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Non-Parametric Analysis of Spatial and
Spatio-Temporal Point Patterns
by Jonatan A. González and Paula Moraga

Abstract The analysis of spatial and spatio-temporal point patterns is becoming increasingly necessary,
given the rapid emergence of geographically and temporally indexed data in a wide range of fields.
Non-parametric point pattern methods are a highly adaptable approach to answering questions
about the real-world using complex data in the form of collections of points. Several methodological
advances have been introduced in the last few years. This paper examines the current methodology,
including the most recent developments in estimation and computation, and shows how various
R packages can be combined to run a set of non-parametric point pattern analyses in a guided and
intuitive way. An example of non-specific gastrointestinal disease reports in Hampshire, UK, from
2001 to 2003 is used to illustrate the methods, procedures and interpretations.

1 Introduction

A spatial point pattern X = {ui}n
i=1 is a random collection of points observed within a bounded

region of the plane, W ⊂ R2. Spatial point patterns arise in a broad range of applied disciplines
such as climatology, ecology, epidemiology, and seismology. A spatial point pattern can represent
the locations of forest fires (Turner 2009), the occurrence of species (Moraga 2021) or the residence
locations of people with a certain disease (Moraga and Montes 2011). When the points evolve in space
and time, we call them spatio-temporal point patterns. In this case, we treat the data as being generated as
a snapshot in space-time, and they may be viewed as a spatial point process with a further (temporal)
dimension (González et al. 2016). Similarly to the spatial case, we consider a spatio-temporal point
pattern as a countable set of random points {(ui, vi)}n

i=1 (non-overlapping), where ui represents the
spatial location of the ith event and all of them belong to a bounded planar region W ⊂ R2. Here, vi is
associated with time and it belongs to a compact positive interval T ⊂ R+. W × T is usually called
the spatio-temporal observation window. Examples of spatio-temporal point patterns include the
locations of individuals with an infectious disease in which the time of infection is known (P. J. Diggle
2013), the starting (or ending) locations of tornadoes with their registered times (González, Hahn, and
Mateu 2019) or the location and time at which some crime was committed (Rodrigues and Diggle
2012). Point pattern analyses may also be performed in smaller dimensions, such as straight segments
(Daley and Vere-Jones 2003). For example, we can consider a time segment as a straight segment and
record the exact time the heartbeat of a patient with arrhythmia occurs during an electrocardiogram.
In addition, we can also have marked point patterns in which each of the points has some additional
characteristics. For example, a marked point pattern may represent a pattern of beta-type ganglion
cells in a cat’s retina that can be classified anatomically as the marks “on” or “off” (Wässle, Boycott,
and Illing 1981).

When dealing with point patterns, it is desirable to learn as much as possible about the probability
distribution that governs the occurrence of points in a given point pattern. This is a difficult task
since, in general, there is only a single set of points or realisation of the point process. However, many
methods have been developed that serve to estimate specific characteristics of the distribution, such
as the intensity, which describes the expected number of points per unit area; or the clustering or
aggregation behaviour, that is, whether the points have a particular attraction or repulsion mechanism.
Statistical models for point processes can also be formulated, and these may consider previous
knowledge to describe trends, variability, and different factors that may impact them. Point patterns
are usually considered a random sample of a stochastic mechanism called point process. The most
typical families of point processes are Poisson processes. There are two classes of Poisson processes;
the homogeneous, whose realisations in any subset of the observation window are uniform random
samples with a constant mean λ, and the inhomogeneous, obtained by replacing the intensity λ by a
spatial, temporal or spatio-temporal varying one (Illian et al. 2008; P. J. Diggle 2013). Homogeneous
Poisson processes are benchmark models for spatial and spatio-temporal point pattern data, often
called complete spatial random (CSR) or complete spatio-temporal random (CSTR) point processes; i.e., point
processes whereby point events appear in a completely random fashion.

A large body of literature has been developed in recent years to study point patterns and many
statistical software packages have been developed for their estimation and analysis. For instance,
packages such as spatial (Venables and Ripley 2002) or splancs (Rowlingson and Diggle 1993) initially
developed for S-PLUS but available on CRAN are classics for displaying and analysing spatial point
pattern data. Packages as sp (E. J. Pebesma and B. 2005; Bivand, Pebesma, and Gómez-Rubio 2013),
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or more recently, sf (E. Pebesma 2018), were created to provide a uniform interface for handling 2D
and 3D data. spatstat (A. Baddeley and Turner 2005; Adrian Baddeley, Rubak, and Turner 2015) is
one of the most popular and improved packages for analysing spatial point patterns It is divided into
several subpackages: spatstat.utils, spatstat.sparse, spatstat.data, spatstat.geom, spatstat.random,
spatstat.explore, spatstat.model and spatstat.linnet. Some extra specialised packages such as smacpod
or sparr (T. M. Davies, Marshall, and Hazelton 2018) have methods for analysing case-control point
patterns; or spatgraphs for graphs-related analyses of locations in 1D, 2D, 3D.

Even though authors have considered the combination of space and time in theory, and nowadays,
spatial data often includes a time component, only a few examples show this in practice. This problem
may be due to the complexity of the computations, added to the fact that the authors tend to delve
into particular contexts. There are some tools available for dealing with spatio-temporal point pattern
data. The stpp package (Gabriel, Rowlingson, and Diggle 2013) covers many models and functional
descriptors related to point process methods to study spatio-temporal phenomena. The PtProcess
package (Harte 2010) was designed to fit time-indexed point process models in the same simplified
fashion as generalised linear models software. The lgcp (B. M. Taylor et al. 2013), as well as the inla
(Rue, Martino, and Chopin 2009; Moraga 2019); http://www.r-inla.org and inlabru (Bachl et al.
2019) packages, are suitable options for statistical inference in space and time.

In this paper, we demonstrate how R (R Core Team 2023) can be used to study spatial and spatio-
temporal point process data using a dataset of geographic locations and times of individuals with
non-specific gastrointestinal infections in Hampshire, UK, from 2001 to 2003 (P. Diggle et al. 2003).
We consider the data as realisations of spatial and spatio-temporal point processes that lack spatial
and temporal homogeneity; i.e., the expected number of points in each area unit of the study region
depends on their location and time. Consequently, the first problem we solve is the intensity estimation.
We then investigate the nature of the stochastic interactions between the process points after adjusting
for spatial and spatio-temporal inhomogeneity. We use second-order descriptors to describe these
interactions.

Along with this paper, we employ several R packages to successfully analyse the complex point
patterns seen in both the spatial and the spatio-temporal settings. For dealing with spatial point
patterns, we mainly use the spatstat package. In addition, we use the sparr package for analysing
the relative risk and the GET package (Myllymäki and Mrkvička 2020) for testing hypotheses with
envelopes. For the spatio-temporal analysis, we use the stpp package. We also make use of other
R packages such as parallel, foreach (Microsoft and Weston 2022b) and doParallel (Microsoft and
Weston 2022a) to optimise the computing time by dividing the burden by several processors. An R
script containing all the necessary code for reading the data and running the analyses shown in this
paper is provided as supplementary material.

Spatio-temporal point pattern data

We use the geographic locations and time information of individuals who had non-specific gastroin-
testinal infections in Hampshire, UK, between 2001 and 2003 (P. Diggle et al. 2003). These data come
from the Ascertainment and Enhancement of Gastrointestinal Infection Surveillance and Statistics (AEGISS)
project (P. Diggle et al. 2003), which, using the Hampshire area as a test, seeks to identify irregularities,
i.e., high or low intensity spots in the spatio-temporal distribution of non-specific gastrointestinal
infections in the UK.

The data consist of a collection of points {(ui, vi)}n
i=1, where ui is a spatial coordinate with two

components, i.e., ui = (ai, bi), ai, bi ∈ R, and vi ∈ R+ is a temporal coordinate. These points represent
the locations and times of daily healthcare providers reports of non-specific gastrointestinal disease
in Hampshire from 2001 to 2003. After cleaning the data to remove non-Hampshire residents (out of
the Hampshire region) and multiple (coincident) points, there were n = 10443 cases of non-specific
gastrointestinal disease by a phone-in triage service operating within the UK’s National Health Service.
The command sequence

library(spatstat)
library(viridis)
load("AegissData.RData")

loads the data in the local environment of R. Each location corresponds to the centroid of the unit
post-code of the residential address of the caller. The unit of distance is one kilometre. The unit of
time is one day, with day 1 corresponding to 1 January 2001. We can inspect the first spatio-temporal
coordinates of our dataset by writing

head(as.data.frame(Aegiss))

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=spatstat
https://CRAN.R-project.org/package=spatstat.utils
https://CRAN.R-project.org/package=spatstat.sparse
https://CRAN.R-project.org/package=spatstat.data
https://CRAN.R-project.org/package=spatstat.geom
https://CRAN.R-project.org/package=spatstat.random
https://CRAN.R-project.org/package=spatstat.explore
https://CRAN.R-project.org/package=spatstat.model
https://CRAN.R-project.org/package=spatstat.linnet
https://CRAN.R-project.org/package=smacpod
https://CRAN.R-project.org/package=sparr
https://CRAN.R-project.org/package=spatgraphs
https://CRAN.R-project.org/package=stpp
https://CRAN.R-project.org/package=PtProcess
https://CRAN.R-project.org/package=lgcp
http://www.r-inla.org
https://CRAN.R-project.org/package=inlabru
https://CRAN.R-project.org/package=GET
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=doParallel


CONTRIBUTED RESEARCH ARTICLE 67

  Gastrointestinal disease reports

2001−01−01

2001−07−01

2002−01−01

2002−07−01

2003−01−01

2003−07−01

  Population intensity

1
10

10
0

10
00

Figure 1: Left: Locations of 10443 reports of non-specific gastrointestinal disease in Hampshire from
January 2001 to July 2003. The time is treated as a quantitative mark where darker dots correspond to
the older events, and lighter dots match the most recent reports. Right: Hampshire population density
averaged over the years 2001-2003. The colour map is evenly-spaced on a logarithmic scale.

#> x y marks
#> 1 478.55 134.85 1
#> 2 458.15 107.35 1
#> 3 449.05 128.95 1
#> 4 450.75 106.95 1
#> 5 461.05 99.55 1
#> 6 446.35 109.15 1

Notice that x and y are the coordinates. Times are not labelled as dates, but they are integers, and
their column is named as ‘marks’. Finally, the planar region that encloses the points corresponds
to a 120-sided polygon representing the boundary of the study region of Hampshire. To visualise
the spatio-temporal point pattern, we can depict a spatial map using the symbolmap() function of
the spatstat.geom package setting the times as colours. The colours are selected by using the viridis
(Garnier et al. 2023) (Figure 1).

Times <- Aegiss$marks
timelabels <- as.Date(Times - 1, origin = "2001-01-01")
colmap <- viridis(length(Times))
sy <- symbolmap(pch = 21, col = "black", bg = colmap, range = range(timelabels))

We use the locations and times of the point pattern and the population density of Hampshire
to study the point process that generates these data. We obtain the mean population density of
Hampshire from WorldPop (University of Southampton). The population information detailed for
each squared kilometre is available in a yearly basis. Figure 1 shows the point pattern of the cases
and the population density. First, we save only the spatial locations with no marks by writing X <-
unmark(Aegiss). Then, we attach the date labels to the points using the operator %mark%. Note that
symap = sy sets the colour and point shapes previously defined and that the six dates in the legend
are a sample to represent the colour variation. To summarise the population density, given in a set of
three images, 2001, 2002 and 2003, we use the function im.apply() of the package spatstat.geom to
average them.

par(mfrow = c(1, 2), mar = c(0,0,2,0.5))
X <- unmark(Aegiss)
PopDens <- im.apply(Population, mean)
plot(X %mark% timelabels, symap = sy,

main = "Gastrointestinal disease reports")
plot(PopDens, col = viridis(prod(PopDens$dim)), log = T, box = F,

main = "Population intensity")
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2 Spatial analysis

Spatial intensity and relative risk

The first-order intensity function or the intensity of a point process can be defined as the expected number
of events per unit space, or mathematically (P. J. Diggle 2013),

λ(u) = lim
|du|→0

EN(du)
|du| ,

where N() denotes the number of points of a region. In the inhomogeneous case, we can compute a
kernel smoothed intensity function from a point pattern {ui}n

i=1 without the temporal coordinates.
The estimator is given by

λ̂(u) =
1

e2(u)

n

∑
i=1

κ2
ϵ(u − ui), and e2(u) =

∫
W

κ2
ϵ(s − u)ds, (1)

where u ∈ W and κ2
ϵ is a two-dimensional Gaussian kernel. e() is known as uniform edge correction and

is intended to correct the bias of the estimation at the edges of the region (Adrian Baddeley, Rubak,
and Turner 2015). One of the most challenging considerations is selecting the bandwidth ϵ; there
is no single best procedure for doing that, but the estimation can be improved by using a spatially
varying bandwidth despite its computational complexity (Tilman M. Davies and Baddeley 2018). For
computing the adaptive estimate of the intensity function, we use the adaptative.density() function
of the spatstat.explore package,

# This takes roughly 12 seconds to be executed in an
# iMAC 2019, 3GHz intel core i5 processor with 16GB of RAM (hereinafter)
SpatialDens <- adaptive.density(X, method = "kernel", edge = T)

The estimated intensity is shown in Figure 2 (left). We can see a high concentration of cases (more
than two per square kilometre) in Southampton and its coastal environs. More to the north, there are
also local foci in Winchester (the centre of the study region) and the primary urban centres located in
the north and northeast of the study region.

The kernel log relative risk or density ratio function is a descriptor aimed to compare two estimated
densities on the study region W. In epidemiology, it is handy to examine disease risk fluctuations
based on case and control samples. In recent years, many improvements have been developed to the
estimation methodology, including spatially adaptive smoothers and inference based on asymptotic
theory (T. M. Davies, Marshall, and Hazelton 2018). The related techniques are implemented in the
sparr package. Given two spatial point patterns, X, with intensity λ̂(u|X) (that can be thought of as
cases) and Y, with intensity λ̂(u|Y) (that can be thought of as controls); the estimated log relative risk
is defined as

r̂(u) = log

{
λ̂(u|X)

λ̂(u|Y)
· nY

nX

}
, u ∈ W, (2)

where nX and nY are the number of points of X and Y, respectively. When r̂(u) ≈ 0, the densities are
roughly the same; peaks greater than zero mean a higher local ratio of cases to controls, and r̂(u) < 0
indicates lack of concentration of cases than controls.

Here, we compute the relative risk by comparing the point pattern of gastrointestinal infections
and a point pattern with controls derived from a random sample of the underlying population. We
first generate a set of random controls by simulating n = 1443 locations with intensity proportional
to the population density using the rpoispp() function of package spatstat.random. In order to
do that, we calculate the population density as the population intensity normalised by its mass (its
integral over the observation window) calculated by using the function integral.im() of the package
spatstat.geom in each region of Hampshire. Then we can evaluate expressions involving one or more
pixel images through the eval.im() function of package spatstat.geom,

N <- integral.im(PopDens)
n <- X$n
ControlDens <- eval.im((PopDens / N) * n)
Controls <- rpoispp(ControlDens)

Then we assign Hampshire’s window to the new point pattern by using the Window() function of
package spatstat.geom,
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Figure 2: Left: Adaptive bandwidth kernel estimate of intensity for the gastrointestinal data. The
intensity is expressed as number of reports per squared kilometre. Right: Adaptive spatial log-relative
risk of non-specific gastrointestinal disease, with asymptotic tolerance contours for elevated risk.

Window(Controls) <- X$window

For estimating the relative risk, we use the sparr package to perform an adaptive smoothing
adequately designed to deal with the reduced smoothing in densely populated areas. The code

# This takes roughly 22 seconds to be executed
library(sparr)
RelativeRisk <- risk(f = X, g = Controls, adapt = T,

pilot.symmetry = "pooled", tolerate = T)

takes both point patterns (cases f and controls g), computes an adaptive smoothing for estimating
the risk, and computes asymptotic tolerance contours as per Hazelton and Davies (2009). Maps
displayed in Figure 2 showing the intensity and relative risk estimates are produced by executing

par(mfrow = c(1, 2), mar = c(0,0,2,0.5))
plot(SpatialDens, col = viridis(1200), auto.axes = F,

main = "Adaptative kernel intensity estimate", box = F)
plot(RelativeRisk, auto.axes = F, tol.type = "upper",

main = "Relative risk estimate")

Figure 2 (right) provides pointwise areas of significant high relative risk. The null hypothesis
is H0 : r(u) = 0, against an alternative of increased local risk H1 : r(u) > 0 for a point u ∈ W. We
superimpose the contours corresponding to significant values on the log relative risk surface. They
are known as tolerance contours and allow us to identify areas of high risk (Kelsall and Diggle 1995).
The relative abundance of gastrointestinal disease reports appears to be significantly higher in some
areas where the intensity is not necessarily higher. Nor does the relative risk appear to increase in
Southampton (located on the southern coast), the region’s most urbanised area.

Second-order descriptors

Pair correlation and K-functions

The second-order intensity function (λ(2)(u1, u2), u1, u2 ∈ W) is, in point processes, analogous to
the covariance function in classical statistics (Adrian Baddeley, Rubak, and Turner 2015). Also
known as product density function, the second-order intensity function represents the infinitesimal two-
dimensional joint distribution of the points. A more friendly summary statistic is the pair correlation
function, which is the standardised probability density that an event occurs in each of two small spatial
volumes du1 and du2. For CSR (Complete Spatial Random) point processes, the covariance is zero,
and the pair correlation function takes the value of one (P. J. Diggle 2013). Different values than these
benchmarks indicate how likely a pair of events will occur at the specified locations than in a CSR
process with the same intensity; i.e., larger values indicate clustering, and smaller values indicate
regularity. The pair correlation is defined as

g(u1, u2) =
λ(2)(u1, u2)

λ(u1)λ(u2)
, u1, u2 ∈ W. (3)
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Whenever the intensity function of a point process is bounded away from zero and its pair correlation
function depends only on the difference vector r = ||u1 − u2||, the point process is called second-
order intensity reweighted stationary (SOIRS) and isotropic. For estimating the pair correlation function,
consider a point pattern X = {ui}n

i=1 with n points, then

ĝ(r) =
1

2π

n

∑
i=1

∑
j ̸=i

κϵ(||ui − uj|| − r)

λ̂(ui)λ̂(uj)||ui − uj||wij
. (4)

Several parameters must be set before the estimation: a suitable interval for the spatial distances r, a
bandwidth ϵ, a one-dimensional kernel κϵ(·) (Epanechnikov’s kernel is usually recommended), a type
of divisor (factor ||ui − uj|| in the denominator of Eq. (4) can be replaced by r, this option brings a
pole, i.e., an indetermination, in r = 0 (Wong and Stoyan 2021)); and an edge correction wij correcting
for the loss of information of outsider points close to the edges. spatstat usually has smart defaults for
these parameters based on the knowledge of the descriptors, which many authors have contributed.
For this part, we use a fixed-bandwidth kernel estimate, with bandwidth set by Scott’s rule of thumb
(Scott 2015), through the function bw.scott() of the package spatstat.explore, as we need simulations
where the intensity has to be estimated time after time. We employ the function density.ppp() of
package spatstat.explore that provides a fixed bandwidth kernel smoothed intensity function from a
point pattern according to Eq. (1).

sigmaD <- bw.scott(X)
MD <- density.ppp(X, diggle = T, positive = T, sigma = sigmaD)
MP <- density.ppp(X, diggle = T, sigma = sigmaD, at = "points")

In the above implementation, diggle = T sets the Jones-Diggle edge correction (P. J. Diggle
1985), at = 'points' means that the intensity is computed only at the points of X, and sigma is the
bandwidth, which in this case is 3.5km for the horizontal axis and 4.19km for the vertical axis. In the
case of the bandwidth for the pair correlation function, we employ a composite likelihood approach
(Jalilian and Waagepetersen 2018) by using the function bw.pcf() of library spatstat.explore with the
parameter cv.method = 'compLik'; the parameter divisor = 'd' refers to the term ||ui − uj|| in Eq.
(4), which can be replaced by r (Jalilian and Waagepetersen 2018), and lambda is the estimate of the
intensity. We then write

# Time consuming: This takes roughly 24 minutes to be executed
bwG <- bw.pcf(X, cv.method = "compLik", divisor = "d", lambda = MP)

and obtain a bandwidth value of 2.7km. Note that this function can warn of undetermined
contributions to the pair correlation. These caveats come from the divisor, which, when too small, can
conflict with the numerical tolerance of R and eventually lead to indeterminacy. The spatstat package
fixes this by simply removing the problematic values.

Before going further with the estimation of the pair correlation function, let us take a look into
another classical second-order descriptor, the inhomogeneous K-function, which in the SOIRS case, can
be defined as

K(r) = 2π
∫ r

0
sg(s)ds.

For spatial Poisson point processes K(r) = πr2. spatstat chooses a suitable range for r values based
on some rules of thumb depending on geometric attributes of the process or the average intensity
in the region. We decide to choose a proportion of 70% of the maximum value for r proposed by
spatstat.explore through the rmax.rule() function, and set of 70 (71 including zero) different values
for r,

r0 <- 0.7 * rmax.rule("K", X$window, intensity(X))
rr <- seq(0, r0, length.out = 71)

The classical estimator of the spatial K-function is given by

K̂(r) =
n

∑
i=1

∑
j ̸=i

1
[
||ui − uj|| ≤ r

]
λ̂(ui)λ̂(uj)wij

.

Where 1[·] is the indicator function. An alternative descriptor defined as L(r)− r =
√

K(r)/π − r,
and its straightforward estimator L̂(r)− r are intended for stabilising the variance (Besag 1977).

In addition to the estimation of the second-order descriptors, their standard deviation and con-
fidence intervals are desirable for the analysis; this is not always simple, not even in the Poisson
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case, as there is dependence between the contributions of different points to the descriptor. However,
we can use Monte Carlo simulation for computing envelopes through computational efforts. We
use command envelope() of the spatstat.explore for getting the observed descriptor as well as its
simulated counterparts.

We note that although Monte Carlo testing is generally used in point process contexts, it becomes
invalid when the null hypothesis is composite, i.e., when parameters, such as the intensity function,
must be estimated prior to the computing of the envelopes, which is our case for inference about the
second-order descriptors. For dealing with such composite hypotheses, an extra set of simulations is
needed to perform a balanced two-stage test (Adrian Baddeley et al. 2017). The GET package performs
global envelope tests (where the significance level is controlled simultaneously for all the functions)
for the second-order descriptors and provides a graphical interpretation (see, e.g., Myllymäki et al.
2017). We perform a global rank envelope test with the extreme rank length measure and retrieve
the p-value. We warn the reader that this procedure of computing envelopes and two-stage Monte
Carlo testing is computationally demanding. We calculate the first set of 39 envelopes for the centred
L-function. This selection gives 39 (simulated) + 1 (observed) independent samples; it comes from
classical settings of point process simulation (Ripley 1977; Adrian Baddeley, Rubak, and Turner 2015;
Adrian Baddeley et al. 2017). We use the envelope.ppp() function of the spatstat.explore package;
this function computes simulation envelopes of a summary function,

# Time consuming: This takes roughly 3 minutes to be executed
L1 <- envelope(X, nsim = 39, savefuns = TRUE, fun = "Linhom", diggle = T,

transform = expression(.-r), sigma = sigmaD, r = rr,
simulate = expression(rpoispp(lambda = MD)), verbose = F)

Then we generate another set of inhomogeneous Poisson point patterns with the estimated
intensity,

Simpatterns <- rpoispp(lambda = MD, nsim = 39)

We design a function to calculate the intensity for each point pattern and to compute envelopes
with point patterns simulated from the new intensity,

simL <- function(rep) {
sim_fit <- density.ppp(Simpatterns[[rep]], diggle = T,

sigma = sigmaD, positive = T)
envelope(Simpatterns[[rep]], nsim = 39, savefuns = T, fun = "Linhom",

transform = expression(.-r), r = rr, diggle = T, sigma = sigmaD,
simulate = expression(rpoispp(lambda = sim_fit)))

}

Now we apply the function for every point pattern of the list to get a list of envelope objects.
This process is very slow as 39 L-functions have to be computed for each point pattern. We employ
the package foreach to use multiple processors to accelerate this procedure in combination with the
parallel and doParallel packages. The function detectCores() of the package parallel automatically
detects the computer’s CPU cores and the function registerDoParallel() of the doParallel package
is used to register a parallel backend in the computer. The foreach() %dopar% function returns a list
with the result of applying a function over every element of the main argument by using the registered
cores of the computer processor,

# Time consuming: This takes roughly 21 minutes to be executed
library(foreach)
library(doParallel)
c0 <- parallel::makeCluster(detectCores() - 1)
doParallel::registerDoParallel(c0)
L.ls <- foreach(i = 1:39, .packages = c("spatstat")) %dopar% {simL(i)}
parallel::stopCluster(c0)

Finally, we perform the adjusted test using the function GET.composite() of the GET package and
plot the envelopes. In this case, we are interested in establishing a possible positive departure of the
observed centred L-function and its simulated counterparts. Thus, we set alternative = "greater",
type = 'erl', which performs a rank envelope test based on extreme rank lengths (Myllymäki et al.
2017) based on several minimal pointwise ranks; and use the ggplot2 (Wickham 2016) package for the
plots,
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Figure 3: Graphical clustering tests of Hampshire data based on the L-functions. The gray bands
represent the 95% global envelope. Red dots stand for the second-order descriptors outside the
envelopes.

library(GET)
library(ggplot2)
resL <- GET.composite(X = L1, X.ls = L.ls, type = "erl",

alternative = "greater", savefuns = T)

Figure 3 shows the output of the rank envelope test. The rejection is explained by the attractive
behaviour of gastrointestinal disease cases at short distances. The red-dot line indicates this clustering
behaviour up to 5km, which shows a departure from the narrow grey band that represents the 95%
adjusted rank envelope, i.e., the rank envelope that considers the composite hypothesis. Note that
the more simulations, the better results for the test (Myllymäki et al. 2017). The dashed black line
represents the central function (the mean) of only the first set of simulations; note that this function is
not the mean value of the grey ribbon as it comes from envelopes under the composite null hypothesis.
We find a significant positive departure from the envelopes up to approximately 5km; this means that
observed data are more clustered in distances below 5km than might be expected in Poisson point
patterns with the same intensity, and this clustering is statistically significant.

3 Spatio-temporal analysis

Spatio-temporal intensity and relative risk

First-order separability

Spatio-temporal point processes analyses can be carried out when every data point has associated geo-
graphic and time information. In these cases, estimating the first-order intensity function constitutes a
primary interest. The intensity function provides information about the joint distribution of the spatial
and temporal locations. Usually, this distribution is simplified by assuming, for example, separability.
A point process is referred to as separable when its spatio-temporal intensity function can be factorised
as

λ(u, v) = λ1(u)λ2(v), u ∈ W, v ∈ T,

where λ1(·) and λ2(·) are non-negative functions of space and time, respectively. Authors often take
separability for granted as it is a very pragmatic working assumption, but it should be tested before
choosing an estimator. There are some specialised separability tests available in the literature. We
use the package kernstadapt (González and Moraga 2022b) to test separability in our example by
considering a division of the temporal interval T = [1, 1095] into 16 disjoint equally-spaced sub-
intervals. We split the spatial window W into 20 disjoint rectangular subsets with roughly the same
area. As the separability of the intensity might be thought of as the independence of two random
variables, it can be tested by a simple χ2-test as proposed by Ghorbani et al. (2021), where the null
hypothesis is separability. The test bases on the counts of points in disjoint spatial and temporal
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sub-regions; when there are expected counts of individual cells below 5, the authors recommend
a Fisher’s test. We employ Fisher’s test calculating the p-value by Monte Carlo simulation (5000
replicates):

# This takes roughly 20 seconds to be executed
SepTest <- separability.test(Aegiss, nx = 5, ny = 4, nt = 16, nperm = 50000)

SepTest

#>
#> Separability test based on Fisher's for counting data
#>
#> data: Point pattern Aegiss
#> p-value = 0.00392
#> alternative hypothesis: The point pattern Aegiss is not spatio-temporal separable

As the p-value is significant, we opt for estimating the spatio-temporal intensity in a non-separable
fashion. We estimate the intensity by employing the following estimator, which uses a Gaussian kernel
for all coordinates (Choi and Hall 1999; González, Hahn, and Mateu 2019; Ghorbani et al. 2021)

λ̂(u, v) =
n

∑
i=1

κ2
ϵ(u − ui)κ

1
δ(v − vi)

e2(ui)e1(vi)
, (5)

where
e2(ui) =

∫
W

κ2
ϵ(ui − s)ds, and e1(vi) =

∫
T

κ1
δ(vi − w)dw;

and where κ2
ϵ and κ1

δ are the two- and one-dimensional Gaussian kernels with bandwidths ϵ and δ.

In this case, we use a fixed spatial bandwidth calculated by a rule of thumb that depends on
the short size of the window and a temporal one calculated through the function bw.nrd(). Notice
that the spatio-temporal estimator given in Eq.(5) resembles the spatial one given in Eq.(1), with an
extra kernel weight for the temporal component. On the other hand, as the spatial edge correction,
due to P. J. Diggle (1985), is already implemented in the function density.ppp() of spatstat.explore,
we must calculate the temporal one. We employ the generic function bw.nrd0() of package stats
for the temporal bandwidth, which uses Silverman’s rule-of-thumb (Silverman 1986) for choosing
the bandwidth of a Gaussian kernel density estimator. For computing the edge correction, we take
advantage of the properties of the normal distribution noticing that e1(vi) = P(Yi ∈ T) where
Yi ∼ N(vi, δ2), indeed,

Times <- Aegiss$marks
bwt <- bw.nrd0(Times)
edgewt.t <- pnorm((max(Times) - Times) / bwt) - pnorm((min(Times)- Times) / bwt)

Then we proceed to calculate the non-separable estimator. To quicken the computation, for each
fixed time t0, we take temporal bins t ∈ [t0 − 3δ, t0 + 3δ], as the normal distribution practically
vanishes at larger or smaller values, then we compute the temporal kernel values and attach them to
the spatial kernel as weights,

# This takes roughly 44 seconds to be executed
nonseparable <- function(time){

contrib <- (Times >= time - 3 * bwt) & (Times <= time + 3 * bwt)
Wh <- dnorm(x = Times[contrib], mean = time, sd = bwt) / edgewt.t[contrib]
density.ppp(X[contrib], weights = Wh, diggle = TRUE)

}
nonsep <- lapply(unique(Times), nonseparable)

We have 1047 intensity estimates corresponding to each of the 1047 different times; note that 1047 is
the size of the temporal coordinates set and not the maximum temporal value (1095). We decide to plot
a subset of them, namely the estimates corresponding to times 01/01/2001, 01/01/2002, 01/01/2003
and 12/31/2003.

n.slices <- which(unique(timelabels) %in% as.Date(c("2001-01-01", "2002-01-01",
"2003-01-01", "2003-12-31")))

Snap <- list(nonsep[[n.slices[1]]], nonsep[[n.slices[2]]],
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Figure 4: Temporal snapshots of the intensity λ̂(u, v), of non-specific gastrointestinal reports in
Hampshire, estimated in a non-separable way through Gaussian kernels. The units are rescaled by
100.

nonsep[[n.slices[3]]], nonsep[[n.slices[4]]])
plot.imlist(Snap, equal.ribbon = T, ncols = 4, box = F, main = "", log = F,

main.panel = unique(timelabels)[n.slices], col = viridis(1200),
ribscale = 100, mar.panel=c(0, 0, 1, 1), panel.end = X$window)

In the spatio-temporal case (Figure 4), we can see a behaviour in the intensity of cases much lower
than in the spatial case (Figure 2 (left)) due to the temporal granularity. This scale difference is due to
the number of events per unit of time, which is not considered in the only spatial estimation. When
considering the temporal dimension, the total points must be divided by the number of bins in the
temporal grid where the estimation is made. Therefore, there are fewer points per unit area at each
time than only when spatial coordinates are considered.

The intensity maintains some urban centres as foci over time, especially those in the south, for
example, in Portsmouth, where there is a high concentration of cases between 2002 and 2003.

In the next section, we show how to compute spatio-temporal descriptors. To do that, we need to
know the intensity values at every point of the point pattern. We can extract the intensity values by
using the safelookup() of spatstat.geom. Then, we attach those values, and the dates, as a mark to
each point by using the operator %mark%,

lambda <- NULL
for (i in 1:length(nonsep)) {

lambda <- c(lambda, safelookup(nonsep[[i]],
Aegiss[marks(Aegiss) == unique(Times)[i]]))

}
PP <- X %mark% data.frame(time = Aegiss$marks, Lambda = lambda)

Spatio-temporal relative risk

The concept of relative risk straightforwardly extends to the spatio-temporal domain. In this regard,
we must make additional considerations; for example, the spatial relative risk can be conditioned to a
specific time (T. M. Davies, Marshall, and Hazelton 2018). Analogous to the classic probability, in the
spatio-temporal context, the idea of conditioning on a specific time v = t0 comes naturally. This means
that for a fixed instant t0, we consider the spatial density function given that time. Mathematically, it
is calculated by normalising the spatio-temporal density by the density of the temporal coordinates
evaluated at the fixed time t0. On the other hand, if it is not conditioned to a particular time, the risk
function is a function of three variables (two spatial coordinates and one temporal), which can be
drawn through snapshots. Thus, we have two possible risk functions, r(u, v) (if plotted at a fixed time,
it represents an unnormalised slice of the three-dimensional function) and r(u|v = t0) (a spatial-only
snapshot of relative risk).

Given that we have population information for 2001, 2002 and 2003, we generate controls from
these three population densities considering uniform times within each year. Then, we superimpose
the three control point patterns into one using the superimpose() function of the spatstat.geom
package. We obtain a spatio-temporal point pattern of controls that will serve as input to calculate the
denominator of the relative risk.

Ni <- lapply(Population, integral.im)
ni <- lapply(split(Aegiss, cut(Aegiss$marks, breaks = c(0, 365, 730, 1095))),

npoints)
ControlDensi <- mapply(function(D, N, n) {eval.im((D / N) * n)},
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D = Population, N = Ni, n = ni, SIMPLIFY = F)
Controlsi <- mapply(function(L, Breaks){
PP <- rpoispp(lambda = L)
marks(PP) <- sample(x = (Breaks[1] + 1):Breaks[2],

size = npoints(PP), replace = T)
return(PP)},
L = ControlDensi, Breaks = list(c(0, 365), c(365, 730), c(730, 1095)),
SIMPLIFY = F)

Controlsi <- superimpose(as.solist(Controlsi))
Controlsi <- unmark(Controlsi) %mark% Controlsi$marks$origMarks
Window(Controlsi) <- Window(Aegiss)

For the spatio-temporal risk estimation exercise, we return to the sparr package. We follow the
recommendations of (T. M. Davies, Marshall, and Hazelton 2018) and set oversmoothing bandwidths (a
rule based on an optimal bandwidth upper bound for the asymptotic mean integrated squared error
of the density estimate, this may be done using the command OS.spattemp()). The spatio-temporal
densities can analysed through the command spattemp.density() of the sparr package.

# This takes roughly 4.87 minutes to be executed
Br <- OS.spattemp(Aegiss)
f.num <- spattemp.density(Aegiss, h = Br[1], lambda = Br[2])
d.den <- spattemp.density(Controlsi, h = Br[1], lambda = Br[2])

In this case, interest may rise about the anomalous regions of spatio-temporal risk considering
joint and conditional risks (given a time t); i.e., we are interested in testing the null hypotheses
H0 : r(u, v) = 0 or H0 : r(u, |v = t) = 0 against the alternatives of high risks. We employ the
spattemp.risk() function of sparr to obtain a spatiotemporal relative risk surface based on the ratio
of the two kernel estimates. In addition, since doing Monte Carlo simulations to obtain p-values is
very complicated from the computational point of view, asymptotic approximations are implemented
in sparr by setting tolerate = T,

# This takes roughly 5.47 minutes to be executed
st.risk <- spattemp.risk(f = f.num, g = d.den, tolerate = T)

We proceed to extract the unconditional and conditional risk slices,

risk.slices <- spattemp.slice(st.risk, tt = n.slices)

The variable risk.slices contains a list of lists of images, each of which corresponds to the
requested times in n.slices and has the unconditional and conditional risk estimates and the p-values
surfaces. We can plot the image estimates as follows:

plot.imlist(c(risk.slices$rr, risk.slices$rr.cond), equal.ribbon = T, ncols = 4,
box = F, main = "", main.panel = c(timelabels[n.slices], rep("", 4)),
mar.panel = c(0, 0, 1, 1), col = rocket(1200), ribmar = c(1, 3, 1, 2),
ribwid = 0.4, panel.end = function(i,...){
contour(c(risk.slices$P, risk.slices$P.cond)[[i]],

levels = 0.05, drawlabels = TRUE, ...)
plot(X$window, add = T)})

In Figure 5, we can see how the high significant risk remains in the central Hampshire region.
Although the two panels (top and bottom) look similar, there are differences. For example, in February
2001, we see how the conditional risk shows a larger statistically high area than its unconditional
counterpart. We also see that the greatest risk is not present in the most densely populated areas (in
this case, the south-central part of the region, where the capital is located).

Second-order descriptors

Pair correlation and K-functions

Let ξ1 = (u1, v1), ξ2 = (u2, v2) be two points of W × T. The second-order intensity function
(λ(2)(ξ1, ξ2), ξ1, ξ2 ∈ W × T) and the pair correlation function are defined in the spatio-temporal
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Figure 5: Temporal snapshots of the unconditional risk r̂(u, v) (top) and conditional risk r̂(u|v = t)
(where t is 01/01/2001, 01/01/2002, 01/01/2003 and 12/31/2003) (bottom) of non-specific gastroin-
testinal disease in Hampshire. Solid lines delineate a statistical significant elevated risk at the 5%
level.

context, in the very same way as the spatial ones. For CSTR point processes, the pair correlation
function takes the value of one. Values other than these benchmarks indicate how likely a pair of
“extra” points will appear in a CSTR process with the same intensity at the specified locations; i.e.,
larger values indicate clustering, and smaller values indicate regularity. The pair correlation (Gabriel
and Diggle 2009; Møller 2012; González et al. 2016) is defined as

g(ξ1, ξ2) =
λ(2)(ξ1, ξ2)

λ(ξ1)λ(ξ2)
, ξ1, ξ2 ∈ W × T. (6)

Second-order intensity reweighted stationarity (SOIRS) and isotropy are defined in the same vein
as the spatial counterparts. For the estimation of the pair correlation function, consider a point
pattern X = {(ui, vi)}n

i=1 with n points, the spatio-temporal pair correlation function (Eq. (6)) may be
estimated by

ĝ(r, t) =
1

4πr

n

∑
i=1

∑
j ̸=i

κϵ(∥ui − uj∥ − r)κ′δ(|vi − vj| − t)

λ̂ (ui, vi) λ̂
(

uj, vj

)
wij

, r ∈ [ϵ, r0], t ∈ [δ, t0],

where κϵ and κ′δ are one-dimensional kernel functions with spatial and temporal bandwidths ϵ and δ,
respectively; wij represent edge-correction weights (González et al. 2016). Selecting the bandwidths is
often complicated because the estimation depends on those parameters, which means a wrong decision
could be disastrous. As the second-order descriptors are distance-based, we can take advantage of
some techniques for bandwidth selection. For example, for the temporal kernel, we use the dpik()
function from the KernSmooth package (González and Moraga 2022b), which uses the method
proposed by (Sheather and Jones 1991) to estimate a suitable bandwidth,

library(KernSmooth)
dt <- dist(unique(Times))
ht <- dpik(dt, kernel = "epanech", gridsize = 50, scalest = "iqr")
ht <- 2 * ht

Note that we set Epanechnikov’s kernel as a default because the kernel selection is not as important
as the bandwidth. We get a temporal bandwidth of 13.5 days (the output of the dpik() function). For
the spatial bandwidth and upper bound r0, we use the same as obtained for the spatial summary
functions. For the temporal upper bound t0, we set the 15% of the maximum temporal distances,

t0 <- 0.15 * max(dt)

We use the stpp package to estimate the descriptor. We first create data in spatio-temporal
point format using the command as.3dpoints(); then, we create a two-column matrix to specify the
polygonal region containing the points and set the spatial and temporal domains for the descriptor.
Finally, we use the PCFhat() function to compute the estimate of the pair correlation function,
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Figure 6: Spatio-temporal pair correlation function estimate of non-specific gastrointestinal disease
data.

library(stpp)
FMD <- as.3dpoints(PP$x, PP$y, PP$marks$time)
s.region <- as.matrix(data.frame(x = PP$window$bdry[[1]]$x,

y = PP$window$bdry[[1]]$y))
hs <- bwG
u1 <- seq(hs, r0, length.out = 71)[-1]
v1 <- seq(ht, t0, length.out = 71)[-1]

# Time consuming: This takes roughly 3.87 hours to be executed
g <- PCFhat(xyt = FMD, s.region = s.region, t.region = range(Times),

lambda = lambda, dist = u1, times = v1, ks = "epanech",
kt = "epanech", hs = hs, ht = ht)

To visualise the descriptor, we use the persp3D() function of the plot3D package,

library(plot3D)
par(mar = c(0,0,0,0))
persp3D(x = u1, y = v1, z = g$pcf, facets = NA, curtain = F, col = viridis(200),

colkey = F, bty = "g", pch = 20, cex = 1.5, theta = 40, phi = 5,
border = NA, ticktype = "detailed", cex.axis = 0.5, zlab = "",
xlab = "spatial distances", ylab = "temporal distances")

The ĝ(r, t) surface, shown in Figure 6, describes the spatio-temporal interaction structure of the
disease; it shows clustering (ĝ(r, t) ≥ 1) for all the distances at all times with the appearance of high
clustering at small distances (up to 5km) that moves towards complete spatio-temporal randomness
(CSTR) for more considerable distances. We then can suspect from this behaviour that the point
pattern is only clustered in the spatial dimension, i.e., the interaction between gastrointestinal reports
increases as long as they are close in space, but the clustering in time seems uniform along with the
selected periods. We can also conclude that while the first-order intensity is not separable, perhaps
the second-order one is. Note that the bandwidth selection explains the waves of the pair correlation
function in the temporal dimension; narrow bandwidths produce spurious bumps in the estimate.

One of the most used second-order descriptor is the inhomogeneous spatio-temporal K-function
Møller (2012). Under the SOIRS assumption, if g(r, t) is the pair correlation function, then the K-
function is defined as

K(r, t) =
∫

R2

∫
R

1[||u|| ≤ r, |s| ≤ t]g(||u||, |s|)duds, for r > 0, t > 0.
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Figure 7: Spatio-temporal pair correlation function estimate of non-specific gastrointestinal disease
data.

In the homogeneous case, K(r, t) is simply the expected number of additional points within distance r
and time lag t from the origin, given that the point pattern has a point at the origin. For a CSTR point
processes K(r, t) = πr2t. Considering a spatio-temporal point pattern X again, an estimator of K(r, t)
is

K̂(r, t) =
1

|W × T|
n

∑
i=1

∑
j ̸=i

1
[∥∥∥ui − uj

∥∥∥ ≤ r
]

1
[∣∣∣vi − vj

∣∣∣ ≤ t
]

λ̂ (ui, vi) λ̂
(

uj, vj

)
wij

.

There is an alternative estimator K̂∗(r, t) matching the original definition of (Gabriel 2014) that into
account the past of the process. To compute the K-function we employ the STIKhat() function from
the stpp package,

u <- seq(0, r0, length.out = 71)
v <- seq(0, t0, length.out = 71)

# Time consuming: This takes roughly 55 minutes to be executed
stik <- STIKhat(xyt = FMD, s.region = s.region, t.region = range(Times),

lambda = lambda, dist = u, times = v, infectious = F)

The parameter infectious controls the type of estimator, when it is set FALSE, past and future
events are considered for the estimation. In this equation, the points ξi = (ui, vi) are ordered so
that vi < vi+1 (ties are broken by random unrounding whenever necessary). To deal with temporal
edge-effects, for each t ∈ T = [T0, T1], nt is the number of events for which vi ≤ T1 − t. For spatial
edge effects, the STIKhat() function employs Ripley’s method (Gabriel and Diggle 2009). For plotting
the spatio-temporal K-function we write,

KS <- stik$Khat - stik$Ktheo
par(mar = c(0,0,0,0))
persp3D(x = u[-1], y = v[-1], z = KS, facets = NA, zlab = "",

curtain = F, col = viridis(100), colkey = F, bty = "g", pch = 20,
cex = 1.5, theta = 40, phi = 5, border = NA, ticktype = "detailed",
cex.axis = 0.5, xlab = "spatial distances", ylab = "temporal distances")

Figure 7 shows the estimated K-function. Since the K-function is centred on its theoretical value
(2πr2t), we can easily interpret it; positive deviations suggest clustering, while negative deviations
represent regularity or inhibition. In our case, we can see positive deviations that become larger as
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the spatial and temporal distances grow together. Therefore, as time passes and spatial distances
become larger, the level of clustering also increases in our point pattern, at least in the range we have
considered, that is, up to 7km in space and up to 5 months in time.

4 Discussion

Throughout this paper, we have shown how to analyse complex spatial and spatio-temporal point
patterns through various techniques that aim to capture their first and second-order characteristics
using several R packages. Specifically, we have toured very recent techniques such as variable
bandwidths, relative risk inference, and composite hypotheses. The spatial methods presented
are well-investigated and documented and can be easily applied using R. We have seen that some
procedures, such as estimating p-values in composite hypotheses, require severe computational
resources. The approximate computing time, including all the routines and set parameters suggested
throughout the paper, is approximately six hours in a 3 GHz 6-Core Intel Core i5 iMac computer.
This time depends on several factors, such as the number of simulations and the precision of desired
outputs. It is mainly due to the number of points in the point pattern; the more data points, the
more computational complexity, especially in the case of second-order descriptors, where pairwise
calculations are required. Some R packages such as foreach can help accelerate the computations,
even though these methods may quickly become unfeasible when the datasets have many points.

We have presented the most straightforward methods and the most widely known in the literature;
we have done this, above all, because we intended to provide a solid and approachable learning
resource. However, there are also alternative methods to deal with some of the descriptors we analyse
in this document; for example, González and Moraga (2022a) presents a methodology to accurately
and adaptively estimate the spatio-temporal intensity functions; this methodology can be applied
using the kernstadapt package.

The analyses presented here can benefit future researchers who have initial questions about spatio-
temporal point process data; these results can serve, for instance, as input for possible statistical models.
We have not delved into statistical modelling and inference since many models exist in the spatio-
temporal point processes literature. These statistical models can incorporate current knowledge of the
phenomenon and many scientific considerations. Different models can be proposed and compared
to decide which variables significantly influence the summary descriptors, making the results more
informative (Adrian Baddeley, Rubak, and Turner 2015). For example, one of the most flexible families
of models with the most methodological advantages is the family of log-Gaussian point processes.
Log-Gaussian Cox processes are models for point patterns that intend to capture the environmental
variability (Peter J. Diggle et al. 2013). They are spatio-temporal Poisson processes conditional on
the realisation λ(u, v) of a stochastic intensity function Λ(u, v), (u, v) ∈ R2 × R. In the SOIRS case, a
convenient representation of the intensity is

log {Λ(u, v)} = λ(u, v)S(u, v),

where S(u, v) is a Gaussian stationary process with expectation 1 and covariance function γ(r, t) =
σ2s(r, t), where σ2 is the variance of S(u, v) and s(·, ·) is a spatio-temporal correlation function, where
r and t are spatial and temporal distances. Inference uses a discretised version of S(u, v), namely S ,
defined on a regular grid, where observations X are the cell counts, and the intensity of the process
is assumed constant within each cell (B. Taylor and Diggle 2014). S is a finite collection of Gaussian
random variables, so its properties imply a multivariate Gaussian density. The covariance matrix
elements are calculated by evaluating γ(r, t) at the centroids of the cells. Predictive inference about S
requires samples from the conditional distribution of the latent field given the observations, namely
[S|X]. For estimating the parameters of a space-time log-Gaussian Cox process, one can choose
between computationally feasible methods, such as those based on moments or more demanding
methods based on likelihood (Peter J. Diggle et al. 2013). Inference can be achieved for example, by
using Markov chain Monte Carlo (MCMC) for which the lgcp package can be used, and by using
integrated nested Laplace approximation (INLA) with the inla and inlabru packages.

To conclude, the methods presented here are primarily concerned with understanding the proba-
bility distribution that generate points observed in space or time. The study of such a distribution
involves many routines, concepts and contexts that can help answer scientific questions and make
decisions based on the data or inferences about them. The inclusion of technological advancements
in R has led to improved efficiency and speed in calculations. Additionally, R offers a versatile and
reliable environment for implementing statistical procedures and creating graphical visualisations.
Also, modern developments in spatial statistics related to point patterns have been made possible
thanks to the widespread availability of reproducible R scripts for analyses. In this paper, we have
made extensive use of the ability to apply, extend and modify procedures in R to analyse spatial and
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spatio-temporal point patterns in the context of epidemiology. These approaches are also helpful for
analysing point pattern data that arise in various fields such as climatology, ecology or seismology.
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