed documentation, and this documentation serves as the definitive resource for pvLRT. It
is also important to note that the LRT-based disproportionality analysis exemplified herein is only
one part of the collective medical product/adverse event relationship assessment process. Current
pharmacovigilance practice for medical product safety assessment includes review of summary
statistics, disproportionality scores, cases summaries, and other sources of information about the
medical products and the adverse events. The remainder of the article is organized as follows. We
begin with a brief review of the LRT-based approaches to pharmacovigilance implemented in pvLRT.
We then exemplify pvLRT by analyzing three sets of real pharmacovigilance datasets, two concerning
drug safety and one concerning vaccine safety. We conclude the article with a brief discussion and
some potential future directions.
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2 A brief review of the Likelihood Ratio test-based approaches to phar-
macovigilance

This section reviews the underlying theories behind the likelihood ratio test (LRT)-based methods for
drug safety assessment. We begin by fixing our notation. Consider a drug safety database cataloging I
AEs detected among J medical products. Hereinafter we describe the methodologies in terms of ‘drugs’
as the medical products of concern; however, the methodologies trivially extend to other medical
products including vaccines and medical devices. Let nij denote the number of reported cases for the

i-th AE in the j-th drug. For the I × J contingency table (nij), let ni• = ∑J
j=1 nij and n•j = ∑I

i=1 nij
denote the i-th row total and j-th column total respectively, i = 1, . . . , I; j = 1, . . . , J; and let n•• denote
the grand total. Interest lies in determining whether the observed report count nij for (i, j)-th AE/drug
pair is substantially larger than what is expected had there been no association between the i-th AE
and the j-th drug. Within the null hypothesis significance testing framework this is achieved by testing
a hypothesis of absence of a “signal” against that of its presence at the corresponding AE/drug pair.
We formally define these hypotheses and the underlying parametric models below.

Model and Parametrization for LRT-based pharmacovigilance. A Poisson log-linear model for
LRT-based SDR detection has been proposed in the literature to parametrize AE/drug associations
based on the observed report counts {nij}. At the outset we note that these AE/drug associations can
also be studied through a series of logistic regression models each with binary occurrences of each
individual AE as the response and the presence/absence of various drugs (or other medical products)
as predictors. When a Poisson model is assumed for the report counts {nij}, the resulting log-linear
model and the collective logistic regression models lead to identical maximum likelihood-based
inferences (Agresti 2013). However, the log linear model is more flexible than the logistic models
in that, by relaxing the underlying Poisson assumption for the report counts, it can handle a richer
set of data. Two different parametrizations, namely the reporting proportion (Huang, Zalkikar, and
Tiwari 2011) and the relative reporting proportion (Dumouchel 1999), have been considered within
the log-linear modeling framework for pharmacovigilance. These parametrizations differ by how
they define and handle “signals”. In the reporting proportion parametrization a signal is determined
at a specific AE for a given drug if its reporting proportion is substantially larger than the overall
reporting proportions of all other AEs combined. In contrast, in the relative reporting proportion
parametrization one focuses on the relative reporting proportion of a specific AE for a given drug and
tests whether it is substantially larger than 1. The latter parametrization does not require consideration
of the category of “all other AEs combined” explicitly in each comparison, and hence has a simpler
interpretation. In applications the two parametrizations incur similar computational expenses, and
produce virtually identical results when the true data generating process is Poisson. However, the
results may vary substantially when there is a model misspecification, including the presence of
zero-inflation, i.e., excess zero-report counts that are inherently different from the sampling zero counts
governed by the Poisson law and are produced by an exogenous process. A note on different types
of zero-inflation possibly occurring in adverse event datasets is provided in the next paragraph.
Our recent methodological study (Chakraborty et al. 2022) has shown that the relative reporting
proportion-based Poisson LRT is more robust against zero-inflated data than its reporting proportion
based counterpart. Extensions of the Poisson LRTs have been proposed to explicitly handle excess
zeros under a zero-inflated Poisson (ZIP) model. The relative reporting proportion parametrization,
within a pseudo likelihood ratio testing framework, aids a straightforward extension to the ZIP model
that adds only a small overhead (one single additional optimization of a smooth univariate function)
to the overall computational burden, and produces a test statistic whose functional form is identical
to the ordinary (non-zero inflated) Poisson LRT. This computational simplicity makes the approach
highly scalable for large data sizes, similar to the Poisson LRT. Collectively, these simplifications
aid the construction of a unified LRT framework based on the relative reporting proportion-based
parametrization that can simultaneously handle a Poisson model and a ZIP model, with near identical
computational burden. By contrast, the reporting proportion-based LRT under a ZIP model suffers
from a substantially increased computation burden (Huang et al. 2017) which hinders its scalability.
For these reasons, both in this article and in the pvLRT package we primarily focus on the relative
reporting proportion parametrization; we do note however that the pvLRT package does provide an
implementation of the reporting proportion parametrization under an ordinary Poisson model setup.

A brief note on excess zeros or zero-inflation in medical product safety data. We now briefly note
how zero-inflation occurs in pharmacovigilance. In adverse event reporting datasets, an important
source of excess zero report counts is structural zeros associated with AE/drug pairs that are physically
impossible to occur. If structural zeros are present, then the corresponding cells in a contingency table
enumerating the number of reported cases of various AE/drug pairs will always be zero, regardless
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of the total number of reported counts. Moreover, inference on these structural zero positions can
be made from the observed data: intuitively, a cell with a positive report count in any observed
table cannot be a structural zero, and only an observed zero cell can be a structural zero. This is in
contrast with another source of zero-inflation, namely data corruption, that may also occur in adverse
events data. Here, due to noise in data recording process some real report counts in the AE/drug
contingency tables are randomly recorded as zero. Under this setting, there is no population level
true zero positions, and the zero inflated positions vary from one sample to another. In this article we
primarily focus on the structural zero-type zero-inflation, as it is the primary type of zero-inflation
that the FAERS datasets stored in pvLRT feature. Indeed, the FAERS data undergo several rounds of
rigorous reviews and checks to safeguard against data corruption. However, we note that pvLRT does
provide functions for handling corruption-type zero-inflation; interested readers are referred to the
the documentation of the pvlrt() function.

Parametric hypothesis testing for signals in pharmacovigilance based on a Zero-inflated Poisson
(ZIP) model. To facilitate a unified treatment we consider a zero-inflated Poisson model to describe
the test procedure. A discrete random variable X is said to follow a ZIP(θ, ω) distribution where
ω ∈ [0, 1) and θ > 0 if the probability mass function of X is given by

P(X = x) =

{
ω + (1 − ω) exp(−θ), x = 0
(1 − ω) exp(−θ) θx

x! , x = 1, 2, 3, . . .
,

i.e., if the distribution of X is a (1 − ω) and ω mixture of a Poisson(θ) distribution and a point mass
at zero. The model reduces to an ordinary Poisson model when the zero-inflation probability ω = 0.
For adverse event data report counts we consider the following zero-inflated Poisson model for the
observed count nij for the i-th AE of a specific drug j: nij ∼ ZIP(λij × Eij, ωj), where Eij = ni•n•j/n••
is the expected number of reports for the (i, j)-th pair when there is no association between the
pair, and λij is the relative reporting proportion. Under this set up, null hypothesis significance
tests are performed to determine signals at specific pairs. Suppose we are interested in determining
significant adverse events among K out of the J drugs, labeled 1, . . . , K. The global null hypothesis
is H1:K

0 : {λij = 1 for all i = 1, . . . , I and j = 1, . . . , J} and is tested against the global alternative
H1:K

a = {λij > 1 for at least one (i, j) : i = 1, . . . , I; j = 1, . . . , K} which represents the hypothesis of “at
least one signal’ ’. If the global null hypothesis is rejected in favor of the global alternative, our focus
then shifts on identifying the individual AE/drug pairs with strong associations. This is achieved by
post hoc test of the global null hypothesis against the individual alternative hypotheses Ha,ij : λij > 1.

Pseudo Likelihood Ratio Test. A pseudo likelihood ratio test of the above hypotheses involves
computation of the individual pseudo likelihood ratios

LRij =

{
1 nij = 0
exp(−(λ̂ij − 1)Eij)λ̂

nij

ij nij > 0
,

where λ̂ij = max{nij/Eij, 1} is the maximum likelihood estimator of λij under H1:K
0 ∪ H1:K

a , and
subsequently, the maximum likelihood ratio statistic MLR1:K = maxi=1,...,I;j=1,...,K LRij. The global
null is rejected in favor of the global alternative hypothesis if MLR1:K is large, in which case subsequent
post hoc tests of individual alternatives Ha,ij can be performed based on the observed values of LRij.
Computation of the global and post hoc p-values are described in the following paragraph. Note that
the computed or “observed” values of LRij aid rigorous statistical quantification of the signal strength
in a pair (i, j). Thus, we can use these quantities to rank the individual AE/drug pairs in terms
of their signal strengths detected in the dataset under consideration. This is particularly useful for
determining, the “most prominent” adverse events for a specific drug or a groups of drugs as detected
in a dataset. Note also that the functional form of LRij and hence that of MLR1:K does not contain the
zero-inflation parameters ωj. However, the null sampling distributions necessary for performing the
hypothesis tests do involve them. Computational approximations of these null sampling distributions
are described next.

Bootstrapped null sampling distribution of the pseudo likelihood ratio test statistic, and computing
p-values. The null sampling distributions of the individual likelihood ratio statistics {LRij} and the
maximum likelihood ratio statistic {MLR1:K} are analytically intractable, and they must be approxi-
mated using computational techniques to facilitate inference. In pvLRT we use a parametric bootstrap
resampling scheme for this purpose (Davison and Hinkley 1997). To this end, zero-inflated Poisson
models are fitted to the observed data under the global null hypothesis H1:K

0,ij , and null resampled
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counts {ñij} are subsequently generated from the fitted model. Fitting zero-inflated Poisson models
requires estimation of the zero-inflation parameters {ωj} from the observed data. In pvLRT the
maximum likelihood estimates of {ωj} are used for this purpose, which are obtained by maximizing
the profile likelihood for ωj:

lj(ω) = (I − I0j) log(1 − ω) + ∑
{i:nij=0}

log
(

ω + (1 − ω) exp(−Eij)
)

,

for j = 1, . . . , J. Here I0j denotes the number of zero nij values for each drug j. The conditional
(posterior) probability of encountering a zero-inflation at the (i, j) pair, given the corresponding
observed count nij is subsequently estimated and computed as:

η̂obs
ij =

0, nij > 0
ω̂obs

j

ω̂obs
j +(1−ω̂obs

j ) exp(−Eij)
nij = 0

,

for all i = 1, . . . , I and j = 1, . . . , J. Then, using these estimated conditional zero-inflation probabilities,
null parametric bootstrap resamples are generated from ñij ∼ ZIP(Eij, η̂ij). Under an ordinary Poisson
model, the parameters ωj and ηij do not arise (they are equal to zero from a ZIP model perspective),
and the null bootstrap resamples are simply generated from ñij ∼ Poisson(Eij); hence, the bootstrap
null resamples become exact null resamples. In either case, these null resamples ñij produce null
resampled values of the test statistic MLR1:K , and they collectively approximate the corresponding
sampling distributions. The p-value for the global null against the global alternative hypothesis is
P1:K = P(MLR1:K ≥ MLR1:K,obs | H1:K

0 ), and can be approximated by the proportion of the null
resampled MLR1:K values that exceed the observed value of MLR1:K,obs:

P1:K,computed =

1 + ∑M
h=1 1

(
M̃LR

1:K,(h)
≥ MLR1:K,obs

)
M + 1

,

where {M̃LR
1:K,(h)

: h = 1, . . . , M} are bootstrapped resampled null values of MLR1:K . The global
null can be rejected at level α in favor of the global alternative hypothesis if P1:K,computed < α. The
post hoc p-values {Pij = P(MLR1:K ≥ LRobs

ij | H1:K
0 )} for the individual alternative hypotheses {Ha,ij}

are also approximated using the same null resampled values of MLR1:K :

Pcomputed
ij =

1 + ∑M
h=1 1

(
M̃LR

1:K,(h)
≥ LRobs

ij

)
M + 1

.

Note that these post hoc p-values are based on the null sampling distribution of the same random
test statistic MLR1:K ; only the thresholds where the tail probabilities are evaluated are different (the
individual observed LRobs

ij values). Consequently, no inflation in the overall type I error occurs due
to multiplicity of hypothesis tests with independent test statistics. This also ensures that the false
discovery rate of the entire procedure is controlled at the same level as the overall type I error.

Model selection: determining whether to use a Poisson model or a ZIP model on a given dataset.
As noted before, the ZIP model above assumes that the report counts for a specific drug j are zero-
inflated with probability ωj. If ωj is small, then the ZIP model effectively reduces to an ordinary
Poisson model; however in general, the ZIP model produces probabilities that are different from the
Poisson probabilities. A natural question of particular practical importance is therefore which of these
two models should be used on a given dataset. Clearly, if there is knowledge about the existence (or
non-existence) of structural zero pairs in a given dataset (the exact positions of the structural zeros
may possibly be unknown), then one should use a ZIP (ordinary Poisson) model. However, in practice
no such knowledge may be available, and the optimal model must be determined entirely on the basis
of the observed data. In other words, one must address what is known as a model selection problem.
Because we are in a parametric likelihood framework, a convenient and canonical approach would
involve the use of some penalized likelihood model selection criterion, such as the AIC or the BIC
(Sakamoto, Ishiguro, and Kitagawa 1986) defined as:

AIC(k) = −2 log(L̂) + kp,

where L̂ denotes the maximized value of the likelihood function for a given model, k is a penalty
parameter, and p is the total number of parameters in the model. The choice k = 2 produces the
classical AIC, and k = log N where N denotes the total number of data points, produces the BIC. The
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model with the minimum AIC (or BIC) is regarded as optimal. Note that in the current context for
both the Poisson and the ZIP models, log(L̂) is obtained from the unrestricted model with each {λij}
assuming values in [1, ∞); the total number of parameters are p = I × J in the Poisson model and
(I + 1)J in the ZIP model, and the total sample size N is the grand total n•• of the contingency table.

Testing for zero-inflation among individual drugs. The above model selection procedure addresses
the question of whether to use the ZIP model or an ordinary Poisson model for a given dataset.
When a ZIP model is determined to be optimal, interest may then lie in determining the statistical
strength/significance of individual zero-inflation parameters {ωj} specific to the individual drugs.
In a null hypothesis significance testing framework, this can be translated as a test of Hω

0,j∗ : ωj∗ = 0
against Hω

a,j∗ : ωj∗ > 0, for each drug j∗. The likelihood ratio test statistic for this problem is LRω
j∗ =

exp
[
lj(ω̂j∗ )− lj(0)

]
, where lj∗ (ω) is the profile log likelihood function for ωj∗ as described before, and

ω̂j∗ is the corresponding maximum likelihood estimator obtained by maximizing lj∗ (ω). Similar to
the LRT for λij described before, the null sampling distribution of LRω

j∗ is analytically intractable, but
can be approximated using a parametric bootstrap. To this end, null resamples {ñij∗} are generated
from the ZIP(λ̂ij∗ Eij∗ , ωj∗ = 0) ≡ Poisson(λ̂ij∗ Eij∗ ) distribution, where λ̂ij∗ = max{nij∗/Eij∗ , 1}
is the maximum likelihood estimator of λij∗ . From these null resamples {ñij}, null values of the

likelihood ratio test statistics {L̃R
ω
j∗} are computed. The p-value of the test of Hω

0,j∗ against Hω
a,j∗ is

subsequently computed using Monte Carlo estimated probability (proportion) of null {L̃R
ω
j∗} values

that are bigger than or equal to the “observed” value LRω, obs
j∗ . If zero-inflation in several drugs j∗ are

tested simultaneously, then the overall p-value needs to be adjusted for multiplicity; in pvLRT the
Benjamini-Hochberg adjusted p-values (q-values; Benjamini and Hochberg (1995)) are used by default
for this purpose.

3 Adverse Event Data Analysis with pvLRT

In this section we provide data analysis examples based on four real datasets contained in the
pvLRT package. These datasets are stored as pre-processed contingency tables (in matrix-like forms)
cataloging the aggregated report count for each AE/drug pair. To produce such contingency tables
from raw adverse event data the pvLRT function convert_raw_to_contin_table() may be used. We
note, however, that care must be taken before summarizing raw data into such contingency tables.
First, a decision needs to be made regarding which reports to include in the analysis, e.g., only
consider primary and/or secondary suspect drugs or also include concomitant and interacting drugs
as cataloged in the FAERS database. The processed data stored in pvLRT only considers reports for
the primary and secondary suspect drugs. Second, one needs to identify which drugs to include in
the “Other Drug” category which plays the key role of “baseline” drugs. Appropriate specification of
this baseline category is required because of its contribution to the total report counts for each AE,
even though the AE/baseline drug category associations are not of primary importance. Typically, one
identifies a handful of drugs of particular interest (e.g., the statins as discussed in the examples below)
and combines all remaining drugs as baseline (Ding, Markatou, and Ball 2020). Finally, one needs
to determine which AEs to include in the testing. The proposed LRT-based methods permit strong
control over the global type I error and false discovery rates while ensuring high power (Chakraborty
et al. 2022), regardless of the total number of AEs. However, computation of the bootstrap p-values
become increasingly more expensive with a growing number of AEs, and thus in practice one may
encounter certain upper bounds to the total number of AEs that can be tested at a given time. We refer
to Ding, Markatou, and Ball (2020) for a detailed discussion on these considerations. The analyses
provided below (divided into subsections) showcase examples with both small (I = 46) and large
(I ≈ 6000) number of AEs. We start by loading the pvLRT package into in R using library().

library(pvLRT)

Analysis of the statin dataset with 47 adverse events

We begin with an analysis of the statin dataset labeled statin46, previously identified as being
associated with the statin drugs. There are 47 rows in the data, corresponding to these 46 adverse
events, and a collapsed category labeled “other” that consists of all other adverse events tabulated
in the FAERS database during this time span. An older version of the data with the same 46 adverse
events have been previously considered in (Ding, Markatou, and Ball 2020); our analysis that follows
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corroborates findings from that study. To begin the analysis, we first load the data into an R session
and view the first few rows and columns with the following codes:

data("statin46")
head(statin46)[, 1:3]

#> Atorvastatin Fluvastatin Lovastatin
#> Acute Kidney Injury 1353 42 7
#> Anuria 71 0 0
#> Blood Calcium Decreased 14 2 0
#> Blood Creatine Phosphokinase Abnormal 34 0 0
#> Blood Creatine Phosphokinase Increased 1175 125 32
#> Blood Creatine Phosphokinase Mm Increased 2 0 0

Our interest lies in finding the most important adverse events of these 6 statin drugs. We note at
the outset that the adverse events potentially caused by these drugs cannot be considered in isolation
due to similarity among functions of statins, and thus we must consider all 6 drugs simultaneously
while determining their important adverse events. This is achieved by performing a simultaneous test
for all drugs of interest collectively within an extended LRT framework, which ensures that the overall
type-I error of the process is preserved and the false discovery rate is controlled. See the previous
section for a note on the statistical properties of the extended LRT test.

Analysis based on an ordinary Poisson model. We first perform an LRT analysis based on the
ordinary Poisson model on this dataset. The R codes for performing this task are as follows.

set.seed(100)
test_statin46_poisson <- pvlrt(
statin46,
zi_prob = 0,
test_drug_idx = 1:6

)

The first argument specifies the contingency table on which the LRT is to be performed, which is
statin46 in the current analysis. The argument zi_prob = 0 pre-specifies the zero-inflation probability
in the model for each drug to be 0, thus reducing the model to an ordinary Poisson model. Note that the
ordinary Poisson model-based test can also be invoked through the wrapper function lrt_poisson().
Under the hood, lrt_poisson() sets zi_prob = 0 and then calls pvlrt() itself. Next, the argument
test_drug_idx = 1:6 indicates that hypothesis tests are to be performed only on the first 6 columns,
i.e., excluding the last column for “other” drugs. By default, all drugs supplied in test_drug_idx are
tested simultaneously as a single group/class in an extended LRT framework; if other class/group
structures exist among the drugs or if the drugs are to be tested separately (i.e., each tested drug forms
its own class) those can be passed through drug_class_idx.

Running the code above creates a pvlrt S3 object. A pvlrt object is simply a reclassified matrix of
computed (log) LRTs; it has the same dimensions as the input contin_table, with each cell containing
the computed test statistic value for the corresponding AE/Drug pair. However, in addition to the
usual dimnames attributes, a pvlrt object has several other attributes including the p-values associated
with these log LRTs and estimates for zero-inflation parameters, and some meta-data including the
type of test performed, the input data, etc. The printing method for pvlrt objects provides a high-level
textual summary of the test. To glance at the overall results from the above LR tests, we simply print
test_statin46_poisson on the R console:

test_statin46_poisson

#> Relative reporting rate (lambda)-based ordinary-LRT on 47 AE & 7 drugs.
#> Hypothesis tests performed on 6 drugs using parametric bootstrap.
#>
#> Running time of the original pvlrt call: 1.59371 secs
#>
#> No zi considered in the model.
#> Total 110 AE-drug pairs are significant at level = 0.05.
#>
#> Extract all LR statistics and p-values using `summary()`.
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The above output shows that there are 110 significant AE/drug pairs at level α = 0.05. The
likelihood ratio test statistics and p-values for all AE/drug pairs can be extracted using summary().
This will produce a data table, with each row providing the sample size, likelihood ratio, and p-value
for each AE/drug pair present in the data1:

# summary(test_statin46_poisson)

The output is omitted for brevity. Note that for pairs that are not tested (here, all entries in the 7-th
column of the statin46 table) the test results will be missing (denoted by NA in R). pvLRT currently has
implementations for three visual summary methods for the test results, namely bubble-plot, barplot,
and heatmap. These can either be accessed explicitly through the functions bubbleplot_pvrlt, barplot
(which is an S3 method for pvlrt objects), and heatmap_pvlrt, or directly through the plot method
for pvlrt objects with the specifications of type = "bubbleplot" or type = "barplot", or type =
"barplot" respectively. As noted before in the Introduction, these plots are constructed using the
ggplot2 package (Wickham 2016). As a result, several aspects of the produced plots can be updated
post hoc, as facilitated by the principles of grammar of graphics that ggplot2 implements. Examples of
resizing axes label text sizes for pvlrt plots are provided below.

In the following we first create a bubble-plot top 15 AE/drug pairs across all 6 statin drugs, with
pairs being ranked by the magnitudes of their likelihood ratio test statistic values. The figure is stored
in pl_bubble_statin46_poisson, which is visualized upon printing.

pl_bubble_statin46_poisson <- plot(
test_statin46_poisson,
type = "bubbleplot",
x_axis_measure = "lrstat",
size_measure = "n",
fill_measure = "p_value",
AE = 15

)

The arguments used in plot() above are described as follows. The first two arguments specify
the pvlrt object under consideration and the type of plot to be made. All three visualizations
implemented (bubbleplot, barplot and heatmap) display the test results by plotting AEs across the
rows and Drugs across the columns, in their respective plots. The arguments x_axis_measure =
"lrstat", size_measure = "n", and fill_measure = "p_value" indicate that the log LRT values
will be displayed along the x-axis, the circle sizes in the bubbleplot will represent the corresponding
sample size of an AE/drug pair, and that the circles will be color coded according to the p-values of
the corresponding test statistics, respectively. Note that the three dimensions (lrstat, n and p_value)
displayed through these three arguments can be interchanged. The argument AE = 15 indicates that
the top 15 adverse events with the largest log likelihood ratio test statistic values are to be plotted.
Here these “largest” values are obtained by comparing across all drugs tested during the original
pvlrt run. Instead of looking at “all” drugs while determining the top AEs, one can also focus on a
specific subset of drugs by supplying the appropriate subset through the argument Drug. Moreover,
instead of looking at the top adverse events, one can also explicitly specify which adverse events to
display by directly passing their names through the same AE argument. When passing names through
AE and Drug, partial string patterns can be supplied and then matched against their full names via
regular expressions; this is achieved by setting grep = TRUE. For example, specifying AE = "muscle"
and setting grep = TRUE will show all adverse events that have the character "muscle" in its name.
We refer to the package documentation for further details on these two arguments. To visualize
the plot produced, we can simply print pl_bubble_statin46_poisson on the R console or save it to
a graphic device via ggsave. As noted before, post hoc editing of various graphical parameters in
pl_heat_statin46_poisson can be made using ggplot2 functions. Note that to use ggplot2 functions,
we need to load the ggplot2 package. Below we show how the axes label sizes and legend text sizes
can be modified. (Changing the default labels etc. may cause ggplot2 to throw some warnings). We
refer to the ggplot2 package documentations and vignettes for further details on modifications of
ggplot2 objects and saving ggplot2 objects to graphic devices.

library(ggplot2)

1The default printing specifications for a data.table object applies to the resulting summary, which ab-
breviates the output to show results for the top 5 and bottom 5 AE/drug pairs (arranged with respect
to the computed LRT values) on the console for large summary tables. To print more pairs, use e.g.,
summary(test_statin46_poisson) %>% print(n) with a larger n. Storing the summary output to an object,
e.g., summary_test <- summary(test_statin46_poisson) allows access to results from all pairs.
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pl_bubble_statin46_poisson +
theme(
axis.text.y = element_text(size = 13, face = "bold"),
axis.text.x = element_text(size = 9, face = "bold"),
legend.title = element_text(size = 12, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
legend.position = "top"

)
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The above bubbleplot visualizes three simultaneous dimensions, viz., lrstat, n and p_value along
the x-axis, circle size, and circle color respectively. An alternative mode of visualization is made by
paneled barplots which can visualize two simultaneous dimensions, e.g., the x-axis showing the log
likelihood ratio statistic, and the colors representing p-values as in the bubbleplot. The sample sizes
can be displayed on the bar as text, by specifying show_n = TRUE. The following R codes create the
barplot.

pl_bar_statin46_poisson <- plot(
test_statin46_poisson,
type = "barplot",
fill_measure = "p_value",
x_axis_measure = "lrstat",
AE = 15,
show_n = TRUE,
border_color = "black"

)
pl_bar_statin46_poisson +
theme(
axis.text.y = element_text(size = 13, face = "bold"),
axis.text.x = element_text(size = 13, face = "bold"),
axis.title.x = element_text(size = 14, face = "bold"),
legend.title = element_text(size = 12, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
legend.position = "top"

)
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Finally, we can visualize only one dimension, say p_value as cell-colors in a heatmap, and inscribe
as texts the other two dimensions, i.e., lrstat and n (by specifying show_n = TRUE and show_lrstat
= TRUE). The following R codes perform this task.

pl_heat_statin46_poisson <- plot(
test_statin46_poisson,
type = "heatmap",
fill_measure = "p_value",
AE = 15,
show_n = TRUE,
show_lrstat = TRUE,
border_color = "black"

)
pl_heat_statin46_poisson +
theme(
axis.text = element_text(size = 13, face = "bold"),
legend.title = element_text(size = 12, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
legend.position = "top"

)
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Note that all three plots above can be made interactive using external R packages; consider, e.g.,
plotly::ggplotly(pl_bubble_statin46_poisson). Such interactive plots can be particularly useful
in exploratory analyses performed on large adverse event datasets. We refer to the plotly (Sievert
2020) package documentation for further details on plotly::ggplotly and other interactive plotting
functions. The html version of this article displays an interactive variant of the above figure.

The following observations are made from the above plots. First, Myalgia appears to be the AE
with the largest computed log likelihood ratio (LR) statistic across all 6 statin drugs combined. It
has the largest LR in Atorvastatin, followed by Simvastatin, Rosuvastatin, Pravastatin, Fluvastatin,
and Lovastatin. Next is Rhabdomyolysis, which displays a near similar pattern as Myalgia in terms
of computed signal/association strength among the six drugs, except here Lovastatin has a slightly
larger computed LR value than Fluvastatin. Second, not all of the 15 adverse events are statistically
significant across all six statin drugs. For example, Necrotising Myositis is a statistically significant
adverse event of Atorvastatin, Simvastatin, and Rosuvastatin, but not for Pravastatin, Fluvastatin, and
Lovastatin. Third, the sample size nij of a specific AE/drug pair (i, j) alone does not provide much
information about its strength of association; for example, the pairs (Muscle Necrosis, Rosuvastatin),
(Myositis, Lovastatin), (Chromaturia, Fluvastatin), and (Necrotising Myositis, Rosuvastatin) all have
sample sizes nij = 10, but their computed likelihood ratio statistics, and hence the strengths of their
associations vary. Moreover, a pair with a smaller sample size may harbor a stronger signal than one
with a larger sample size; for example for Fluvastatin, Chromaturia has a sample size of nij = 10 and
Myoglobin Blood Increased has a sample size of nij = 4; yet the former AE has a smaller LRT statistic
value than the latter.
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Analysis based on a zero-inflated Poisson model. We now consider zero-inflated Poisson model-
based LRTs to identify signals in the statin46 data. To this end, the same pvlrt function can be used,
with two changes in the parameters: (a) the argument zi_prob is now set to NULL, which ensures that
the zero-inflation parameters are estimated from the data, and (b) the logical argument test_zi is now
set to TRUE, which specifies that a separate (pseudo) likelihood ratio test for the significance of each
drug-specific zero inflation parameter will be performed. The following are the R codes used:

set.seed(100)
test_statin46_zip <- pvlrt(
statin46,
test_drug_idx = 1:6,
zi_prob = NULL,
test_zi = TRUE

)

A textual summary of the analysis can be obtained by printing the output of test_statin46_zip on
the R console:

test_statin46_zip

#> Relative reporting rate (lambda)-based pseudo-LRT on 47 AE & 7 drugs.
#> Hypothesis tests performed on 6 drugs using parametric bootstrap.
#>
#> Running time of the original pvlrt call: 6.675102 secs
#>
#> Drug-specific estimated zi probabilities: 0 (Atorvastatin), 0.07
#> (Fluvastatin), 0.16 (Lovastatin), 0.06 (Pravastatin), 0 (Rosuvastatin),
#> 0 (Simvastatin), 0 (Other)
#>
#> LR test of significance for zi probabilities: LRstat= 0.00, q>0.90
#> (Atorvastatin), LRstat= 5.28, q<0.001 (Fluvastatin), LRstat= 3.81,
#> q<0.001 (Lovastatin), LRstat=32.49, q<0.001 (Pravastatin), LRstat=
#> 0.00, q>0.90 (Rosuvastatin), LRstat= 0.00, q>0.90 (Simvastatin),
#> LRstat= 0.00, q=<NA> (Other)
#> Total 110 AE-drug pairs are significant at level = 0.05.
#>
#> Extract all LR statistics and p-values using `summary()`.

It follows from the output that the estimated drug-specific zero-inflation probabilities are signifi-
cantly different from zero (q-value or FDR adjusted p-value < 0.05) only for Fluvastatin and Lovastatin,
where the point estimates of the zero-inflation parameters are ω = 0.07 and ω = 0.16 respectively. The
total number of significant AE/drug is 110, which is the same as the number of significant pairs de-
tected from the Poisson model. To see which 110 pairs detected to be significant in the two models, we
can use the function extract_significant_pairs to extract a data.table containing the test results
of significant AE/drug pairs and at a given level α = 0.05 from the two models, and subsequently
compare these results.

# extract_significant_pairs(test_statin46_poisson)
# extract_significant_pairs(test_statin46_zip)
all.equal(
extract_significant_pairs(test_statin46_poisson),
extract_significant_pairs(test_statin46_zip)

)

#> [1] "Column 'p_value': Mean relative difference: 0.06278027"

As it appears the above two pvlrt objects differ only in the computed p-values, but not in any other
fields/statistics. That the computed LR statistics are identical is not surprising, since the functional
form of the test statistic is exactly the same for the two models. The p-values, on the other hand,
depend on the null sampling distributions of LR statistics, which are different for the two models.
Moreover, here the p-values are numerically computed using Monte Carlo methods based on bootstrap
resampling, which means that even for the same null sampling distributions, the computed p-values
may show random variations between two instances of the computation. However, that there is no
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difference between the identified significant (computed p-value < 0.05) AE/drug pairs for the two
models essentially indicates concordance of the signals identified.

While the two models identify the same AE/drug pairs to be significant at the 0.05 level, they
may differ in terms of predictive accuracy/goodness of fit, which can be compared through model
selection criteria such as BIC. The logLik methods for pvlrt objects implemented in the package (see
the documentation for logLik.pvlrt) allow automated computations of the BIC and AIC of the fitted
models, using the stats S3 functions BIC and AIC. Below we use these two functions to compare the
predictive accuracies of the fitted Poisson and ZIP models.

cbind(BIC(test_statin46_poisson, test_statin46_zip),
AIC(test_statin46_poisson, test_statin46_zip))[, -3] # remove duplicated df col

#> df BIC AIC
#> test_statin46_poisson 329 15962.47 10707.02
#> test_statin46_zip 336 16005.13 10637.85

It follows that the Poisson model has smaller BIC but larger AIC than the ZIP model for the current
dataset. This essentially implies that the Poisson model and the ZIP model both perform equally well
in modeling the statin46 dataset.

Analysis of the full statin data with 6039 adverse events

We next analyze the full statin dataset with all 6039 adverse events. This dataset differs from the
smaller statin46 dataset in that it explicitly catalogs report-counts of many adverse events that are
grouped together as “Other AE” in statin46. The first few rows of the bigger statin dataset can be
displayed using head(statin); we omit the output for brevity.

data("statin")
# head(statin)

In the following we first run a Poisson LRT, followed by a ZIP LRT, and then compare the two
models. The model that fits the data better (assessed through BIC/AIC) will subsequently be used
for inference. The following commands run a Poisson LRT on the statin dataset, with the default
10,000 resamples for computation of p-values. The remaining arguments are analogous to the case of
analysis of statin46. Once created, the pvlrt objects will output brief textual summary of the results;
the outputs are omitted for brevity.

set.seed(100)
test_statin_poisson <- pvlrt(
statin,
zi_prob = 0,
test_drug_idx = 1:6

)
# test_statin_poisson # print the results

Next we run the zero-inflated Poisson model. Codes are as follows.

set.seed(100)
test_statin_zip <- pvlrt(
statin,
test_drug_idx = 1:6,
zi_prob = NULL,
test_zi = TRUE

)
# test_statin_zip # print the results

As it appears, in this bigger dataset all drugs (except the “other” group) have > 10% zero inflation
probabilities with statistically significant FDR adjusted p-values (q-values). This indicates that the
zero-inflated Poisson model based test would likely be more appropriate here. We formally check this
via model comparison using AIC and BIC as follows:

cbind(BIC(test_statin_poisson, test_statin_zip),
AIC(test_statin_poisson, test_statin_zip))[, -3] #remove duplicated df col

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 114

#> df BIC AIC
#> test_statin_poisson 42273 1063654 388384.2
#> test_statin_zip 42280 1043314 367931.7

It follows that here the zero-inflated Poisson model has both smaller AIC and BIC than the Poisson
model, thus confirming our suspicion that the former model is a better fit for the data. We shall
therefore conduct the subsequent analysis based on the zero-inflated Poisson model-based tests.

To get a visual understanding of the results we plot a heatmap of the p-values with LR test statistics
and samples sizes inscribed as texts:

pl_heat_statin_zip <- heatmap_pvlrt(
test_statin_zip,
AE = 15,
show_n = TRUE,
show_lrstat = TRUE

)
pl_heat_statin_zip +
theme(
axis.text = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
strip.text = element_text(face = "bold"),
legend.position = "top"

)
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The following observations are made. First, (Type 2 Diabetes Mellitus, Atorvastatin) appears to be
the most prominent association in terms of LR statistic (log LR = 8.0632317 × 104) across all AE/drug
pairs. The next four prominent signals are observed in (Myalgia, Atorvastatin), (Myalgia, Simvastatin),
(Rhabdomyolysis, Atorvastatin), and (Myalgia, Rosuvastatin) respectively.

Analysis of the full gbca data with 1707 adverse events

We next analyze the full gbca dataset with all 1707 adverse events and 9 drugs. This example arises in
the context of an FDA evaluation of Gadolinium-based contrast agents (GBCA) from which FDA con-
cluded there were no adverse events from GBCA retention (https://www.fda.gov/drugs/postmarket-
drug-safety-information-patients-and-providers/information-gadolinium-based-contrast-agents).
Several disproportionality methods were compared in the FAERS database (Zhao, Yi, and Tiwari 2018)
using the GBCAs as an example. We use this example to further illustrate the LRT methods, and assess
their computational efficiency in datasets with many zero-report counts. The observed proportions of
zero counts are noticeably large in most drugs:

data("gbca")
# head(gbca) # show the first few rows

obs_prop_0 <- apply(gbca, 2, function(x) mean(x == 0))
round(obs_prop_0, 2)
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#> Gadobenate Gadobutrol Gadodiamide Gadofosveset Gadopentetate
#> 0.60 0.42 0.71 0.99 0.61
#> Gadoterate Gadoteridol Gadoversetamide Gadoxetate Other
#> 0.51 0.70 0.87 0.82 0.00

These large proportions of zero counts provide a heuristic justification for using a ZIP-model based
LRT in this example: because the total zero counts comprise both true/structural zero counts (zero-
inflation) and sampling zero counts, some substantial parts of these observed zeros may be attributable
to zero inflation. To formalize this intuition, in the following we first run a Poisson LRT, followed by a
ZIP LRT, and then compare goodness of fits for the two models in the dataset. The model that fits the
data better (assessed through BIC/AIC) will be subsequently used for inference. We begin with the
Poisson LRT, with the default 10,000 resamples for computation of p-values. The codes are as follows.
The resulting output, when printed on console will display textual summary of test results which we
omit for brevity.

set.seed(100)
test_gbca_poisson <- pvlrt(
gbca,
zi_prob = 0,
test_drug_idx = 1:9

)
# test_gbca_poisson ## print results

Next we run the zero-inflated Poisson model. Codes are as follows.

set.seed(100)
test_gbca_zip <- pvlrt(
gbca,
test_drug_idx = 1:9,
zi_prob = NULL,
test_zi = TRUE

)

It follows that several drug groups have substantially large (> 40%) zero inflation probabilities with
statistically significant FDR adjusted p-values (q-values). This agrees with the earlier exploratory
observation of large proportions of observed zeros. Similar to the full statin data analysis, it therefore
seems that the zero-inflated Poisson model would be more appropriate here. We use AIC and BIC to
formally check this:

cbind(BIC(test_gbca_poisson, test_gbca_zip),
AIC(test_gbca_poisson, test_gbca_zip))[, -3] # remove

#> df BIC AIC
#> test_gbca_poisson 17070 416208.7 147441.5
#> test_gbca_zip 17080 384316.9 115392.2

Indeed, both AIC and BIC are smaller for the zero-inflated Poisson model than the Poisson model. We
therefore use the former model for subsequent analysis.

To get a visual understanding of the results we plot a heatmap of the p-values with LR test statistics
and samples sizes inscribed as texts:

pl_heat_gbca_zip <- heatmap_pvlrt(
test_gbca_zip,
AE = 15,
show_n = TRUE,
show_lrstat = TRUE

)
pl_heat_gbca_zip +
theme(
axis.text = element_text(size = 13, face = "bold"),
legend.title = element_text(size = 12, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
legend.position = "top"

)
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The following observations are made. First, (Contrast Media Deposition, Gadopentetate) appears to
be the most prominent AE/drug pair in terms of LR statistic (log LR = 2084.09) across all AE/drug pairs.
The next four prominent signals are observed in (Gadolinium Deposition Disease, Gadopentetate),
(Gadolinium Deposition Disease, Gadodiamide), (Gadolinium Deposition Disease, Gadoversetamide),
and (Gadolinium Deposition Disease, Gadobenate) respectively.

Analysis of the rotavirus vaccine datasets rv, rvold, and rvyoung

Finally, to exemplify the use of pvLRT in analyzing vaccine safety we consider rotavirus vaccine
datasets. These vaccines are an important example for vaccine safety assessment. Intussusception, a
telescoping of the intestines that can cause serious illness, had led to the withdrawal of the first ro-
tavirus vaccines from the market. Several AEs have since been identified in analyses of the FDA/CDC
VAERS data (Niu, Erwin, and Braun 2001; Haber et al. 2004) as being associated with intusscusception.
Below in our analysis we consider several of these vaccine/AE combinations; these combinations
are well-known and well-studied and hence they aid informative assessment of the performance
of the disproportionality methods. In pvLRT, the rotavirus vaccine datasets are obtained from the
FDA VAERS database for the year of 1999, and they summarize adverse event report counts for two
vaccine groups, namely the rotavirus vaccine (“Rv”) and “Other” vaccines (37 different vaccines
combined). pvLRT contains three such datasets namely rvold, rvyoung, and rv tabulating the number
of occurrences of 727, 346, and 794 AEs among individuals of “old” (age ≥ 1 year), “young” (age
< 1 year), and “combined” (collective old and young) age groups respectively, with most counts
in the combined dataset arising from the young age group. Our interest here lies in identifying the
most prominent AEs of the rotavirus vaccine and then comparing them across the three datasets/age
groups. The rotavirus data has been previously analyzed in the literature using other approaches
such as the EBGM (Niu, Erwin, and Braun 2001) and proportional morbidity analysis for vaccine
safety (Haber et al. 2004). Here we will utilize the LRT method as implemented in pvLRT: first, in
each dataset we will perform an LRT with an optimally selected model (Poisson or ZIP); subsequently,
based on the LRT results we will determine a few prominent AEs with the largest LR statistics in each
dataset and compare these AEs across datasets.

We first fit Poisson and ZIP models to the three datasets:

set.seed(100)
test_rv_poisson_list <- lapply(
list(old = rvold, young = rvyoung, combined = rv),
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function(this_data) {
pvlrt(
this_data,
zi_prob = 0,
test_drug_idx = 1

)
}

)

set.seed(100)
test_rv_zip_list <- lapply(
list(old = rvold, young = rvyoung, combined = rv),
function(this_data) {
pvlrt(
this_data,
test_drug_idx = 1,
zi_prob = NULL

)
}

)

The objects test_rv_poisson_list and test_rv_zip_list list the Poisson and ZIP LRT results for
the three datasets respectively. The estimated zero-inflation probabilities for the “Rv” vaccine can be
extracted from the latter list as follows. In the code chunks below we use the magrittr (Bache and
Wickham 2020) forward pipe %>% infix operator for better readability of chained computations. The
operator is automatically loaded with pvLRT; see the magrittr package manual for further details on
the pipe operator.

rv_zi_prob <- test_rv_zip_list %>%
sapply(function(test) extract_zi_probability(test)["Rv"]) %>%
round(3)

rv_zi_prob

#> old.Rv young.Rv combined.Rv
#> 0.248 0.000 0.215

It follows from the above estimated zero inflation probabilities that a ZIP model could be appro-
priate for the combined and the old age groups whereas an ordinary Poisson model is likely adequate
for the young age groups. We formalize the model selection via AIC and BIC, and find the optimal
models for the three datasets. Codes are as follows.

compare_models_rv <- mapply(
function(test_poisson, test_zip, data_name) {
AIC_both <- AIC(test_poisson, test_zip)$AIC
BIC_both <- BIC(test_poisson, test_zip)$BIC
data.frame(
name = data_name,
AIC_poisson = AIC_both[1],
BIC_poisson = BIC_both[1],
AIC_zip = AIC_both[2],
BIC_zip = BIC_both[2],
optimal_AIC = c("poisson", "zip")[which.min(AIC_both)],
optimal_BIC = c("poisson", "zip")[which.min(AIC_both)]

)
},
test_rv_poisson_list,
test_rv_zip_list,
names(test_rv_poisson_list),
SIMPLIFY = FALSE

) %>%
unname() %>%
do.call(rbind, .)

compare_models_rv
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#> name AIC_poisson BIC_poisson AIC_zip BIC_zip optimal_AIC optimal_BIC
#> 1 old 5749.153 18631.535 5751.783 18651.88 poisson poisson
#> 2 young 3829.600 9000.445 3833.600 9019.39 poisson poisson
#> 3 combined 8308.330 22800.414 8051.049 22561.38 zip zip

It follows from the above AIC and BIC values that while the ZIP model is a clear winner for the
combined age group dataset, the Poisson model displays slightly smaller AIC and BIC values in the
other two datasets. We therefore first create a list of optimal tests from these two models fitted to
the three datasets, and use these optimal models for subsequent determination of prominent AEs as
follows:

test_rv_optimal_list <- list(
old = test_rv_poisson_list$old,
young = test_rv_poisson_list$young,
combined = test_rv_zip_list$combined

)

We may extract the statistically significant AE/vaccine pairs (p-value < 0.05) from these tests as follows.

signif_pairs_rv <- lapply(test_rv_zip_list, extract_significant_pairs)

For visualization, we consider heatmaps for top 15 AEs (in terms of LRT statistics) in the three
datasets, and place them side by side. Because pvLRT uses ggplot2 as its plotting engine, these
individual heatmaps can be easily combined via external ggplot2 post-processing packages such as
patchwork (Pedersen 2020). Codes are as follows:

pl_heatmap_rv_list <- mapply(
function(this_test, this_name) {
heatmap_pvlrt(
this_test,
AE = 15,
show_n = TRUE,
show_lrstat = TRUE

) +
ggtitle(paste("age group:\n", this_name)) +
theme(plot.title = element_text(hjust = 0.5))

},
test_rv_optimal_list,
names(test_rv_optimal_list),
SIMPLIFY = FALSE

)
## install patchwork if not installed
# if (!requireNamespace("patchwork")) install.packages("pacthwork")
library(patchwork)
pl_heatmap_rv_comb <- pl_heatmap_rv_list$old +
pl_heatmap_rv_list$young +
pl_heatmap_rv_list$combined +
# combine the legends
plot_layout(guides = "collect") &
# unified coloring scheme,
# see the 'fill_gradient_range' argument for heatmap_pvlrt
scale_fill_gradientn(
colors = c("darkred", "white"),
limits = c(0, 1)

) &
theme(
axis.text = element_text(size = 16, face = "bold"),
legend.title = element_text(size = 16, face = "bold"),
legend.text = element_text(size = 14),
title = element_text(size = 16, face = "bold")

)

pl_heatmap_rv_comb
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The following observations are made from the above heatmaps and associated test results (stored
in signif_pairs_rv). First, in terms of LR statistics and p-values, the “old” age group has only 4
statistically significant (p-value < 0.05) AEs, viz., Gastrointestinal Haemorrhage, Diarrhoea, Intestinal
Obstruction, and Secondary Transmission. Note, however, the extremely small sample sizes for these
AEs within the dataset; care must therefore be taken while interpreting these results. By contrast,
the young and the combined age group data sets contain sufficient sample sizes. There are 8 and 21
significant AEs in the young and the combined age group datasets respectively. These prominent AEs
for the combined and the young age groups agree, which is expected as the most reported cases in the
combined dataset correspond to the young age group. Several of these prominent AEs detected in our
analysis associate with Intussusception, which has been determined to be of particular concern in the
literature (Niu, Erwin, and Braun 2001; Haber et al. 2004). However, unlike the approaches used in
those studies, our LRT-based approach for signal detection does not require ad hoc thresholding, and
provides rigorous statistical guarantees on the results obtained.

4 Discussion and Future Directions

Likelihood ratio test (LRT)-based approaches to pharmacovigilance constitute a class of rigorous
statistical methods that permit objective signal determination without the need for specifying ad hoc
thresholds. The lack of comprehensive software implementing the LRT methods (in R or otherwise)
however has hindered their applicability in practice – especially in cases where the adverse event
count data are zero-inflated.

The package pvLRT is our contribution to this area, providing a platform that implements a
suite of formal statistical tools and post-processing functions for analyzing medical product safety
datasets, and is readily accessible to practitioners. There are various directions in which the software
can be extended in future releases. Some possible features/updates under consideration include the
following.

1. Parallelize bootstrap resampling. This may permit substantial computational gains in sizable
datasets. Care must however be taken while generating random draws in the parallel workers
to ensure reproducibility and validity (see the discussion of page 5, Section 6 of the R package
parallel (R Core Team 2022)).

2. Include additional processed datasets, and expand the current documentations with examples
on these additional datasets.

3. Create visualizations for the estimated zero inflation probabilities along with the LRT results.
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