
CONTRIBUTED RESEARCH ARTICLE 34

asteRisk - Integration and Analysis of
Satellite Positional Data in R
by Rafael Ayala, Daniel Ayala, Lara Sellés Vidal, and David Ruiz

Abstract Over the past few years, the amount of artificial satellites orbiting Earth has grown fast,
with close to a thousand new launches per year. Reliable calculation of the evolution of the satellites’
position over time is required in order to efficiently plan the launch and operation of such satellites,
as well as to avoid collisions that could lead to considerable losses and generation of harmful space
debris. Here, we present asteRisk, the first R package for analysis of the trajectory of satellites. The
package provides native implementations of different methods to calculate the orbit of satellites, as
well as tools for importing standard file formats typically used to store satellite position data and to
convert satellite coordinates between different frames of reference. Such functionalities provide the
foundation for integrating orbital data and astrodynamics analysis in R.

1 Introduction

Since the launch of Sputnik 1 in 1957, the developments in space technology have enabled a fast
growth of the amount of satellites placed in orbit around Earth. Such growth has become especially
prominent in the last decade, as evidenced by the fact that over a third of the 11,697 satellite launches
performed until September 2021 occurred over the last 5 years (United Nations). The number of
organizations behind satellite launches has also considerably expanded, and currently includes not
only government and military agencies, but also private entities. This is largely due to technological
developments, such as miniaturized satellites, that have made the process of placing a satellite on
orbit around Earth increasingly accessible (Toorian et al. 2008; Bouwmeester and Guo 2010; Kirillin et
al. 2015).

Planning the launch, operation and orbital maneuvers of satellites requires predictions of the
trajectory that a satellite will follow along time from a known state vector (a set of parameters that
define the position, velocity and acceleration of the satellite at a given instant). Such methods are also
useful for studying the simultaneous evolution of multiple satellites, with the aim to predict and avoid
collisions. This is of special interest in the light of the increasing density of Earth-orbiting satellites,
since uncontrolled collisions could lead to the onset of Kessler syndrome (Kessler and Cour-Palais
1978; Kessler et al. 2010), a positive-feedback scenario where the generated space debris impacts on
other objects, producing further cascading collisions. This would eventually hinder space operations
in some orbits for very long periods of time. For these reasons, multiple models have been developed
to calculate the evolution (propagate) of the position of a satellite over time from a set of initial, known
conditions.

We introduce asteRisk, an R package that aims to provide a suite for astrodynamics analysis
in R. To that extent, implementations of some of the most frequently applied orbital propagators
are provided, including the SGP4 and SDP4 models (Dong and Chang-yin 2010), as well as a high-
precision numerical orbital propagator. Additionally, utilities for reading file formats commonly used
to distribute satellite positions (ephemeris) are provided. Satellite ephemerides are relatively scarce
compared to other types of positional data (such as that available for standard aviation) (Schäfer
et al. 2014), due to the much higher technical complexity of the equipment required to obtain
experimental observations that allow the calculation of the position of satellites, as well as to the
sensitivity level of such information. As a consequence, only limited sources of data are available
for most satellites, such as CelesTrak (Kelso) and Space-Track (SAIC), with the notable exception of
Global Navigation Satellite Systems (GNSS) and Planet Labs nanosatellites (Foster et al. 2015). In
spite of the scarcity of the data, the provided orbital propagators can extend its scope by calculating
future and past ephemeris from a given known state vector. The package also provides tools for
the calculation of orbital parameters from the coordinates and velocity of a satellite and vice versa,
as well as for the conversion of coordinates between different frames of reference. Some of the
functionalities provided with asteRisk require large data tables. These are provided in the accessory
data package asteRiskData, which is distributed through a drat repository and can be installed by
running install.packages('asteRiskData',repos='https://rafael-ayala.github.io/drat/').

In the following sections, we describe the features of the package and provide examples of
application to real data. Firstly, the supported file formats are described, together with examples
of data sources, in Section File formats and data sources. Next, we introduce the different orbital
propagators currently implemented in Section Orbital propagators. Finally, the different available
frames of reference are presented, and conversion between them is demonstrated in Section Frames of

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=asteRisk
https://CRAN.R-project.org/package=drat

CONTRIBUTED RESEARCH ARTICLE 35

reference.

2 File formats and data sources

As previously mentioned, positional information for satellites is relatively scarce compared to non-
space aircraft. CelesTrak and Space-Track distribute data for nearly all well-known, non-classified,
Earth-orbiting satellites in TLE format. Additionally, NASA provides information about GNSS
satellites through the Crustal Dynamics Data Information System (CDDIS) (Noll 2010) in RINEX
format. asteRisk provides functionalities for reading-in both types of files, which consist of plain
text files structured according to the definitions provided by the organizations that implement each
standard.

TLE files

The TLE (Two/Three Line Element) format was originally implemented by the North American
Aerospace Deffense Command (NORAD), and has become the standard format for distributing
positional information about Earth-orbiting satellites.

The format consists of an initial optional line with up to 24 characters (title line) with the name
of the satellite corresponding to the TLE file, followed by two 69-character lines that include the
information required to calculate orbital elements (a set of parameters that describe the orbit of an
object at a given time point), as well as some additional metadata about the satellite (Kelso). It should
be noted that a TLE file can contain multiple TLE data structures, which are concatenated in the same
file with no additional separator.

TLE files can be read with the readTLE function, which receives the path to a file containing one or
more TLEs. Both TLEs with and without the additional title line are supported, but all the TLEs in
the file should be of the same type. Alternatively, the parseTLElines can be used to obtain the same
information from a character vector where each element is a string representing a TLE (including the
new-line characters).

It should be noted that TLE files were designed to be used in conjunction with the SGP4 or SDP4
orbital propagators (described in detail in Section The SGP4 model). This is because the values
provided in TLEs are not osculating/Keplerian orbital elements of a satellite, but instead mean
elements calculated to best fit multiple observations by the entity distributing the file. Therefore,
as a general rule it is not recommended to use the information obtained from a TLE file as input to
orbital propagators other than SGP4/SDP4. However, it is often the case that TLEs are the single
available source of information for a given satellite. In such circumstances, if the application of other
propagators is desired, it is advised to apply the SGP4/SDP4 model to propagate the orbit to the
same instant corresponding to the values of orbital elements distributed in the TLE. This will generate
position and velocity values in Cartesian coordinates that are better suited to be used as input for
other algorithms, although unpredictable errors are still likely to be present (Janson et al. 2020).

In the following example, we read a file containing TLEs retrieved from CelesTrak for the Interna-
tional Space Station (ISS) and a Molniya satellite (a satellite model for military and communications
purposes launched by the Soviet Union and later by the Russian Federation from 1965 to 2004):

In this example, we read a test TLE file containing 2 TLEs, one for the
Zarya module of the International Space Station and another one for a
Molniya satellite

test_TLEs <- readTLE("./data/testTLEs.tle")

We can now check the mean orbital elements contained in each TLE. For
example, we can calculate the orbital period from the mean motion, provided
in revolutions/day

meanMotion_ISS <- test_TLEs[[1]]$meanMotion
1/meanMotion_ISS * 24 * 60

An orbital period of around 93 minutes is obtained for the ISS, in accordance
with expectations

Let us check some characteristic parameters of the Molniya satellite

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 36

meanMotion_Molniya <- test_TLEs[[2]]$meanMotion
1/meanMotion_Molniya * 24 * 60
test_TLEs[[2]]$eccentricity

The Molniya satellite has a period of around 715 minutes and an eccentricity
of 0.74, in accordance with the elliptical Molniya orbits in which such
satellites were placed

RINEX navigation files

RINEX (Receiver INdependent EXchange) (Gurtner and Estey 2007) is a standard defining multiple
formats to distribute satellite navigation systems data, including GNSS. The standard defines three
types of files for navigation, observation and meteorological data. Among these, navigation data files
provide positional information about satellites.

RINEX defines multiple navigation file formats for different constellations of satellites: GPS,
GLONASS, Galileo, BeiDou, IRNSS/NavIC and other regional satellite-based augmentation systems
(SBAS). The current version of asteRisk supports GPS and GLONASS navigation files, which can be
read respectively with functions readGPSNavigationRINEX and readGLONASSNavigationRINEX. Both
functions receive as an argument the path to a RINEX navigation file, and return a list with the values
for the elements contained in the file. In the case of GLONASS navigation files, these include directly
Cartesian coordinates values for the position, velocity and acceleration of the satellite in the ITRF
system of coordinates. On the other hand, GPS navigation files provide values for the osculating orbital
elements of the satellite in the GCRF system of coordinates, which can be converted to Cartesian
coordinates. Functions readGPSNavigationRINEX and readGLONASSNavigationRINEX automatically
perform corrections of satellite time to obtain the corresponding accurate UTC times following the
procedures described in the specifications of both GNSS (Flores; Space Device Engineering). In the
case of GPS RINEX navigation files, conversion of orbital elements to Cartesian coordinates in the
ITRF frame is also performed. Additionally, due to the small scale of some of the involved clock
corrections (below microseconds), the corrected ephemeris times in UTC are returned as objects of
class "nanotime" from the nanotime package.

In the following example, a RINEX navigation file for a GPS satellite obtained from the CDDIS is
read. A TLE file from CelesTrak for the same satellite at the same instant is also read, and the obtained
orbital elements are compared:

Let us read a GPS RINEX navigation file containing a single message

GPS_RINEX <- readGPSNavigationRINEX("./data/RINEX_GPS_1.rxn")

The resulting list comprises 2 elements: "header" (which is common for all
navigation messages present in the file) and "messages" (which is a list of
lists, with one element per message in the top-level list and each of these
containing elements for the different pieces of information provided in the
navigation messages). Since there is only one message in the read file,
"messages" is a list of length 1. We can retrieve orbital parameters from it.
Note that the values for angle quantities are in radians, which we convert
to degrees here. The mean motion is in radians per second, which we convert
to revolutions per day

length(GPS_RINEX$messages) # 1
GPS_RINEX$messages[[1]]$correctedMeanMotion * 86400/(2*pi) # 2.005735
GPS_RINEX$messages[[1]]$eccentricity # 0.002080154
GPS_RINEX$messages[[1]]$inclination * 180/pi # 55.58636
GPS_RINEX$messages[[1]]$meanAnomaly * 180/pi # -37.86007
GPS_RINEX$messages[[1]]$perigeeArgument * 180/pi # 175.6259
GPS_RINEX$messages[[1]]$ascension * 180/pi # -22.95967

Let us now read a TLE for the same satellite at approximately the same time

GPS_TLE <- readTLE("./data/TLE_GPS.tle")

We can verify that both the TLE and the RINEX file correspond to the same
satellite by comparing the PRN codes, which is in both cases 18. A PRN code
is an identifier unique to each satellite of the GPS constellation.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=nanotime

CONTRIBUTED RESEARCH ARTICLE 37

GPS_RINEX$messages[[1]]$satellitePRNCode
GPS_TLE$objectName

We can now check the mean orbital elements provided the TLE file

GPS_TLE$meanMotion # 2.005681
GPS_TLE$eccentricity # 0.0020743
GPS_TLE$inclination # 55.5757
GPS_TLE$meanAnomaly # -46.0714
GPS_TLE$perigeeArgument # 181.977
GPS_TLE$ascension # 37.1706

As we can see, mean motion, eccentricity, inclination and argument of perigee
are very similar between the two files. The value for mean anomaly, a
measurement of where the satellite is along its orbital path, are also
similar if we convert both of them to the [0, 2*pi) range. However, the
values for the longitude of the ascending node differ significantly. This
is due to the fact that the orbital elements provided in the TLE file are
defined in the TEME frame of reference, while the values in the RINEX file
are defined in the ITRF frame of reference.

3 Orbital propagators

An orbital propagator is a mathematical model for calculating the position of a satellite at future or past
time points given a known state vector at a certain time. Multiple propagators have been developed,
which differ in the underlying forces being considered and the extent to which assumptions are made
to simplify the model. The different propagators therefore offer varying degrees of accuracy and
computational costs, with the two often being inversely related.

Three main types of propagators exist: numerical, analytical and semi-analytical. Numerical
propagators implement a formulation of a set of forces that act on the satellite, which leads to an
expression for the acceleration of the satellite at a given instant (Flores et al. 2021). Numerical
integrators are then used to solve the Ordinary Differential Equation (ODE) that defines acceleration as
the second-order time derivative of position. While numerical propagators offer the highest accuracy
provided that the relevant forces acting on the satellite are correctly modeled, they also have the
highest computational costs (especially if implicit integration methods are applied).

Conversely, analytical propagators rely on a set of assumptions and simplifications to obtain closed-
form solutions that can be directly evaluated at any given instant as a function of time, the initial
known state vector and a set of model parameters. These offer the advantage of having much lower
computational costs than numerical propagators, but at the expense of reduced accuracy, particularly
for long-term predictions (Deprit 1981; Meeus 1991; Lara et al. 2014).

Semi-analytical methods are an intermediate approach, whereby short-period motions are modeled
analytically, and long-term secular effects are solved with numerical integrators (Morand et al. 2013;
Lara et al. 2016; Lévy et al. 2021).

In its current version (1.2.0), asteRisk provides implementation of two of the most widely applied
analytical propagators, the SGP4 and SDP4 models, as well as a numerical high-precision orbital
propagator (HPOP).

The SGP4 model

The SGP4 (Simplified General Perturbation 4) model was developed by Ken Cranford in 1970 (Lane and
Hoots 1979), based on previous theoretical developments by Lane and Cranford (Lane 1965) whereby
the Earth gravitational field is modeled with spherical harmonics up to degree 4 and atmospheric drag
is modeled as being spherically symmetric, static, and with density following a power-law decay as
altitude increases. The model is mainly designed to be applied to near-Earth satellites with an orbital
period of 225 minutes or less, corresponding to an altitude of 5877.5 km if the orbit is assumed to be
circular.

The native R implementation available in asteRisk is based on the C++ implementation by Vallado
(Vallado), which includes minor corrections over the original FORTRAN implementation (Hoots et
al. 1988). The validity of the implementation has been verified by comparing the results obtained
with previous implementations for a set of test cases (Appendix: Test cases for SGP4/SDP4). The

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 38

propagator can be applied through the sgp4 function. The function receives as input the following
mean orbital elements of the satellite, typically obtained from TLE files: mean motion (in radians/min),
mean eccentricity (dimensionless; ranging from 0, a perfectly circular orbit, to 1, a parabolic trajectory),
mean orbital inclination (in radians), mean anomaly (in radians), mean argument of the perigee (in
radians) and mean longitude of the ascending node (in radians).

Table 1: Description of the arguments taken as input by the SGP4 propagator.

Argument of sgp4
function

Orbital parameter Units Description

n0 Mean motion radians/min Angular speed of the satellite
e0 Eccentricity Dimensionless Value between 0 and 1 measuring how much the

orbit deviates from a circular shape, with 0
indicating a perfectly circular orbit and 1 an
extreme case of parabolic trajectory

i0 Inclination radians Angle between the orbital plane of the satellite and
the equatorial plane

M0 Mean anomaly radians Angle between the direction of the perigee and the
hypothetical point where the object would be if it
was moving in a circular orbit with the same period
as its true orbit after the same amount of time since
it last crossed the perigee had ellapsed. Therefore, 0
denotes that the object is at the perigee

omega0 Argument of perigee radians Angle between the direction of the ascending node
and the direction of the perigee

OMEGA0 Longitude of the
ascending node

radians Angle between the direction of the ascending node
(the point where the satellite crosses the equatorial
plane moving north) and the direction of the First
Point of Aries (which indicates the location of the
vernal equinox)

Bstar – Earth radii−1 Drag coefficient of the satellite, which indicates
how susceptible it is to atmospheric drag

initialDateTime – UTC date-time string Time corresponding to the provided state vector of
the satellite

targetTime – minutes or UTC
date-time string

Time at which propagation should be performed,
as a date-time string or in minutes from the initial
time

keplerAccuracy – Dimensionless Accuracy to consider Kepler’s equation solved. If
two consecutive solutions differ by a value lower
than this accuracy, integration is considered to have
converged

maxKeplerIterations – Dimensionless Maximum number of iterations after which
fixed-point integration of Kepler’s equation will
stop

The function also receives as an argument B∗ in units of inverse Earth radii, a modified ballistic
coefficient for the satellite which indicates how susceptible it is to atmospheric drag. The target times
at which the position of the satellite should be calculated can be specified either as absolute date-time
strings in UTC time, or as minutes from the time corresponding to the known state vector. The function
outputs the position and velocity of the satellite at the target times in Cartesian coordinates in the
TEME (True Equator, Mean Equinox) frame of reference (Section TEME).

In the following example, we demonstrate the application of the SGP4 model to propagate the
orbit of the ISS from the previously read TLE:

We can use the mean orbital elements of the TLE of the ISS to propagate its
position. It should be kept in mind that the mean motion must be input in
radians per minute, and the mean inclination, anomaly, argument of perigee
and longitude of the ascending node must be provided in radians.
Let us propagate the orbit of the ISS for 465 minutes, equivalent to 5
orbital periods

ISS_TLE <- test_TLEs[[1]]

target_times_ISS <- seq(0, 465, by=5)

results_position_matrix_ISS <- matrix(nrow=length(target_times_ISS), ncol=3)
results_velocity_matrix_ISS <- matrix(nrow=length(target_times_ISS), ncol=3)

for(i in 1:length(target_times_ISS)) {
new_result <- sgp4(n0=revDay2radMin(ISS_TLE$meanMotion),

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 39

e0=ISS_TLE$eccentricity,
i0=deg2rad(ISS_TLE$inclination),
M0=deg2rad(ISS_TLE$meanAnomaly),
omega0=deg2rad(ISS_TLE$perigeeArgument),
OMEGA0=deg2rad(ISS_TLE$ascension),
Bstar=ISS_TLE$Bstar,
initialDateTime=ISS_TLE$dateTime,
targetTime = target_times_ISS[i])

results_position_matrix_ISS[i,] <- new_result[[1]]
results_velocity_matrix_ISS[i,] <- new_result[[2]]

}

results_position_matrix_ISS = cbind(results_position_matrix_ISS, target_times_ISS)
colnames(results_position_matrix_ISS) <- c("x", "y", "z", "time")

We can now visualize the resulting trajectory using a plotly animation
In order to create the animation, we must first define a function to create
the accumulated dataframe required for the animation, which indicates the
trajectory up to each frame. Frames are defined by propagation time

accumulate_by <- function(dat, var) {
var <- f_eval(var, dat)
lvls <- plotly:::getLevels(var)
dats <- lapply(seq_along(lvls), function(x) {

cbind(dat[var %in% lvls[seq(1, x)],], frame = lvls[[x]])
})
bind_rows(dats)

}

accumulated_df_ISS <- accumulate_by(as.data.frame(results_position_matrix_ISS), ~time)

We can then create a plotly animation

orbit_animation_ISS <- plot_ly(accumulated_df_ISS, x = ~x, y=~y, z=~z, type = "scatter3d",
mode="lines+marker", opacity=0.8, line=list(width = 6,

color = ~time,
reverscale = FALSE),

frame= ~frame, showlegend=FALSE)

orbit_animation_ISS <- layout(orbit_animation_ISS, scene = list(
xaxis=list(range=c(-7000, 7000)),
yaxis=list(range=c(-7000, 7000)),
zaxis=list(range=c(-7000, 7000))))

We can also create an animation of a static spheric mesh to represent the
Earth, and add it to the orbit animation
First we generate Cartesian coordinates for a sphere of radius equal to
the radius of Earth. Coordinates are generated along meridians and parallels
that can be plotted as lines

sphere_theta <- seq(0, 2*pi, length.out=20)
sphere_phi <- seq(0, pi, length.out=20)
sphere_radius <- 6371
sphere_x <- sphere_y <- sphere_z <- numeric(0)

for(theta in sphere_theta) {
for(phi in sphere_phi) {

sphere_x <- c(sphere_x, sphere_radius * cos(theta) * sin(phi))
sphere_y <- c(sphere_y, sphere_radius * sin(theta) * sin(phi))
sphere_z <- c(sphere_z, sphere_radius * cos(phi))

}
sphere_x <- c(sphere_x, NULL)
sphere_y <- c(sphere_y, NULL)
sphere_z <- c(sphere_z, NULL)

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 40

}

for(phi in sphere_phi) {
for(theta in sphere_theta) {

sphere_x <- c(sphere_x, sphere_radius * cos(theta) * sin(phi))
sphere_y <- c(sphere_y, sphere_radius * sin(theta) * sin(phi))
sphere_z <- c(sphere_z, sphere_radius * cos(phi))

}
sphere_x <- c(sphere_x, NULL)
sphere_y <- c(sphere_y, NULL)
sphere_z <- c(sphere_z, NULL)

}

Then, we generate an extended dataframe with repetitions of the coordinates
for a number of times equal to the number of frames in the orbit animation.
We include a frame column to specify the frame corresponding to each sphere,
matching the frame numbers

sphere_df <- data.frame(x = sphere_x, y = sphere_y, z = sphere_z)
sphere_df_ext_ISS <- sphere_df[rep(seq_len(nrow(sphere_df)),

length(target_times_ISS)),]
sphere_df_ext_ISS <- cbind(sphere_df_ext_ISS,

rep(target_times_ISS, each=nrow(sphere_df)))
colnames(sphere_df_ext_ISS) <- c("x", "y", "z", "frame")

We can then use the extended dataframe to create an animation of a static
sphere

sphere_animated_ISS <- plot_ly(sphere_df_ext_ISS, x=~x, y=~y, z=~z, frame=~frame,
type="scatter3d", mode="lines",
line=list(color='rgb(0,0,255)'), hoverinfo="skip",
showlegend=FALSE)

sphere_animated_ISS <- layout(sphere_animated_ISS, scene = list(
xaxis = list(showspikes=FALSE),
yaxis = list(showspikes=FALSE),
zaxis = list(showspikes=FALSE)))

The two animations can then be combined and used to visualize the orbit,
which as we can see is relatively close to the surface of Earth. This is in
accordance with the ISS being on a LEO (Low Earth Orbit)

combined_animation_ISS <- suppressWarnings(subplot(orbit_animation_ISS,
sphere_animated_ISS))

combined_animation_ISS <- animation_opts(combined_animation_ISS, frame=50)
combined_animation_ISS <- layout(combined_animation_ISS, scene = list(

aspectmode = "cube"))
combined_animation_ISS

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 41

frame: 0

0 40 80 120 160 200 240 280 320 360 400 440

Play

Figure 1: Trajectory of the International Space Station (ISS) calculated with the SGP4 propagator. The
ISS is in a low Earth orbit, around 400 km above Earth’s surface.

The SDP4 model

The SDP4 (Simplified Deep-space Perturbation 4) model (Hujsak 1979) is an extension of the SGP4
model designed to be applied to deep-space satellites, which are considered to be those with an orbital
period over 225 minutes. The model introduces corrections to account for the gravitational effects
exerted by the Sun and the Moon, as well as Earth gravitational resonance effects for orbits with
periods of 12 h or 24 h. However, it employs a simplified atmospheric drag model, and therefore SGP4
should still be the preferred choice for near-Earth satellites.

The SDP4 implementation provided with asteRisk is also based on the revised C++ implementation
by Vallado (Vallado). It can be accessed through the function sdp4, which takes the same arguments as
input and returns an output in the same format as function sgp4. Alternatively, the function sgdp4 can
be used to automatically determine and apply the most appropriate model based on the orbital period
of the satellite (SGP4 for orbital periods below 225 minutes, and SDP4 for larger ones). The validity of
our implementation has also been verified with previously published test cases (Appendix: Test cases
for SGP4/SDP4).

In the following example, we demonstrate the application of the SDP4 model to propagate the
orbit of the Molniya satellite, which follows a highly elliptical orbit with a period of approximately 12
h:

Let us now propagate the position of a Molniya satellite, which should follow
a highly elliptical orbit and go to distances much farther from Earth than
the ISS. We will propagate the orbit for 715 minutes, one orbital period. In
this case, we use the SDP4 propagator

molniya_TLE <- test_TLEs[[2]]

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 42

target_times_Molniya <- seq(0, 715, by=5)

results_position_matrix_Molniya <- matrix(nrow=length(target_times_Molniya), ncol=3)
results_velocity_matrix_Molniya <- matrix(nrow=length(target_times_Molniya), ncol=3)

for(i in 1:length(target_times_Molniya)) {
new_result <- sdp4(n0=revDay2radMin(molniya_TLE$meanMotion),

e0=molniya_TLE$eccentricity,
i0=deg2rad(molniya_TLE$inclination),
M0=deg2rad(molniya_TLE$meanAnomaly),
omega0=deg2rad(molniya_TLE$perigeeArgument),
OMEGA0=deg2rad(molniya_TLE$ascension),
Bstar=molniya_TLE$Bstar,
initialDateTime=molniya_TLE$dateTime,
targetTime = target_times_Molniya[i])

results_position_matrix_Molniya[i,] <- new_result[[1]]
results_velocity_matrix_Molniya[i,] <- new_result[[2]]

}

results_position_matrix_Molniya = cbind(results_position_matrix_Molniya,
target_times_Molniya)

colnames(results_position_matrix_Molniya) <- c("x", "y", "z", "time")

We can follow a similar procedure as for the ISS to generate an animation
of the trajectory of the Molniya satellite

accumulated_df_Molniya <- accumulate_by(
as.data.frame(results_position_matrix_Molniya), ~time)

We can then create a plotly animation

orbit_animation_Molniya <- plot_ly(accumulated_df_Molniya, x = ~x, y=~y, z=~z,
type = "scatter3d", mode="lines+marker",
opacity=0.8, line=list(width = 6,

color = ~time,
reverscale = FALSE),

frame= ~frame, showlegend=FALSE)

sphere_df_ext_Molniya <- sphere_df[rep(seq_len(nrow(sphere_df)),
length(target_times_Molniya)),]

sphere_df_ext_Molniya <- cbind(sphere_df_ext_Molniya,
rep(target_times_Molniya, each=nrow(sphere_df)))

colnames(sphere_df_ext_Molniya) <- c("x", "y", "z", "frame")

sphere_animated_Molniya <- plot_ly(sphere_df_ext_Molniya, x=~x, y=~y, z=~z,
frame=~frame, type="scatter3d", mode="lines",
line=list(color='rgb(0,0,255)'),
hoverinfo="skip", showlegend=FALSE)

sphere_animated_Molniya <- layout(sphere_animated_Molniya,
scene = list(xaxis = list(showspikes=FALSE),

yaxis = list(showspikes=FALSE),
zaxis = list(showspikes=FALSE)))

combined_animation_Molniya <- suppressWarnings(subplot(sphere_animated_Molniya,
orbit_animation_Molniya))

combined_animation_Molniya <- animation_opts(combined_animation_Molniya, frame=15)
combined_animation_Molniya <- layout(combined_animation_Molniya, scene = list(

aspectmode = "manual",
aspectratio = list(x=1, y=(7000+24500)/(15000+21000),

z=(41000 + 7000)/(15000+21000)),
xaxis=list(range=c(-21000, 15000)),
yaxis=list(range=c(-24500, 7000)),
zaxis=list(range=c(-7000, 41000))))

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 43

We can now verify that the satellite follows a highly elliptical orbit. It can
also be seen that, as expected, the satellite moves faster at the perigee
(when it is closest to Earth) and slower at the apogee (when it is the
farthest from Earth)

combined_animation_Molniya

frame: 0

0 60 120 180 240 300 360 420 480 540 600 660

Play

Figure 2: Trajectory of a Molniya satellite calculated with the SDP4 propagator. The satellite follows a
highly elliptical orbit.

Numerical high-precision orbital propagator

asteRisk also provides a numerical orbital propagator. The implemented high-precision orbital
propagator relies on the following fundamental motion equation:

a =
∂2p
∂t2

Where a denotes the acceleration, p the position, and t time. It can be simplified to a set of 6 first-
order differential equations, where px, py, pz, vx, vy, vz and ax, ay, az denote, respectively, orthogonal
components of the position, velocity and acceleration:

vx =
∂px

∂t
, vy =

∂py

∂t
, vz =

∂pz

∂t

ax =
∂vx

∂t
, ay =

∂vy

∂t
, az =

∂vz

∂t

In the current implementation, acceleration is calculated by considering the following forces

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 44

known to play a significant role in orbital mechanics (Montenbruck and Gill 2012), comparable to the
force field found in other HPOP implementations (Maisonobe et al. 2010; AGI; Mahooti):

• Earth gravitational attraction. The gravity field generated by Earth is calculated according to
the GGM03S model (Tapley et al. 2007), using zonal, tesseral and sectoral spherical harmonics
up to a degree and order of 180. The effects of ocean and solid Earth tides on the gravity field
are also taken into account.

• Third-body gravitational attractions. The gravitational attractions exerted by the Sun, the
Moon, the other 7 main planets of the Solar System (Mercury, Venus, Mars, Jupiter, Saturn,
Uranus and Neptune) and Pluto are considered. All of them are modelled as point masses,
and their positions are calculated using Jet Propulsion Laboratory Development Ephemeris 436
(Folkner et al. 2014).

• Solar radiation pressure. This is the force generated by the impact of photons from solar
radiation on the satellite. A double conical shadow model to account for the reduction in the
apparent solar disk seen by a satellite due to the Earth and the Moon (both of which are assumed
to be spherical) eclipses is implemented (Li et al. 2019).

• Atmospheric drag. The drag effect caused by the atmosphere of Earth is calculated using the
NRLMSISE-00 (Picone et al. 2002) atmospheric model.

Additionally, a correction to the acceleration generated by the described forces to account for
relativistic effects caused by the mass of the Earth is included (Montenbruck and Gill 2012). In
the current implementation, only the Schwarzschild effect (Roh et al. 2016; Sośnica et al. 2021) is
considered.

The HPOP can be accessed through the hpop function, which receives as inputs the initial position
and velocity of the satellite, the time to which these correspond, a set of target times at which the
position and velocity of the satellite should be calculated, the mass of the satellite, the effective
area of the surface of the satellite subjected to drag and radiation pressure, and drag and reflectivity
coefficients, that describe respectively how much the satellite is affected by drag and radiation pressure
forces (Knocke et al. 1988).

The system of differential equations is solved with the deSolve package. By default, hpop uses the
RADAU5 integrator, an implicit Runge-Kutta method of order 5 with adaptive step size (Wanner and
Hairer 1996). However, additional arguments accepted by the ode function of the deSolve package
can be directly provided to hpop to modify the values of the parameters for the integrator or to specify
a different integrator that will be used to solve the motion equations.

In the following example, we apply the HPOP to the GPS satellite for which we previously read
a RINEX navigation file, and compare the results with the real final position obtained by reading
another RINEX file:

We will use the ephemeris broadcasted in the previously read RINEX file
for GPS satellite with PRN code 18 to obtain initial conditions for
propagation. It should be noted that the HPOP requires Earth orientation
parameters and other space data, which are provided through the companion
asteRiskData package. Therefore, we must first install it if it is not
already available:

if (!requireNamespace("asteRiskData", quietly = TRUE)) {
install.packages('asteRiskData', repos='https://rafael-ayala.github.io/drat/')

}

The initial position and velocity obtained from the RINEX file are in the
ITRF frame, and must first be converted to the GCRF frame (more details
about each frame are given in the following section). In order to perform
such corrections, the latest Earth Orientation Parameters (which contain
information about the precise location of the Earth rotation axis for every
day) are required. These can be retrieved by running getLatestSpaceData(),
after which they will be automatically used by all the functions that require
them

GPS_RINEX_initialMessage <- GPS_RINEX$messages[[1]]

getLatestSpaceData()
initialEphemerisDateTime <- format(GPS_RINEX_initialMessage$ephemerisUTCTime,

"%Y-%m-%d %H:%M:%EXS")
initialStateGCRF <- ITRFtoGCRF(GPS_RINEX_initialMessage$position_ITRF,

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=deSolve

CONTRIBUTED RESEARCH ARTICLE 45

GPS_RINEX_initialMessage$velocity_ITRF,
initialEphemerisDateTime)

Additionally, we also require some parameters describing the physical
properties of the satellite. By November 2021, GPS satellite with PRN code
18 is USA-293, launched in August 2019 and belonging to GPS block III.
Such satellites have an on-orbit mass of around 2600 kg. As an approximation,
we can model GPS block III satellites as a central body with dimensions of
2.2 m x 1.8 m x 4.2 m with solar arrays of a total surface of 28.2 m2, as
described by Steigenberger et al., 2020. The central body therefore has
faces with areas of 9.24 m2, 7.56 m2 and 3.96 m2. Without considering a more
complex attitude model, the mean cross-sectional area of the satellite can
be calculated as the sum of all these 4 areas divided by 2. We will use this
value as the effective area for drag (which will anyway be negligible at the
altitude of a GPS orbit). For the effective area for radiation pressure, we
will use the mean cross-sectional area of the central body plus the full
area of the solar arrays, since GPS block III satellites are equipped with
systems to maintain them oriented towards the Sun. Finally, we will use the
commonly employed values of 2.2 and 1.2 for drag and radiation coefficients.
We will propagate the orbit for 12 hours at every minute.

propagationTimes <- seq(0, 43200, by=60)

It should be noted that the following can take a few minutes to run

hpop_results_GPS <- hpop(position=initialStateGCRF$position,
velocity=initialStateGCRF$velocity,
dateTime=initialEphemerisDateTime,
times=propagationTimes,
satelliteMass=2600,
dragArea=(9.24 + 7.56 + 3.96 + 28.2)/2,
radiationArea=(9.24 + 7.56 + 3.96)/2 + 28.2,
dragCoefficient=2.2,
radiationCoefficient=1.2)

We can now read another RINEX navigation file for the same satellite with
the position 12 hours later, and compare it with the calculated one

GPS_RINEX_2 <- readGPSNavigationRINEX("./data/RINEX_GPS_2.rxn")

GPS_RINEX_endMessage <- GPS_RINEX_2$messages[[1]]
endEphemerisDateTime <- format(GPS_RINEX_endMessage$ephemerisUTCTime,

"%Y-%m-%d %H:%M:%EXS")
endStateGCRF <- ITRFtoGCRF(GPS_RINEX_endMessage$position_ITRF,

GPS_RINEX_endMessage$velocity_ITRF,
endEphemerisDateTime)

distance <- sqrt(
sum(

(endStateGCRF$position - hpop_results_GPS[nrow(hpop_results_GPS), 2:4])^2))
print(distance) # 19.7806

The calculated position is less than 20 m away from the real position, thanks
To the high precision of the propagator. We can also visualize the trajectory
as previously with a plotly animation. To keep consistency, we first convert
the distance units to km and propagation times to minutes

propagated_positions_GPS <- cbind(hpop_results_GPS[, 2:4]/1000,
hpop_results_GPS[, 1]/60)

colnames(propagated_positions_GPS) <- c("x", "y", "z", "time")

We will sample the trajectory once every 10 minutes

propagated_positions_GPS <- propagated_positions_GPS[

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 46

seq(1, nrow(propagated_positions_GPS), by=10),]
accumulated_df_GPS <- accumulate_by(as.data.frame(propagated_positions_GPS), ~time)

orbit_animation_GPS <- plot_ly(accumulated_df_GPS, x = ~x, y=~y, z=~z,
type = "scatter3d", mode="lines+marker",
opacity=0.8, line=list(width = 6,

color = ~time,
reverscale = FALSE),

frame= ~frame, showlegend=FALSE)

orbit_animation_GPS <- layout(orbit_animation_GPS, scene = list(
xaxis=list(range=c(-27500, 27500)),
yaxis=list(range=c(-27500, 27500)),
zaxis=list(range=c(-27500, 27500))))

sphere_df_ext_GPS <- sphere_df[rep(seq_len(nrow(sphere_df)),
length(propagated_positions_GPS[, "time"])),]

sphere_df_ext_GPS <- cbind(sphere_df_ext_GPS,
rep(propagated_positions_GPS[, "time"],

each=nrow(sphere_df)))
colnames(sphere_df_ext_GPS) <- c("x", "y", "z", "frame")

sphere_animated_GPS <- plot_ly(sphere_df_ext_GPS, x=~x, y=~y, z=~z, frame=~frame,
type="scatter3d", mode="lines",
line=list(color='rgb(0,0,255)'), hoverinfo="skip",
showlegend=FALSE)

sphere_animated_GPS <- layout(sphere_animated_GPS,
scene = list(xaxis = list(showspikes=FALSE),

yaxis = list(showspikes=FALSE),
zaxis = list(showspikes=FALSE)))

combined_animation_GPS <- suppressWarnings(subplot(sphere_animated_GPS,
orbit_animation_GPS))

combined_animation_GPS <- animation_opts(combined_animation_GPS, frame=15)
combined_animation_GPS <- layout(combined_animation_GPS, scene = list(

aspectmode = "cube"))
combined_animation_GPS

frame: 0

0 60 120 180 240 300 360 420 480 540 600 660 720

Play

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 47

Figure 3: Trajectory of a GPS satellite calculated with the high-precision numerical propagator. It
follows an almost circular orbit at an altitude of approximately 20200 km, which allows it to cover a
larger portion of Earth at any given time.

4 Frames of reference

There are multiple frames of reference available to describe the position of objects in space. These
differ in the location of the origin of coordinates, the presence or absence of acceleration for the
reference frame itself and the orientation of the planes defining the main axes. Inertial frames are those
that do not experience any acceleration, while non-inertial frames exhibit some sort of acceleration,
such as rotation. The different available frames offer advantages and disadvantages for different
applications. For example, a non-inertial frame that rotates with Earth is useful when analyzing the
ground-track projected by a satellite onto the surface of Earth along its orbit, while inertial frames
make the description of the forces acting on a satellite simpler.

asteRisk provides functions to convert between the frames of reference most relevant for the
determination of Earth-orbiting satellites: ITRF (International Terrestrial Reference Frame), GCRF
(Geocentric Celestial Reference Frame), TEME (True Equator Mean Equinox) and geodetic coordinates
(latitude, longitude and altitude). Additionally, functions to obtain the orbital parameters of a satellite
with known position and velocity in these frames are provided.

ITRF

The International Terrestrial Reference Frame (ITRF) (Cartography and Geodesy) is an Earth-Centered,
Earth-Fixed (ECEF) frame of reference, i.e. a non-inertial Cartesian coordinate system that rotates with
Earth. The origin of coordinates is placed at the center of mass of Earth, with the Z-axis extending
along the true North as defined by the IERS reference pole (which differs slightly from the axis of
rotation of Earth at a given instant due to its slight wobbling known as polar motion (Sandoval-Romero
and Argueta-Diaz 2010)). The X-axis extends towards the intersection between the equator and the
Greenwich meridian at any time (the point with 0º latitude and 0º longitude), and the Y-axis is set such
that a right-handed orthogonal coordinate system is completed. As a consequence of these features,
the position of an object fixed with respect to the surface of the Earth does not change with time.

GCRF

The Geocentric Celestial Reference Frame (GCRF) (Petit and Luzum 2010) is an inertial Cartesian
coordinate system where the origin of coordinates is placed at the center of mass of the Earth and
the axes are aligned with those of the International Celestial Reference System, which are defined
based on the measurement of the position of extragalactic radio sources through very-long baseline
interferometry. As a consequence, the axes are non-rotating, unlike in the ITRF frame. Even though
GCRF, like any other body-centered frame of reference, is not a truly inertial frame of reference (given,
for example, the fact that Earth itself is constantly orbiting around the Sun), it can be considered as
such for Earth-orbiting satellites.

TEME

The True Equator Mean Equinox (TEME) frame is another Earth-centered inertial frame of reference
used mainly by the SGP4/SDP4 orbital propagators to output coordinates. The origin of coordinates
is also placed at the center of mass of the Earth, and the Z-axis extends towards the position of the
Celestial Ephemeris Pole (CEP). The location of the CEP matches the mean instantaneous axis of
rotation averaged over a period of 2 days (which makes the CEP ignore the diurnal and quasi-diurnal

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 48

polar motions) (Capitaine et al. 1985). The X-axis extends towards the so-called uniform equinox,
which is calculated by finding the intersection between the ecliptic (the plane defined by the orbit
of the Earth around the Sun) and the mean equator (the plane containing Earth’s equatorial line at
a given time calculated by taking into consideration only precession, i.e., averaging over nutation
effects), and then projecting this intersection (the mean equinox) over the true equator (the plane
perpendicular to the previously defined Z-axis, which is therefore the equatorial plane at the same
time calculated taking into consideration both precession and nutation) (Seago and Vallado 2000).
Due to the complexity of its definition, the TEME frame is not currently widely used, except in the
context of the results of propagating TLE elements with the SGP4/SDP4 models. It can also be inferred
from its definition that the axes of the frame will slightly rotate over time as a consequence of the
precession and nutation of Earth, and therefore it is important to know which time is taken as the
reference when setting up the frame. While an explicit definition has not been given by NORAD, it is
generally accepted that the reference elements (CEP, true equator and mean equinox) for the TEME
frame are taken to be those at the time for which orbital propagation is performed (Seago and Vallado
2000; Vallado et al. 2006).

Orbital elements

Keplerian orbital elements are a set of six parameters used to describe the orbits of celestial objects,
including satellites. While satellites do not follow a perfectly Keplerian orbit (i.e., a conic section that
would be followed if only the point-like gravitational attraction between the satellite and the central
body was considered), their state at any point can be defined by the orbital parameters that they would
have if they were located at the same position with the same velocity following a perfectly Keplerian
orbit (i.e., if perturbations caused by other forces were absent). These are called osculating orbital
elements. Different parametrizations exist, with one of the most frequent sets of parameters being
analogous to the mean orbital elements used by TLE previously described (it should be kept in mind
that mean motion, semi major axis and orbital period provide the same information). Additional,
alternative parameters exist for edge cases where some of the conventional ones are not well defined
or meaningful. These are:

• True anomaly: unlike mean anomaly, true anomaly is the angle between the direction of the
perigee and the actual position of the satellite.

• Argument of latitude: the angle between the equator and the position of the satellite. It is useful
to define the position of satellites in circular orbits, where the argument of perigee and true
anomaly are not well defined.

• Longitude of perigee: the angle between the vernal equinox and the perigee. It is useful for
cases of orbits with 0 inclination, where the longitude of the ascending node and the argument
of perigee are not well defined.

• True longitude: the angle between the vernal equinox and the position of the satellite. It is
useful for cases of circular orbits with 0 inclination, where the longitude of the ascending node,
the argument of perigee and true anomaly are not well defined.

It should also be noted that orbital elements are defined with respect to a set of elements of
reference, such as the equatorial plane, which are usually chosen to define an Earth-centered inertial
frame of reference. Although the specific choice of these must be taken into account when interpreting
the meaning of a given set of orbital parameters, a complete set of six Keplerian orbital elements
defines unequivocally the position and velocity of the satellite at a given time in a frame of reference
with elements of reference equivalent to those used for the orbital elements. Therefore, osculating
orbital elements can be used to calculate a corresponding set of Cartesian coordinates.

Conversion between different coordinate systems

The following table summarizes the functions available in asteRisk to convert coordinates between
the different frames of reference previously described:

It should be noted that, while a velocity value is not strictly required to perform conversions
between systems of Cartesian coordinates, it is required to convert to or from orbital elements.

In the following example, we apply multiple coordinate transformations to obtain a projection of
the trajectory of the Molniya satellite previously analyzed over the surface of Earth:

We previously calculated the trajectory of a Molniya satellite using the SDP4
propagator. The output coordinates are given in the TEME frame. Let us first
convert the final position to the standard GCRF frame of reference. Note that
we need to add the propagation time to the original epoch specified in the

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 49

Table 2: Available functions for conversions between different systems of coordinates.

Origin system Target system Function
ITRF GCRF ITRFtoGCRF
ITRF Geodetic ITRFtoLATLON
GCRF ITRF GCRFtoITRF
GCRF Geodetic GCRFtoLATLON
GCRF Orbital elements ECItoKOE
TEME GCRF TEMEtoGCRF
TEME ITRF TEMEtoITRF
TEME Geodetic TEMEtoLATLON
TEME Orbital elements ECItoKOE
Geodetic GCRF LATLONtoGCRF
Geodetic ITRF LATLONtoITRF
Orbital elements GCRF KOEtoECI
Orbital elements TEME KOEtoECI

TLE to obtain the correct date and time for conversion of reference frame

endState_Molniya_GCRF <- TEMEtoGCRF(results_position_matrix_Molniya[144, 1:3]*1000,
results_velocity_matrix_Molniya[144, 1:3]*1000,
as.character(as.POSIXct(

molniya_TLE$dateTime, tz="UTC") +
60*results_position_matrix_Molniya[144,4]))

print(endState_Molniya_GCRF$position)

#> [1] -14390694.30 -4572069.28 -95636.31

print(results_position_matrix_Molniya[144, 1:3]*1000)

#> x y z
#> -14384056.0 -4592709.2 -104890.6

The coordinates values are not wildly different, since differences are due to
the precession and nutation of Earth's rotation axis.
Let us know convert the coordinates to geodetic latitude and longitude to
visualize a projection of the trajectory over the surface of Earth

geodetic_matrix_Molniya <- matrix(nrow=nrow(results_position_matrix_Molniya), ncol=4)

for(i in 1:nrow(geodetic_matrix_Molniya)) {
new_dateTime <- as.character(as.POSIXct(molniya_TLE$dateTime, tz="UTC") +

60*target_times_Molniya[i])
new_geodetic <- TEMEtoLATLON(results_position_matrix_Molniya[i, 1:3]*1000,

new_dateTime)
geodetic_matrix_Molniya[i, 1:3] <- new_geodetic
geodetic_matrix_Molniya[i, 4] <- target_times_Molniya[i]

}

colnames(geodetic_matrix_Molniya) <- c("latitude", "longitude", "altitude", "time")

We can now visualize the ground track of the satellite with ggmap

groundTrack_Molniya <- ggmap(get_map(c(left=-180, right=180, bottom=-80, top=80),
source = "stamen")) +

geom_segment(data=as.data.frame(geodetic_matrix_Molniya),
aes(x=longitude, y=latitude,

xend=c(tail(longitude, n=-1), NA),
yend=c(tail(latitude, n=-1), NA)),

na.rm=TRUE) +
geom_point(data=as.data.frame(geodetic_matrix_Molniya), aes(x=longitude, y=latitude),

color="blue", size=0.3, alpha=0.8)

As we can see, Molniya satellites spend most of the time over high latitudes,

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 50

thanks to the fact that the apogee of their elliptical orbit is above such
regions. This property made them useful for the Soviet Union.

groundTrack_Molniya

−80

−40

0

40

80

−100 0 100
lon

la
t

Figure 4: Ground track of a Molniya satellite. The satellite spent most of the time over regions of high
latitude.

5 Future work

While the described functionalities provide a solid core for astrodynamics analysis in R, additional
features are expected to be frequently added to asteRisk. Some of these will include:

• Expansion of the force model used by the HPOP to increase its accuracy. For example, by
including albedo radiation pressure or considering the additional Lens-Thirring and De Sitter
relativistic effects.

• Addition of functionalities to model and calculate orbital maneuvers.
• Support for more complex models for satellite orientation during propagation with the HPOP.
• Adding support for the Orbit Data Messages standard formats (Space Data Systems).
• Addition of more reference frames, including non-Earth centered frames.

6 Summary

Accurate calculation of the position of satellites at a given time is a key part of the design of successful
space missions and continued operation and maintenance of satellites already in orbit. asteRisk
provides tools to perform such astrodynamics analyses in R. These include well-documented orbital
propagators and functions to parse the file formats most commonly used to distribute satellite po-
sitional data, as well as to convert coordinates between different coordinate frames. The provided
toolbox should be specially useful in combination with the publicly available orbital data sources
and the multiple statistical analysis and machine-learning functionalities already available in the R
ecosystem, facilitating the development of novel orbital propagators with higher accuracy and lower
computational costs.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 51

7 Appendix: Test cases for SGP4/SDP4

The following code will run SGP4/SDP4 propagators on a series of standard test frequently used to
test the validity of implementations of these models (Vallado et al. 2006). The results demonstrate
that the implementation provided in asteRisk is in agreement up to at least tenths of millimeters with
previous implementations.

First, we create a list with the target propagation times for each test case,
in the same order as the TLEs are given

target_times_verification <- list(
"5"=seq(0, 4320, by=360),
"4632"=c(0, -5184, -5064, -4944, -4896),
"6251"=seq(0, 2880, by=120),
"8195"=seq(0, 2880, by=120),
"9880"=seq(0, 2880, by=120),
"9998"=c(0, seq(-1440, -720, by=60)),
"11801"=seq(0, 1440, by=720),
"14128"=seq(0, 2880, by=120),
"16925"=seq(0, 1440, by=120),
"20413"=c(0, seq(1440, 4320, by=120)),
"21897"=seq(0, 2880, by=120),
"22312"=c(0, seq(54.2028672, 474.2028672, by=20)),
"22674"=seq(0, 2880, by=120),
"23177"=seq(0, 1440, by=120),
"23333"=c(seq(0, 1560, by=120), 1600),
"23599"=seq(0, 720, by=20),
"24208"=seq(0, 1440, by=120),
"25954"=c(0, seq(-1440, 1440, by=120)),
"26900"=c(0, 9300, 9360, 9400),
"26975"=seq(0, 2880, by=120),
"28057"=seq(0, 2880, by=120),
"28129"=seq(0, 1440, by=120),
"28350"=seq(0, 1440, by=120),
"28623"=seq(0, 1440, by=120),
"28626"=seq(0, 1440, by=120),
"28872"=seq(0, 50, by=5),
"29141"=seq(0, 420, by=20),
"29238"=seq(0, 1440, by=120),
"88888"=seq(0, 1440, by=120),
"33333"=seq(0, 20, by=5),
"33334"=0,
"33335"=seq(0, 1440, by=20),
"20413"=c(0, seq(1844000, 1844340, by=5))

)

We can now read the TLE file with the TLEs for all verification cases and
propagate them at the target times. We can store the results for each case
as a matrix of 7 columns where each row corresponds to a propagation time,
column 1 stores propagation times, columns 2 to 4 the propagated positions
and columns 5 to 7 the propagated velocities

verification_TLEs <- readTLE("data/verificationTLEs.tle")
verification_results <- vector(mode="list", length=length(verification_TLEs))
names(verification_results) <- names(target_times_verification)

for(i in 1:length(verification_TLEs)) {
verification_results[[i]] <- matrix(nrow=length(target_times_verification[[i]]),

ncol=7)
for(j in 1:length(target_times_verification[[i]])) {

propagation <- sgdp4(n0=revDay2radMin(verification_TLEs[[i]]$meanMotion),
e0=verification_TLEs[[i]]$eccentricity,
i0=deg2rad(verification_TLEs[[i]]$inclination),
M0=deg2rad(verification_TLEs[[i]]$meanAnomaly),

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 52

omega0=deg2rad(verification_TLEs[[i]]$perigeeArgument),
OMEGA0=deg2rad(verification_TLEs[[i]]$ascension),
Bstar=verification_TLEs[[i]]$Bstar,
initialDateTime=verification_TLEs[[i]]$dateTime,
targetTime=target_times_verification[[i]][j])

verification_results[[i]][j, 1] <- target_times_verification[[i]][j]
verification_results[[i]][j, 2:4] <- propagation$position
verification_results[[i]][j, 5:7] <- propagation$velocity

}
}

8 Acknowledgements

The development of this work is supported by the following grants: a KAKENHI Grant-in-Aid for
Research Activity Start-up Grant Number 21K20645 to Rafael Ayala, a JSPS Postdoctoral Fellowship
for Research in Japan (Standard) Grant Number P20810 to Lara Sellés Vidal (Overseas researcher under
Postdoctoral Fellowship of Japan Society for the Promotion of Science), and grants by the Spanish
Ministry of Science and Innovation (grant code PID2019-105471RB-I00) and the Regional Government
of Andalusia (grant code P18-RT-1060) to David Ruiz.

References

AGI. Systems tool kit (STK).,URL https://www.agi.com/products/stk. (accessed: 24.11.2021).
J. Bouwmeester and J. Guo. Survey of worldwide pico-and nanosatellite missions, distributions and

subsystem technology. Acta Astronautica, 67(7-8): 854–862, 2010.
N. Capitaine, J. Williams and P. Seidelmann. Clarifications concerning the definition and determination

of the celestial ephemeris pole. Astronomy and Astrophysics, 146: 381–383, 1985.
F. A. for Cartography and Geodesy. The international terrestrial reference frame (ITRF).,URL https:

//www.iers.org/IERS/EN/DataProducts/ITRF/itrf.html. (accessed: 26.11.2021).
A. Deprit. The elimination of the parallax in satellite theory. Celestial Mechanics, 24(2): 111–153, 1981.
W. Dong and Z. Chang-yin. An accuracy analysis of the SGP4/SDP4 model. Chinese Astronomy and

Astrophysics, 34(1): 69–76, 2010.
A. Flores. GPS interface specification.,URL https://www.gps.gov/technical/icwg/IS-GPS-200M.pdf.

(accessed: 26.11.2021).
R. Flores, B. M. Burhani and E. Fantino. A method for accurate and efficient propagation of satellite

orbits: A case study for a molniya orbit. Alexandria Engineering Journal, 60(2): 2661–2676, 2021.
W. M. Folkner, J. G. Williams, D. H. Boggs, R. S. Park and P. Kuchynka. The planetary and lunar

ephemerides DE430 and DE431. Interplanetary Network Progress Report, 196(1): 2014.
C. Foster, H. Hallam and J. Mason. Orbit determination and differential-drag control of planet labs

CubeSat constellations. arXiv preprint arXiv:1509.03270, 2015.
W. Gurtner and L. Estey. RINEX - the receiver independent exchange format-version 3.00. Astronomical

Institute, University of Bern and UNAVCO, Bolulder, Colorado., 2007.
F. R. Hoots, R. L. Roehrich and T. S. Kelso. Spacetrack report no. 3., 1988. URL https://celestrak.

com/NORAD/documentation/spacetrk.pdf. (accessed: 07.10.2021).
R. S. Hujsak. A restricted four body solution for resonating satellite with an oblate earth. In American

institute of aeronautics and astronautics conference, 1979.
S. W. Janson, E. Jaime, M. Sergio, L. R. Hissa, R. A. de Carvalho, W. H. Steyn, V. J. Lappas, F. T. Nardini,

C. Michele, R. Alexander, et al. Nanosatellites: Space and ground technologies, operations and
economics. 2020.

T. S. Kelso. CelesTrack.,URL https://celestrak.com/. (accessed: 16.09.2021).
T. S. Kelso. Frequently asked questions: Two-line element set format.,URL http://www.celestrak.

com/columns/v04n03/. (accessed: 07.10.2021).
T. S. Kelso. NORAD two-line element set format.,URL http://www.celestrak.com/NORAD/documentation/

ADCOM/%20DO/%20Form/%2012.pdf. (accessed: 07.10.2021).
D. J. Kessler and B. G. Cour-Palais. Collision frequency of artificial satellites: The creation of a debris

belt. Journal of Geophysical Research: Space Physics, 83(A6): 2637–2646, 1978.
D. J. Kessler, N. L. Johnson, J. Liou and M. Matney. The kessler syndrome: Implications to future space

operations. Advances in the Astronautical Sciences, 137(8): 2010, 2010.
A. Kirillin, I. Belokonov, I. Timbai, A. Kramlikh, M. Melnik, E. Ustiugov, A. Egorov and S. Shafran.

SSAU nanosatellite project for the navigation and control technologies demonstration. Procedia
Engineering, 104: 97–106, 2015.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://www.agi.com/products/stk
https://www.iers.org/IERS/EN/DataProducts/ITRF/itrf.html
https://www.iers.org/IERS/EN/DataProducts/ITRF/itrf.html
https://www.gps.gov/technical/icwg/IS-GPS-200M.pdf
https://celestrak.com/NORAD/documentation/spacetrk.pdf
https://celestrak.com/NORAD/documentation/spacetrk.pdf
https://celestrak.com/
http://www.celestrak.com/columns/v04n03/
http://www.celestrak.com/columns/v04n03/
http://www.celestrak.com/NORAD/documentation/ADCOM/%20DO/%20Form/%2012.pdf
http://www.celestrak.com/NORAD/documentation/ADCOM/%20DO/%20Form/%2012.pdf

CONTRIBUTED RESEARCH ARTICLE 53

P. Knocke, J. Ries and B. Tapley. Earth radiation pressure effects on satellites. In Astrodynamics
conference, page. 4292 1988.

M. Lane. The development of an artificial satellite theory using a power-law atmospheric density
representation. In 2nd aerospace sciences meeting, page. 35 1965.

M. H. Lane and F. R. Hoots. General perturbations theories derived from the 1965 lane drag theory.
AEROSPACE DEFENSE COMMAND PETERSON AFB CO OFFICE OF ASTRODYNAMICS. 1979.

M. Lara, J. F. San-Juan, D. Hautesserres and C. de Competence Technique. A semi-analytical orbit
propagator program for highly elliptical orbits. Order, 10: 8, 2016.

M. Lara, J. F. San-Juan and L. M. López-Ochoa. Delaunay variables approach to the elimination of
the perigee in artificial satellite theory. Celestial Mechanics and Dynamical Astronomy, 120(1): 39–56,
2014.

H. Lévy, É. Joffre, S. Lizy-Destrez and M. Zamaro. STORM: A semi-analytical orbit propagator for
assessing the compliance with mars planetary protection requirements. Acta Astronautica, 2021.

Z. Li, M. Ziebart, S. Bhattarai and D. Harrison. A shadow function model based on perspective
projection and atmospheric effect for satellites in eclipse. Advances in Space Research, 63(3): 1347–
1359, 2019.

M. Mahooti. High precision orbit propagator matlab implementation.,URL https://jp.mathworks.
com/matlabcentral/fileexchange/55167-high-precision-orbit-propagator. (accessed: 24.11.2021).

L. Maisonobe, V. Pommier and P. Parraud. Orekit: An open source library for operational flight
dynamics applications. In 4th international conference on astrodynamics tools and techniques, pages.
3–6 2010.

J. Meeus. Astronomical algorithms. Richmond, 1991.
O. Montenbruck and E. Gill. Satellite orbits: Models, methods and applications. Springer Science &

Business Media, 2012.
V. Morand, J. C. Dolado-Perez, H. Fraysse, F. Delefie, J. Daquin and C. Dental. Semi analytical

computation of partial derivatives and transition matrix using STELA software. In 6th ESA
conference on space debris, 2013.

C. E. Noll. The crustal dynamics data information system: A resource to support scientific analysis
using space geodesy. Advances in Space Research, 45(12): 1421–1440, 2010.

G. Petit and B. Luzum. IERS conventions (2010). Bureau International des Poids et mesures sevres
(france). 2010.

J. Picone, A. Hedin, D. P. Drob and A. Aikin. NRLMSISE-00 empirical model of the atmosphere:
Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics, 107(A12):
SIA–15, 2002.

K.-M. Roh, S. M. Kopeikin and J.-H. Cho. Numerical simulation of the post-newtonian equations of
motion for the near earth satellite with an application to the LARES satellite. Advances in Space
Research, 58(11): 2255–2268, 2016.

SAIC. Space-Track.,URL https://www.space-track.org/. (accessed: 16.09.2021).
G. E. Sandoval-Romero and V. Argueta-Diaz. A simple theoretical comparison between two basic

schemes in function of the earth’s north pole detection: The static method. Journal of Sensors, 2010:
2010.

M. Schäfer, M. Strohmeier, V. Lenders, I. Martinovic and M. Wilhelm. Bringing up OpenSky: A
large-scale ADS-B sensor network for research. In IPSN-14 proceedings of the 13th international
symposium on information processing in sensor networks, pages. 83–94 2014. URL https://doi.org/
10.1109/IPSN.2014.6846743.

J. Seago and D. Vallado. Coordinate frames of the US space object catalogs. In Astrodynamics specialist
conference, page. 4025 2000.

K. Sośnica, G. Bury, R. Zajdel, K. Kazmierski, J. Ventura-Traveset, R. Prieto-Cerdeira and L. Mendes.
General relativistic effects acting on the orbits of galileo satellites. Celestial Mechanics and Dynamical
Astronomy, 133(4): 1–31, 2021.

C. C. for Space Data Systems. Orbit data messages - recommended standard.,URL https://public.
ccsds.org/Pubs/502x0b2c1e2.pdf. (accessed: 26.11.2021).

R. I. of Space Device Engineering. Global navigation satellite system - interface control document.,URL
https://russianspacesystems.ru/wp-content/uploads/2016/08/ICD_GLONASS_eng_v5.1.pdf. (ac-
cessed: 26.11.2021).

B. Tapley, J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi and S. Poole. The GGM03 mean earth
gravity model from GRACE. In AGU fall meeting abstracts, pages. G42A–03 2007.

A. Toorian, K. Diaz and S. Lee. The CubeSat approach to space access. In 2008 IEEE aerospace conference,
pages. 1–14 2008. IEEE.

United Nations. Register of Objects Launched into Outer Space.,URL https://www.unoosa.org/oosa/
en/spaceobjectregister/index.html. (accessed: 15.09.2021).

D. Vallado. Astrodynamics software.,URL https://celestrak.com/software/vallado-sw.php. (ac-
cessed: 07.10.2021).

D. A. Vallado, P. Crawford, R. Hujsak and T. Kelso. Revisiting spacetrack report# 3: Rev 1. In

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://jp.mathworks.com/matlabcentral/fileexchange/55167-high-precision-orbit-propagator
https://jp.mathworks.com/matlabcentral/fileexchange/55167-high-precision-orbit-propagator
https://www.space-track.org/
https://doi.org/10.1109/IPSN.2014.6846743
https://doi.org/10.1109/IPSN.2014.6846743
https://public.ccsds.org/Pubs/502x0b2c1e2.pdf
https://public.ccsds.org/Pubs/502x0b2c1e2.pdf
https://russianspacesystems.ru/wp-content/uploads/2016/08/ICD_GLONASS_eng_v5.1.pdf
https://www.unoosa.org/oosa/en/spaceobjectregister/index.html
https://www.unoosa.org/oosa/en/spaceobjectregister/index.html
https://celestrak.com/software/vallado-sw.php

CONTRIBUTED RESEARCH ARTICLE 54

AIAA/AAS astrodynamics specialist conference and exhibit, 2006.
G. Wanner and E. Hairer. Solving ordinary differential equations II. Springer Berlin Heidelberg, 1996.

Rafael Ayala
Okinawa Institute of Science and Technology Graduate University
7542 Onna, Onna-son, Kunigami, Okinawa 904-0411
Japan
ORCiD: 0000-0002-9332-4623
rafael.ayala@oist.jp

Daniel Ayala
University of Seville
ETSI Informática, Avda. de la Reina Mercedes, s/n, Sevilla E-41012
Spain
ORCiD: 0000-0003-2095-1009
dayala1@us.es

Lara Sellés Vidal
Okinawa Institute of Science and Technology Graduate University
7542 Onna, Onna-son, Kunigami, Okinawa 904-0411
Japan
ORCiD: 0000-0003-2537-6824
lara.sellesvidal@oist.jp

David Ruiz
University of Seville
ETSI Informática, Avda. de la Reina Mercedes, s/n, Sevilla E-41012
Spain
ORCiD: 0000-0003-4460-5493
druiz@us.es

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://orcid.org/0000-0002-9332-4623
mailto:rafael.ayala@oist.jp
https://orcid.org/0000-0003-2095-1009
mailto:dayala1@us.es
https://orcid.org/0000-0003-2537-6824
mailto:lara.sellesvidal@oist.jp
https://orcid.org/0000-0003-4460-5493
mailto:druiz@us.es

	asteRisk - Integration and Analysis of Satellite Positional Data in R
	Introduction
	File formats and data sources
	TLE files
	RINEX navigation files

	Orbital propagators
	The SGP4 model
	The SDP4 model
	Numerical high-precision orbital propagator

	Frames of reference
	ITRF
	GCRF
	TEME
	Orbital elements
	Conversion between different coordinate systems

	Future work
	Summary
	Appendix: Test cases for SGP4/SDP4
	Acknowledgements
	References

