CONTRIBUTED RESEARCH ARTICLE 103

Bootstrapping Clustered Data in R using

Imeresampler
by Adam Loy and Jenna Korobova

Abstract Linear mixed-effects models are commonly used to analyze clustered data structures. There
are numerous packages to fit these models in R and conduct likelihood-based inference. The imple-
mentation of resampling-based procedures for inference are more limited. In this paper, we introduce
the Imeresampler package for bootstrapping nested linear mixed-effects models fit via Ime4 or nlme.
Bootstrap estimation allows for bias correction, adjusted standard errors and confidence intervals for
small samples sizes and when distributional assumptions break down. We will also illustrate how
bootstrap resampling can be used to diagnose this model class. In addition, Imeresampler makes it
easy to construct interval estimates of functions of model parameters.

Introduction

Clustered data structures occur in a wide range of studies. For example, students are organized within
classrooms, schools, and districts, imposing a correlation structure that must be accounted for in the
modeling process. Similarly, cholesterol measurements could be tracked across time for a number
of subjects, resulting in measurements being grouped by subject. Other names for clustered data
structures include grouped, nested, multilevel, hierarchical, longitudinal, repeated measurements,
and blocked data. The covariance structure imposed by clustered data is commonly modeled using
linear mixed-effects (LME) models, also referred to as hierarchical linear or multilevel linear models (J.
C. Pinheiro and Bates 2000; Raudenbush and Bryk 2002; Goldstein 2011).

In this paper, we restrict attention to the Gaussian response LME model for clustered data struc-
tures. For clusteri = 1,. .., g, this model is expressed as

yy = X, B+ Z; b, + & , ey
(mx1) (xp) (px1) - (mxa) (gx1) (mx1)

where

&~ N(O,UZI,,,.), bi ~ N(OID)/ (2)

where &; and b; are independent for all i, ¢; is independent of ¢; for i # j, and b; is independent of b;
for i # j. Here, 0 denotes a vector of zeros of length n; (the number of observations in group i), I
denotes the n;-dimensional identity matrix, and D is a g X g covariance matrix.

In R, the two most popular packages to fit LME models are nlme (J. Pinheiro et al. 2017) and
Ime4 (Bates et al. 2015). Both packages fit LME models using either maximum likelihood or restricted
maximum likelihood methods. These methods rely on the distributional assumptions placed on the
residual quantities, €; and b;, as well as large enough sample sizes. While some aspects of LME models
are quite robust to model misspecification, others are more sensitive, leading to biased estimates
and/or incorrect standard errors. Jacqmin-Gadda et al. (2007) found that inference for the fixed
effects is robust if the distribution of the error terms, ¢;, is non-normal or heteroscedastic, but that
variance components and random effects are biased if the covariance structure for the error terms is
misspecified. The fixed intercept is not robust to misspecification of the random effects (Hui, Miiller,
and Welsh 2021). In addition, misspecification of the random effects distribution can lead to biased
estimates of the variance components and undercoverage of the confidence intervals (Hui, Miiller,
and Welsh 2021). In cases where distributional assumptions are suspect, bootstrapping provides an
alternative inferential approach that leads to consistent, bias-corrected parameter estimates, standard
errors, and confidence intervals. Standard errors and confidence intervals for functions of model
parameters are also easily calculated using a bootstrap procedure, and are available even in situations
where closed-form solutions are not.

A variety of bootstrap procedures for clustered data and the LME model have been proposed and
investigated, including the cases (non-parametric) bootstrap, the residual bootstrap, the parametric
bootstrap, the random effect block (REB) bootstrap, and the wild bootstrap (Morris 2002; Carpenter,
Goldstein, and Rasbash 2003; Field and Welsh 2007; Chambers and Chandra 2013; Modugno and Gian-
nerini 2015). Van der Leeden, Meijer, and Busing (2008) provide a thorough overview of bootstrapping
LME models. Sanchez-Espigares and Ocaria (2009) developed a full-featured bootstrapping framework
for LME models in R; however, this package is not available and there appears to be no active develop-
ment. Consequently, R users must pick and choose packages based on what bootstrap procedure they
wish to implement. The parametric bootstrap is available in Ime4 via the bootMer () function, as is the
semi-parametric (residual) bootstrap proposed by Morris (2002). The simulateY() function in nlmeU

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=lme4

CONTRIBUTED RESEARCH ARTICLE 104

(Galecki and Burzykowski 2013) makes it easy to simulate values of the response variable for 1me
model objects; however, the user is required to implement the remainder of the parametric bootstrap.
Chambers and Chandra (2013) made R code available to implement their REB bootstrap as well as the
parametric bootstrap and the residual bootstrap proposed by Carpenter, Goldstein, and Rasbash (2003)
for LME models fix via nlme: : 1me (). Unfortunately, these functions were not published on CRAN
or extended to models fit via 1me4: : Imer (). Bootstrap procedures for specific inferential tasks have
also been implemented. The parametric bootstrap has been implemented to carry out likelihood ratio
tests for the presence of variance components in RLRsim (Scheipl, Greven, and Kuechenhoff 2008).
pbkrtest (Halekoh and Hejsgaard 2014) provides a Kenward-Roger approximation for performing
F-tests using a parametric bootstrap approach for LME models and generalized LME models. rptR
uses the parametric bootstrap to estimate repeatabilities for LME models (Stoffel, Nakagawa, and
Schielzeth 2017). Finally, constrained inference for LMEs using the residual bootstrap is implemented
in CLME (Farnan, Ivanova, and Peddada 2014).

In this paper, we introduce the Imeresampler package which implements a suite of bootstrap
methods for LME models fit using either nlme or Ime4 in a single package. Imeresampler provides
a unified bootstrap() command to reduce cognitive load on the user and also provides access to
procedures that were not previously available on CRAN. In the next section, we will clarify some
notation and terminology for LME models. In Bootstrap procedures for clustered data, we provide
an overview of the bootstrap methods implemented in Imeresampler. We then give an Overview
of Imeresampler, discuss a variety of Example applications for LME models, and show how to
Bootstrapping in parallel works in Imeresampler. We conclude with a Summary and highlight areas
for future development.

Bootstrap procedures for clustered data

In Imeresampler, we implement five bootstrap procedures for clustered data: a cases (i.e., nonparam-
teric) bootstrap, a residual bootstrap (i.e., semiparametric), a parametric bootstrap, a wild bootstrap,
and a block bootstrap. In this section, we provide an overview of these bootstrap approaches. Our
discussion focuses on two-level models, but procedures generalize to higher-level models unless
otherwise noted.

The cases bootstrap

The cases bootstrap is a fully non-parametric bootstrap that resamples the clusters in the data set to
generate bootstrap resamples. Depending on the nature of the data, this resampling can be done only
for the top-level cluster, only at the observation-level within a cluster, or at both levels. The choice
of the exact resampling scheme should be dictated by the way the data were generated, since the
cases bootstrap generates new data by mimicking this process. Van der Leeden, Meijer, and Busing
(2008) provide a cogent explanation of how to select a resampling scheme. To help ground the idea of
resampling, consider a two-level hierarchical data set where students are organized into schools.

One version of the cases bootstrap is implemented by only resampling the clusters. This version of
the bootstrap is what Field and Welsh (2007) term the cluster bootstrap and Goldstein (2011) term the
non-parametric bootstrap. We would choose this resampling scheme, for example, if schools were
chosen at random and then all students within each school were observed. In this case, the bootstrap
proceeds as follows:

1. Draw a random sample, with replacement, of size g from the clusters.

2. For each selected cluster, k, extract all of the cases to form the bootstrap sample (y;g, X, Z;:)
Since entire clusters are sampled, the total sample size may differ from the that of the original
data set.

3. Refit the model to the bootstrap sample and extract the parameter estimates of interest.

4. Repeat steps 1-3 B times.

An alternative version of the cases bootstrap only resamples the observations within clusters, which
makes sense in our example if the schools were fixed and students were randomly sampled within
schools.

1. For each clusteri =1,...,g, draw a random sample of the rows for cluster i, with replacement,
to form the bootstrap sample (v, X}, Z}).

2. Refit the model to the bootstrap sample and extract the parameter estimates of interest.

3. Repeat steps 1-2 B times.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=RLRsim
https://CRAN.R-project.org/package=pbkrtest
https://CRAN.R-project.org/package=rptR
https://CRAN.R-project.org/package=CLME
https://CRAN.R-project.org/package=lmeresampler

CONTRIBUTED RESEARCH ARTICLE 105

A third version of the cases bootstrap resamples both clusters and cases within clusters. This is what
Field and Welsh (2007) term the two-state bootstrap. We would choose this resampling scheme if both
schools and students were sampled during the data collection process.

All three versions of the case bootstrap are implemented in Imeresampler. We explain how the
resampling is specified in our Overview of Imeresampler. Regardless of which version of the cases
bootstrap you choose, it requires the weakest conditions: it only requires that the hierarchical structure
in the data set is correctly specified.

The parametric bootstrap

The parametric bootstrap simulates random effects and error terms from the fitted distributions to
form bootstrap resamples. Consequently, it requires the strongest conditions—that is, the parametric
bootstrap assumes that the model, as specified by Equations (1) and (2), is correctly specified.

Let ﬁ, D, and 72 be maximum likelihood or restricted maximum likelihood estimates of the fixed
effects and variance components from the fitted model. The parametric bootstrap is then implemented
through the following steps:

Simulate g error term vectors, e}, of length n; from N (0, 021,,).

Simulate ¢ random effects vectors, b}, from N (0, ﬁ) .

Generate bootstrap responses y; = X; B+ Z;b} +e}.
Refit the model to the bootstrap responses and extract the parameter estimates of interest.
Repeat steps 2—4 B times.

G ® N

The residual bootstrap

The residual bootstrap resamples the residual quantities from the fitted LME model in order to
generate bootstrap resamples. There are three general types of residuals for LME models (Haslett and
Haslett 2007; Singer, Rocha, and Nobre 2017). Marginal residuals correspond to the errors made using

the marginal predictions, 7; = y; —¥; = y; — X; ﬁ Conditional residuals correspond to the errors
made using predictions conditioned on the clusters, &; = y; — ¥;|b; = y; — X;B — Z;b;. The predicted
random effects are the last type of residual quantity and are defined as b; = f)Zl{ 17171 (y,- -X; ,g)
where V; = Zif)Zl’- + 321y,

A naive implementation of the residual bootstrap would draw random samples, with replacement,
from the estimated conditional residuals and the best linear unbiased predictors (BLUPS); however,
this will consistently underestimate the variability in the data because the residuals are shrunken
toward zero (Morris 2002; Carpenter, Goldstein, and Rasbash 2003). Carpenter, Goldstein, and Rasbash

(2003) solve this problem by “reflating” the residual quantities so that the empirical covariance matrices
match the estimated covariance matrices prior to resampling:

1. Fit the model and calculate the empirical BLUPs, E,-, and the predicted conditional residuals, ;.

2. Mean center each residual quantity and reflate the centered residuals. Only the process to reflate
the predicted random effects is discussed below, but the process is analogous for the conditional
residuals.

i. Arrange the random effects into a g X g matrix, where each row contains the predicted
random effects from a single group. Denote this matrix as U. Define I' = I; ® D, the block

diagonal covariance matrix of U.

ii. Calculate the empirical covariance matrix as S = Idig g. We follow the approach of
Carpenter, Goldstein, and Rasbash (2003), dividing by the number of groups, g, rather
than g — 1.

iii. Find a transformation of U, U* = UA, such that U*U*/ g = T. Specifically, we will
find A such that A'U'UA/g = A’SA = T. The choice of A is not unique, so we use the
recommendation given by Carpenter, Goldstein, and Rasbash (2003): A = (LDLs_l)/

where Lp and Lg are the Cholesky factors of Tands, respectively.

3. Draw a random sample, with replacement, from the set {ul*} of size g, where u; is the ith row
of the centered and reflated random effects matrix, U*.

4. Draw g random samples, with replacement, of sizes n; from the set of the centered and reflated
conditional residuals, {e; }.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 106

5. Generate the bootstrap responses, y, using the fitted model equation: y;' = X; E + Ziu} +e;.
6. Refit the model to the bootstrap responses and extract the parameter estimates of interest.

7. Repeat steps 3-6 B times.

Notice that the residual bootstrap is a semiparametric bootstrap, since it depends on the model
structure (both the mean function and the covariance structure) but not the distributional conditions
(Morris 2002).

The random-effects block bootstrap

Another semiparametric bootstrap is the random effect block (REB) bootstrap proposed by Chambers
and Chandra (2013). The REB bootstrap can be viewed as a version of the residual bootstrap where
conditional residuals are resampled from within clusters (i.e., blocks) to allow for weaker assumptions
on the covariance structure of the residuals. The residual bootstrap requires that the conditional
residuals are independent and identically distributed, whereas the REB bootstrap relaxes this to only
require that the covariance structure of the error terms is similar across clusters. In addition, the REB
bootstrap utilizes the marginal residuals to calculate non-parametric predicted random effects rather
than relying on the model-based empirical best linear unbiased predictors (EBLUPS). Chambers and
Chandra (2013) developed three versions of the REB bootstrap, all of which have been implemented in
Imeresampler. We refer the reader to Chambers and Chandra (2013) for a discussion of when each
should be used. It’s important to note that at the time of this writing, that the REB bootstrap has only
been explored and implemented for use with two-level models.

REB/0 The base algorithm for the REB bootstrap (also known as REB/0) is as follows:

1. Calculate non-parametric residual quantities for the model.

a. Calculate the marginal residuals for each group, 7; = y; — X; E

b. Calculate the non-parametric predicted random effects, b, = (ZfZi) ! Zy;.
c. Calculate the non-parametric conditional residuals using the residuals quantities obtained
in the previous two steps, & = #; — Z;b;.

2. Take a random sample, with replacement, of size g from the set {b; }. Denote these resampled
random effects as b;.

3. Take a random sample, with replacement, of size g from the cluster ids. For each sampled

cluster, draw a random sample, with replacement, of size n; from that cluster’s vector of error

terms, é;.

Generate bootstrap responses, y;, using the fitted model equation: y; = X; B+ Zil;:f +é;.

Refit the model to the bootstrap sample and extract the parameter estimates of interest.

6. Repeat steps 2-5 B times.

a1

REB/1 The first variation of the REB bootstrap (REB/1) zero centers and reflates the residual quanti-
ties prior to resampling in order to satisfy the conditions for consistency (Shao and Tu 1995). This is
the same process outlined in Step 2 of the residual bootstrap outlined above.

REB/2 The second variation of the REB bootstrap (REB/2 or postscaled REB) addresses two issues:
potential non-zero covariances in the joint bootstrap distribution of the variance components and
potential bias in the parameter estimates. After the REB/0 algorithm is run, the following post
processing is performed:

Uncorrelate the variance components. To uncorrelate the bootstrap estimates of the variance
components produced by REB/0, Chambers and Chandra (2013) propose the following procedure:

1. Apply natural logarithms to the bootstrap distribution of each variance component and form
the following matrices. Note that we use v to denote the total number of variance components.

® S*:a B x v matrix formed by binding the columns of these distributions together

¢ M*: a B x v matrix where each column contains the column mean from the corresponding
column in S*

* D*:a B x v matrix where each column contains the column standard deviation from the
corresponding column in §*

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 107

2. Calculate C* = cov (§%).

3. Calculate L* = M* + {(S* — M*) C*~1/2} o D*, where o denotes the Hadamard (elementwise)
product.

4. Exponentiate the elements of L*. The columns of L* are then uncorrelated versions of the
bootstrap variance components.

Center the bootstrap estimates at the original estimate values. To correct bias in the estimation
of the fixed effects, apply a mean correction. For each parameter estimate, By, adjust the bootstrapped

estimates, ﬁ,’; as follows: Bz = Bxlp + 3;; —avg (E;) To correct bias in the estimation of the vari-

ance components, apply a ratio correction. For each estimated variance component , 52, adjust the
uncorrelated bootstrapped estimates, o2* as follows: ¢2* = 03* o {02 /avg (05*) }

The wild bootstrap

The wild bootstrap also relaxes the assumptions made on the error terms of the model, allowing
heteroscedasticity both within and across groups. The wild bootstrap is well developed for the
ordinary regression model (Liu 1988; Flachaire 2005; Davidson and Flachaire 2008) and Modugno and
Giannerini (2015) adapt it for the nested LME model.

To begin, we can re-express model (1) as

y; = X;B + v;, where v; = Z;b; + ¢;. 3)
The wild bootstrap proceeds as follows:
1. Draw a random sample, wy, wy, . .., W, from an auxiliary distribution with mean zero and unit
variance.

2. Generate bootstrap responses using the re-expressed model equation (3): y; = X; ﬁ + B;wj,
where 7; is a heteroscedasticity consistent covariance matrix estimator. Modugno and Giannerini
(2015) suggest using what Flachaire (2005) calls HC, or HCj3 in the regression context:

HC2 : 271‘ = dlag (Ini - Hi)71/2 ot (4)
HC3 10 = dlag (Ini - Hi) orj, (5)

where H; = X; (X] X,-)/ X/, the ith diagonal block of the orthogonal projection matrix, and 7; is
the vector of marginal residuals for group i.

3. Refit the model to the bootstrap sample and extract the parameter estimates of interest.

4. Repeat steps 1-3 B times.
Five options for the auxiliary distribution are implemented in Imeresampler:

* The two-point distribution proposed by Mammen (1993) takes value w; = — (v/5—1)/2 with
probability p = (v/5+1)/(2v/5) and w; = (/5 + 1) /2 with probability 1 — p.

* The two-point Rademacher distribution places equal probability on w; = +1.

¢ The six-point distribution proposed by Webb (2013) places equal probability on w; = 4++/1/2, 41, ++/3/2.

¢ The standard normal distribution.

¢ The gamma distribution with shape parameter 4 and scale parameter 1/2 (Liu 1988) that is
centered to have mean zero. w} are randomly sampled from the gamma distribution, and then
centered via w; = w} — 2.

Modugno and Giannerini (2015) found the Mammen distribution to be preferred based on a Monte
Carlo study, but only compared it to the Rademacher distribution.
Overview of Imeresampler
The Imeresampler package implements the five bootstrap procedures outlined in the previous section

for Gaussian response LME models for clustered data structures fit using either nlme (J. Pinheiro et al.
2017) or Ime4. The workhorse function in Imeresampler is

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=nlme

CONTRIBUTED RESEARCH ARTICLE

108

Bootstrap ~ Function name Required arguments

Cases case_bootstrap model, .f, type,B,resample,orig_data, .refit
Residual resid_bootstrap model, .f, type,B,orig_data, .refit

REB reb_bootstrap model, .f, type,B,reb_type,orig_data, .refit

Wild wild_bootstrap model, . f,type,B,hccme,aux.dist,orig_data, .refit

Parametric parametric_bootstrap model,.f,type,B,orig_data,.refit

Table

1: Summary of the specific bootstrap functions called by ‘bootstrap()” and their required

arguments.

bootstrap(model, .f, type, B, resample = NULL, reb_type = NULL, hccme, aux.dist,

The fo

orig_data, .refit)

ur required parameters to bootstrap() are:

model, an 1me or merMod fitted model object.

.f, a function defining the parameter(s) of interest that should be extracted /calculated for each
bootstrap iteration.

type, a character string specifying the type of bootstrap to run. Possible values include:

n on

"parametric”, "residual”, "reb”, "wild"”, and "case".
B, the number of bootstrap resamples to generate.
.refit, whether the model should be refit to the bootstrap sample. This defaults to TRUE.

There are also five optional parameters: resample, reb_type, hccme, aux.dist, and orig_data.

If the user sets type = "case”, then they must also set resample to specify what cluster
resampling scheme to use. resample requires a logical vector of length equal to the number
of levels in the model. A value of TRUE in the ith position indicates that cases/clusters at that
level should be resampled. For example, to only resample the clusters (i.e., level 2 units) in a
two-level model, the user would specify resample = c(FALSE, TRUE).

If the user sets type = "reb"”, then they must also set reb_type to indicate which version of the
REB bootstrap to run. reb_type accepts the integers 9, 1, and 2 to indicate REB/0, REB/1, and
REB/2, respectively.

If the user sets type = "wild"”, then they must specify both hccme and aux.dist. Currently,

hccme can be set to "hc2” or "he3"” and aux.dist can be set to "mammen”, "rademacher”, "norm”,
"webb"”, or "gamma".

If variables are transformed within the model formula and 1mer () is used to fit the LME model,
then orig_data should be set to the original data frame, since this cannot be recovered from the
fitted model object.

The bootstrap() function is a generic function that calls functions for each type of bootstrap. The
user can call the specific bootstrap function directly if preferred. An overview of the specific bootstrap
functions is given in Table 1.

Ea

1.

ch of the specific bootstrap functions performs four general steps:
Setup. Key information (parameter estimates, design matrices, etc.) is extracted from the fitted
model to eliminate repetitive actions during the resampling process.

Resampling. The setup information is passed to an internal resampler function to generate the B
bootstrap samples.

Refitting. The model is refit for each of the bootstrap samples and the specified parameters are
extracted/calculated.

Clean up. An internal completion function formats the original and bootstrapped quantities to
return a list to the user.

Each function returns an object of class 1Imeresamp, which is a list with elements outlined in Table 2.
print(), summary(), plot(), and confint() methods are available for Imeresamp objects.

Imeresampler also provides the extract_parameters() helper function to extract the fixed effects
and variance components from merMod and 1me objects as a named vector.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 109

Element Description

observed values for the original model parameter estimates.
model the original fitted model object.

.f the function call defining the parameters of interest.

replicates a B X p tibble containing the bootstrapped quantities. Each column contains a single
bootstrap distribution.

stats a tibble containing the observed, rep.mean (bootstrap mean), se (bootstrap standard
error), and bias values for each parameter.

B the number of bootstrap resamples performed.

data the original data set.

seed a vector of randomly generated seeds that are used by the bootstrap.

type a character string specifying the type of bootstrap performed.

call the user’s call to the bootstrap function.

message a list of length B giving any messages generated during refitting. An entry will be
NULL if no message was generated.

warning a list of length B giving any warnings generated during refitting. An entry will be
NULL if no warning was generated.

error a list of length B giving any errors encountered during refitting. An entry will be

NULL if no error was encountered.

Table 2: Summary of the values returned by the bootstrap functions.

Example applications

A two-level example: JSP data

As a first application of the bootstrap for nested LME models, consider the junior school project (JSP)
data (Goldstein 2011; Mortimore et al. 1988) that is stored as jsp728 in Imeresampler. The data set is

comprised of measurements taken on 728 elementary school students across 48 schools in London.

library(lmeresampler)
tibble::as_tibble(jsp728)

#> # A tibble: 728 x 9

#> mathAge11 mathAge8 gender class school normAgel1 normAge8 schoo~1 mathA~2
#> <dbl> <dbl> <fct> <fct> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 39 36 M nonmanual 1 1.80 1.55 22.4 13.6
#> 2 1M 19 F manual 1 -2.29 -0.980 22.4 -3.42
#> 3 32 31 F manual 1 -0.0413 0.638 22.4 8.58
#> 4 27 23 F nonmanual 1 -0.750 -0.460 22.4 0.579
#> 5 36 39 F nonmanual 1 0.743 2.15 22.4 16.6
#> 6 33 25 M manual 1 0.163 -0.182 22.4 2.58
#> 7 30 27 M manual 1 -0.372 0.0724 22.4 4.58
#> 8 17 14 M manual 1 -1.63 -1.52 22.4 -8.42
#> 9 33 30 M manual 1 0.163 0.454 22.4 7.58
#> 10 20 19 M manual 1 -1.40 -0.980 22.4 -3.42
#> # ... with 718 more rows, and abbreviated variable names 1: schoolMathAge8,

#> # 2: mathAge8c
Suppose we wish to fit a model using the math score at age 8, gender, and the father’s social class
to describe math scores at age 11, including a random intercept for school (Goldstein 2011). This LME

model can be fit using the 1mer () function in Ime4.

library(1lme4)
jsp_mod <- lmer(mathAgell ~ mathAge8 + gender + class + (1 | school), data = jsp728)

To implement the residual bootstrap to estimate the fixed effects, we can use the bootstrap()
function and set type = "residual”.

(jsp_boot <- bootstrap(jsp_mod, .f = fixef, type = "residual”, B = 2000))

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 110

#> Bootstrap type: residual

#>

#> Number of resamples: 2000

#>

#> term observed rep.mean se bias
#> (Intercept) 14.1577509 14.1583389 0.66117666 ©.0005879882

1
#> 2 mathAge8 ©.6388895 0.6386906 0.02434348 -0.0001989161
#> 3 genderM -0.3571922 -0.3472943 0.33820746 ©.0098978735
#> 4 classnonmanual ©.7200815 ©.7197059 0.38367036 -0.0003755777
#>

#> There were @ messages, @ warnings, and @ errors.

We can then calculate normal, percentile, and basic bootstrap confidence intervals via confint().
confint(jsp_boot)

#> # A tibble: 12 x 6

#> term estimate lower upper type level
#> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 (Intercept) 14.2 12.9 15.5 norm 0.95
#> 2 mathAge8 0.639 0.591 0.687 norm 0.95
#> 3 genderM -0.357 -1.03 0.296 norm 0.95
#> 4 classnonmanual 0.720 -0.0315 1.47 norm 0.95
#> 5 (Intercept) 14.2 12.9 15.4 basic 0.95
#> 6 mathAge8 0.639 0.592 0.688 basic 0.95
#> 7 genderM -0.357 -1.05 @.301 basic 0.95
#> 8 classnonmanual 0.720 -0.0246 1.46 basic 0.95
#> 9 (Intercept) 14.2 12.9 15.5 perc 0.95
#> 10 mathAge8 0.639 ©0.590 0.685 perc 0.95
#> 11 genderM -0.357 -1.02 0.332 perc 0.95
#> 12 classnonmanual 0.720 -0.0203 1.46 perc 0.95

The default setting is to calculate all three intervals, but this can be restricted by setting the type
parameter to "norm”, "basic”, or "perc”.

User-specified statistics: Estimating repeatability/intraclass correlation

The beauty of the bootstrap is its flexibility. Interval estimates can be constructed for functions of
model parameters that would otherwise require more complex derivations. For example, the bootstrap
can be used to estimate the intraclass correlation. The intraclass correlation measures the proportion of
the total variance in the response accounted for by groups, and is an important measure of repeatability
in ecology and evolutionary biology (Nakagawa and Schielzeth 2010). As a simple example, we’ll
consider the BeetlesBody data set in rptR (Stoffel, Nakagawa, and Schielzeth 2017). This simulated
data set contains information on body length (BodyL) and the Population from which the beetles were
sampled. A simple Guassian-response LME model of the form

yij:,B0+bi+€ij/ bi NN(O,U’%), €ij NN(OIUZ)/

can be used to describe the body length of beetle j from population i. The repeatability is then
calculated as R = ag / ((75 + 02). Below we fit this model using 1mer():

data("BeetlesBody”, package = "rptR")
(beetle_mod <- lmer(BodyL ~ (1 | Population), data = BeetlesBody))

#> Linear mixed model fit by REML ['lmerMod']
#> Formula: BodyL ~ (1 | Population)

#> Data: BeetlesBody

#> REML criterion at convergence: 3893.268
#> Random effects:

#> Groups Name Std.Dev.
#> Population (Intercept) 1.173
#> Residual 1.798

#> Number of obs: 960, groups: Population, 12

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 111

#> Fixed Effects:
#> (Intercept)
#> 14.08

To construct a bootstrap confidence interval for the repeatability, we first must write a function to
calculate it from the fitted model. Below we write a one-off function for this model to demonstrate a
“typical” workflow rather than trying to be overly general.

repeatability <- function(object) {
vc <- as.data.frame(VarCorr(object))

vc$veov[1] / (sum(vc$vecov))

3

The original estimate of repeatability can then be quickly calculated:
repeatability(beetle_mod)

#> [1] 0.2985548

To construct a bootstrap confidence interval for the repeatability, we run the desired bootstrap proce-
dure, specifying .f = repeatability and then pass the results to confint().

(beetle_boot <- bootstrap(beetle_mod, .f = repeatability, type = "parametric”, B = 2000))

#> Bootstrap type: parametric

#>

#> Number of resamples: 2000

#>

#> observed rep.mean se bias
#> 1 0.2985548 0.2862509 0.090186 -0.01230394
#>

#> There were @ messages, @ warnings, and @ errors.
(beetle_ci <- confint(beetle_boot, type = "basic"))

#> # A tibble: 1 x 6

#> term estimate lower upper type level
#> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 " ©.299 0.135 0.473 basic 0.95

Notice that the term column of beetle_ci is an empty character string since we did not have
repeatability return a named vector.

Alternatively, we can plot() the results, as shown in Figure 1. The plot method for 1meresamp
objects uses stat_halfeye() from ggdist (Kay 2021) to render a density plot with associated 66% and
95% percentile intervals.

plot(beetle_boot, .width = c(.5, .9)) +
ggplot2::1labs(
title = "Bootstrap repeatabilities”,
y = "density”,
x = "repeatability”

Bootstrap tests for a single parameter

While Imeresampler was designed with a focus on estimation, the bootstrap functions can be used
to conduct bootstrap tests on individual parameters. For example, returning to the JSP example, we
might be interested in generating approximate p-values for the fixed effects:

summary (jsp_mod) $coefficients

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=ggdist

CONTRIBUTED RESEARCH ARTICLE 112

Bootstrap repeatabilities
1.00-

0.75-

0.50-

density

0.00- ————= ;
0.2 0.4 0.6
repeatability

Figure 1: Density plot of the repeatabilities from the beetle model. The median bootstrap repeatability
is approximatley .28 and denoted by a point under the density. 66% and 95% confidence intervals for
the bootstrap repeatability are (0.217, 0.394) and (0.118, 0.475), respectively, and are displayed as line
segments below the density.

#> Estimate Std. Error t value
#> (Intercept) 14.1577509 0.73344165 19.303173
#> mathAge8 0.6388895 0.02544478 25.108865
#> genderM -0.3571922 0.34009284 -1.050279

#> classnonmanual 0.7200815 ©.38696812 1.860829

To generate a bootstrap p-value for a fixed effect, we must generate B bootstrap resamples under
the reduced model (i.e., the null hypothesis), refit the full model, and then calculate the t-statistic for
each resample, denoted t;. The bootstrap p-value is then calculated as (Hextreme +1) /(B 4 1) (Davison
and Hinkley 1997; Halekoh and Hejsgaard 2014).

Using the bootstrap() function, you can implement this procedure for a single parameter. For
example, if we wish to calculate the bootstrap p-value for the class fixed effect we first generate
B = 1000 bootstrap samples from the reduced model without class. In this example, we use the Wild
bootstrap to illustrate that we are not restricted to a parametric bootstrap.

reduced_model <- update(jsp_mod, . ~ . - class)
reduced_boot <- bootstrap(reduced_model, type = "wild”, B = 1000, hccme = "hc2",
aux.dist = "mammen”, .refit = FALSE)

Next, we refit the full model, jsp_mod, to each simulation and extract the t-statistic for the class
variable. Note that the function extract_t () extracts the specified ¢-statistic from the coefficient table
from model summary.

extract_t <- function(model, term) {
coef (summary(model))[term, "t value"]

}

tstats <- purrr::map_dbl(
reduced_boot,
~refit(jsp_mod, .x) %>% extract_t(., term = "classnonmanual")

)

With the bootstrap f-statistics in hand, we can approximate the p-value using basic logical and
arithmetic operators

(sum(abs(tstats) >= extract_t(jsp_mod)) + 1) / (1000 + 1)
#> [1] 0.2637363

While the above process is not particularly difficult to implement using the tools provided by
Imeresampler, things get tedious if multiple parameters are of interest in this summary table. To
help reduce this burden on the user, we have provided the bootstrap_pvals() function that will add
bootstrap p-values for each term in the coefficient summary table. For jsp_mod, this is achieved in the

below code chunk:

bootstrap_pvals(jsp_mod, type = "wild"”, B = 1000, hccme = "hc2", aux.dist = "mammen”)

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 113

#> Bootstrap type: wild

#>

#> Number of resamples: 1000

#>

#> # A tibble: 4 x 5

#> term Estimate ~Std. Error™ ~t value® p.value
#> <chr> <dbl> <dbl> <dbl> <db1>
#> 1 (Intercept) 14.2 0.733 19.3 0.000999
#> 2 mathAge8 0.639 0.0254 25.1 0.000999
#> 3 genderM -0.357 0.340 -1.05 0.257

#> 4 classnonmanual 0.720 0.387 1.86 0.0569

It’s important to note that running bootstraps for each term in the model is computationally
demanding. To speed up the computation, you can run the command in parallel, as we discuss below
in Bootstrapping in parallel.

Model comparison

The bootstrap can be useful during model selection. For example, if you are comparing a full and
reduced model where the reduced model has fewer random effects, a 50:50 mixture of x2 distributions
is often used (Stram and Lee 1994); however, J. C. Pinheiro and Bates (2000) point out that this
approximation is not always optimal. In this example, we explore the Machine data set discussed by]J.
C. Pinheiro and Bates (2000), which consists of productivity scores for six workers on three brands of
machine. This data set can be loaded from nlme:

data("Machines”, package = "nlme")

J. C. Pinheiro and Bates (2000) consider two LME models for these data. The first model has a
fixed effect for the machine and a random intercept for the worker.

reduced_mod <- lmer(score ~ Machine + (1 | Worker), data = Machines, REML = FALSE)

The second model has the same fixed effects structure, but adds an additional random effect for
the machine within the worker.

full_mod <- lmer(score ~ Machine + (1 | Worker/Machine), data = Machines, REML = FALSE)

J. C. Pinheiro and Bates (2000) note that the approximate null distribution given by 0.5x3 -+ 0.5x%
is not successful when the models are fit via maximum likelihood, and that the mixture is closer
to 0.65x3 + 0.35x7. Instead of relying on the conventional approximation, a bootstrap test can be
conducted using bootstrap() to simulate the responses from the reduced model.

To conduct this bootstrap test, we first extract the observed statistic obtained via anova() and then
generate B = 1000 bootstrap responses from the reduced model, fm1_machine. Recall that specifying
.refit = FALSE returns a data frame of the simulated responses. Here, we use a residual bootstrap
for illustration.

observed <- anova(full_mod, reduced_mod)$Chisq[2]

reduced_boot <- bootstrap(reduced_mod, type = "residual”, B = 1000, .refit = FALSE)

Next, we must fit both the full and reduced models to the bootstrap responses and calculate the
test statistic. The user-written compare_models() function performs this refit and calculation for given
models and bootstrap responses. The control argument for the full model was set to reduce the
number of convergence warnings, since the null model had a variance component of 0 for machines
within workers, so we expect warnings as we fit an expanded model.

compare_models <- function(full, reduced, newdata) {
full_mod <- refit(full, newdata,
control = ImerControl(check.conv.singular = "ignore",
check.conv.grad = "ignore"))
reduced_mod <- refit(reduced, newdata)
anova(full_mod, reduced_mod)$Chisq[2]
}

chisq_stats <- purrr::map_dbl(reduced_boot, ~compare_models(full_mod, reduced_mod, newdata = .x))

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 114

5.0 -
[e]
o 251 ® ° o °
§25 3 8 § 3
S
B8 g o 8 8 ¢
%00- ®
k3 g g
© [e]
S)
8 -251° e o
o [} o
o [e]
-5.01 >
1 2 3

Transmembrane pressure (dmHg)

Figure 2: A plot of the conditional residuals against the transmembrane pressure for the dialyzer
model. It appears that the variability of the conditional residuals increases with transmembrance
pressure, but does this indicate a model condition is violated?

With the test statistics in hand, we can quickly calculate the p-value
(sum(chisg_stats >= observed) + 1) / (1000 + 1)

#> [1] 0.000999001

Simulation-based model diagnostics

Our final example illustrates how the bootstrap() function can be used for model diagnosis. Loy,
Hofmann, and Cook (2017) propose using the lineup protocol to diagnose LME models, since artificial
structures often appear in conventional residual plots for this model class that are not indicative of a
model deficiency.

In this example, we consider the Dialyzer data set provided by nlme. The data arise from a study
characterizing the water transportation characteristics of 20 high flux membrane dialyzers, which
were introduced to reduce the time a patient spends on hemodialysis (Vonesh and Carter 1992). The
dialyzers were studied in vitro using bovine blood at flow rates of either 200 or 300 ml/min. The
study measured the the ultrafiltration rate (ml/hr) at even transmembrane pressures (in mmHg). J. C.
Pinheiro and Bates (2000) discuss modeling these data. Here, we explore how to create a lineup of
residual plots to investigate the adequacy of the initial homoscedastic LME model fit by J. C. Pinheiro
and Bates (2000).

library(nlme)

dialyzer_mod <- lme(
rate ~ (pressure + I(pressure”2) + I(pressure”3) + I(pressure*4)) % QB,
data = Dialyzer,
random = ~ pressure + I(pressure”2)

J. C. Pinheiro and Bates (2000) construct a residual plot of the conditional residuals plotted against
the transmembrane pressure to explore the adequacy of the fitted model (Figure 2). There appears to
be increasing spread of the conditional residuals, which would indicate that the homoscedastic model
is not sufficient.

To check if this pattern is actually indicative of a problem, we construct a lineup of residual plots.
To do this, we must generate data from a number of properly specified models, say 19, to serve as
decoy residual plots. Then, we create a faceted set of residual plots where the observed residual plot
(Figure 2) is randomly assigned to a facet. To generate the residuals from properly specified models,
we use the parametric bootstrap via bootstrap() and extract a data frame containing the residuals
from each bootstrap sample using hlm_resid() from HLMdiag (Loy and Hofmann 2014).

set.seed(1234)
library(HLMdiag)

sim_resids <- bootstrap(dialyzer_mod, .f = hlm_resid, type = "parametric”, B = 19)

The simulated residuals are stored in the replicates element of the sim_resids list. sim_resids$replicates
is a tibble containing the 19 bootstrap samples, with the the replicate number stored in the .n column.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=HLMdiag

CONTRIBUTED RESEARCH ARTICLE

115

dplyr::glimpse(sim_resids$replicates)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Rows: 2,660
Columns: 15
id

rate
pressure

QB

Subject
.resid
.fitted
.1s.resid
.1s. fitted
.mar.resid
.mar.fitted
.n

B B - = e R - I~ A A L 2

Now, we use the 1ineup() function from nullabor (Buja et al. 2009) to generate the lineup data.
lineup() will randomly insert the observed (true) data into the samples data, “encrypt” the position

“I(pressure”2)"
“I(pressure”3)”
“I(pressure*4)”

<dbl> 1, 2, 3, 4, 5,6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16,~
<dbl> -0.8579226, 17.0489029, 34.3658738, 44.8495547, 44.525~
<dbl> 0.240, ©.505, ©.995, 1.485, 2.020, 2.495, 2.970, 0.240~
<I<dbl>> 0.0576, 0.255025, 0.990025, 2.205225, 4.0804, 6~
<I<dbl>> 0.013824, 0.128787625, 0.985074875, 3.274759~
<I<dbl>> ©.00331776, 0.065037...., 0.980149...., 4.863017.~
<fct> 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200,~
<ord>1, 1,1, 1,1, 1,1,2,2,2,2,2,2,2,3,3,3,3, ~
<dbl> -1.19758632, ©.65600425, -0.90104247, 1.39131045, 0.11~
<dbl> 0.3396637, 16.3928987, 35.2669162, 43.4582443, 44.4100~
<dbl> -0.51757746, 1.23968783, -1.32231163, 0.59071041, 0.30~
<dbl> -0.3403452, 15.8092151, 35.6881854, 44.2588443, 44.223~
<dbl> -2.1236410, -0.3100360, -2.1298323, -0.3453118, -2.455~
<dbl> 1.265718, 17.358939, 36.495706, 45.194867, 46.981057, ~
<int> 1, 1,1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1, ~

of the observed data, and print a message that you can later decrypt in the console.

library(nullabor)
lineup_data <- lineup(true = hlm_resid(dialyzer_mod), n = 19, samples = sim_resids$replicates)

#> decrypt("CLg7 X161 sO bJws6sJO qj")

dplyr::glimpse(lineup_data)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Rows: 2,800
Columns: 15
id

rate
pressure

QB
Subject
.resid
fitted
.1s.resid
.1s.fitted
.mar.resid
.mar.fitted
.sample

B A - B R I A o o e S

“I(pressure*2)”
“I(pressure”3)”
“I(pressure®4)*

<dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,~
<dbl> -0.8579226, 17.0489029, 34.3658738, 44.8495547, 44.525~
<dbl> 0.240, 0.505, 0.995, 1.485, 2.020, 2.495, 2.970, 0.240~
<I<dbl>> 0.0576, ©.255025, ©.990025, 2.205225, 4.0804, 6~
<I<dbl>> 0.013824, 0.128787625, 0.985074875, 3.274759~
<I<dbl>> 0.00331776, 0.065037...., 0.980149...., 4.863017.~
<fct> 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200,~
<ord>1, 1,1, 1,1,1,1,2,2,2,2,2,2,2,3,3,3, 3, ~
<dbl> -1.19758632, 0.65600425, -0.90104247, 1.39131045, 0.11~
<dbl> 0.3396637, 16.3928987, 35.2669162, 43.4582443, 44.4100~
<dbl> -0.51757746, 1.23968783, -1.32231163, 0.59071041, 0.30~
<dbl> -0.3403452, 15.8092151, 35.6881854, 44.2588443, 44.223~
<dbl> -2.1236410, -0.3100360, -2.1298323, -0.3453118, -2.455~
<dbl> 1.265718, 17.358939, 36.495706, 45.194867, 46.981057, ~
<dbl> 1, 1,1, 1,1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1, 1, ~

With the lineup data in hand, we can create a lineup of residual plots using facet_wrap():

ggplot(lineup_data, aes(x = pressure, y = .resid)) +

In Figure 3, the observed residual plot is in position 13. If you can discern this plot from the field
of decoys, then there is evidence that the fitted homogeneous LME model is deficient. In this case,
we believe 13 is discernibly different, as expected based on the discussion in J. C. Pinheiro and Bates

(2000).

Since we have discovered signs of within-group heteroscedasticity, we could reformulate our
model via nlme: :1lme() adding a weights argument using varPower, or we could utilize the Wild

geom_hline(yintercept = 0, color = "gray60") +
geom_point(shape = 1) +
facet_wrap(~.sample) +
theme_bw() +
labs(x = "Transmembrane pressure (dmHg)", y = "Residuals (ml/hr)")

bootstrap, as illustrated below.

The R Journal Vol. 14 /4, December 2022

ISSN 2073-4859

https://CRAN.R-project.org/package=nullabor

CONTRIBUTED RESEARCH ARTICLE

116

w

&)

o

& e
0 O RPW O
Qs O
@ o
omi®

@
o
)

O O @S

o ®® O

O @®AIDD

@ WD

QOISO @
O O
CIREOQWD O

O COMEBO 0
O @mO@nO

oW ©

- ! 8 09 O 10
s a8 geREo et g ¢ ° ¢ E §§°°§ 0
R T
2_6 1 12 13 " -
53'00 883%2@ Ooo @ggooggeggo o ° 5
EIRH LRI R
6 16 _w " - —
IR RS T L F %é‘ag °§ .y
6 H .oé 1 2 3 1 2 3 i S 3 S

Transmembrane pressure (dmHg)

Figure 3: A lineup of the conditional residuals against the transmembrane pressure for the dialyzer
model. One of the facets contains the true residual plot generated from the fitted model, the others
are decoys generated using a parametric bootstrap. Facet 13 contains the observed residuals and is
discernibly different from decoy plots, providing evidence of that a model condition has been violated.

The R Journal Vol. 14 /4, December 2022

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 117

wild_dialyzer <- bootstrap(dialyzer_mod, .f = fixef, type = "wild”, B = 1000,
hccme = "hc2", aux.dist = "webb")

confint(wild_dialyzer, type = "perc")

#> # A tibble: 10 x 6

#> term estimate lower upper type level
#> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 (Intercept) -16.0 -18.0 -13.9 perc 0.95
#> 2 pressure 88.4 77.4 99.1 perc 0.95
#> 3 I(pressure”2) -44.3 -57.1 -30.8 perc 0.95
#> 4 I(pressure”3) 9.17 2.45 15.5 perc 0.95
#> 5 I(pressure*4) -0.690 -1.70 0.425 perc 0.95
#> 6 QB300 -1.26 -4.55 2.06 perc 0.95
#> 7 pressure:QB300 0.621 -16.0 16.9 perc 0.95
#> 8 I(pressure”2):QB300 3.15 -18.5 27.6 perc 0.95
#> 9 I(pressure”3):QB300 0.102 -12.0 11.1 perc 0.95
#> 10 I(pressure”4):QB300 -0.172 -1.98 1.84 perc 0.95

Bootstrapping in parallel

Bootstrapping is a computationally demanding task, but bootstrap iterations do not rely on each other
so they are easy to implement in parallel. Rather than building parallel processing into Imeresampler,
we created a utility function, combine_lmeresamp(), that allows the user to easily implement parallel
processing using doParallel (Microsoft and Weston 2020a) and foreach (Microsoft and Weston 2020b).
The code is thus concise and simple enough for users without much experience with parallelization,
while also providing flexibility to the user.

doParallel and foreach default to multicore (i.e., forking) functionality when using parallel com-
puting on UNIX operating systems and snow-like (i.e., clustering) functionality on Windows systems.
In this section, we will use clustering in our example. For more information on forking, we refer the
reader to the vignette in Microsoft and Weston (2020a).

The basic idea behind clustering is to execute tasks as a “cluster” of computers. Each cluster needs
to be fed in information separately, and as a consequence clustering has more overhead than forking.
Clusters also need to be made and stopped with each call to foreach() to explicitly tell the CPU when
to begin and end the parallelization.

Below, we revisit the JSP example and distribute 2000 bootstrap iterations equally over two cores:

library(foreach)
library(doParallel)

#> Loading required package: iterators
#> Loading required package: parallel

set.seed(5678)

Starting a cluster with 2 cores
no_cores <- 2

cl <- makeCluster(no_cores)
registerDoParallel(cores = no_cores)

Run 1000 bootstrap iterations on each core
boot_parallel <- foreach(
B = rep(1000, 2),
.combine = combine_lmeresamp,
.packages = c("lmeresampler”, "lme4")
) %dopar% {
bootstrap(jsp_mod, .f = fixef, type = "parametric”, B = B)
}

Stop the cluster
stopCluster(cl)

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=foreach

CONTRIBUTED RESEARCH ARTICLE 118

The combine_lmeresamp() function combines the two 1meresamp objects that are returned from the
two bootstrap() calls into a single Imeresamp object. Consequently, working with the returned object
proceeds as previously discussed.

It’s important to note that running a process on two cores does not yield a runtime that is twice as
fast as running the same process on one core. This is because parallelization takes some overhead to
split the processes, so while runtime will substantially improve, it will not correspond exactly to the
number of cores being used. For example, the runtime for the JSP example run on a single core was

#> user system elapsed
#> 23.084 1.212 24.376

and the runtime for the JSP run on two cores was

#> user system elapsed
#> 23.550 1.800 12.747

These timings were generated using system.time() on a MacBook Pro with a 2.9 GHz Quad-Core
Intel Core i7 processor. In this set up, running the 2000 bootstrap iterations over two cores reduced the
runtime by a factor of about 1.91, but this will vary based on the hardware and setting used.

Summary

In this paper, we discussed our implementation of five bootstrap procedures for nested, Gaussian-
response LME models fit via the nlme or Ime4 packages. The bootstrap() function in Imeresampler
provides a unified interface to these procedures, allowing users to easily bootstrap their fitted LME
models. In our examples, we illustrated the basic usage of the bootstrap, how it can be used to
estimate functions of parameters, how it can be used for testing, and how it can be used to create
simulation-based visual diagnostics. The bootstrap approach to inference is computationally intensive,
so we have also demonstrated how users can bootstrap in parallel.

While this paper focused solely on the nested, Gaussian-response LME model, Imeresampler
implements bootstrap procedures for a wide class of models. Specifically, the cases, residual, and
parametric bootstraps can be used to bootstrap generalized LME models fit via 1me4: : glmer (). Ad-
ditionally, the parametric bootstrap works with LME models with crossed random effects, though
the results may not be optimal (Mccullagh 2000). Future development of Imeresampler will focus on
implementing additional extensions, especially for crossed data structures.

Acknowledgements

We thank Spenser Steele for his contributions to the original code base of Imeresampler. We also thank
the reviewers and associate editor whose comments improved the quality of this paper.

References

Bates, Douglas, Martin Méchler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects
Models Using Ime4.” Journal of Statistical Software 67 (1): 1-48. https://doi.org/10.18637/jss.
v067.101.

Buja, Andreas, Dianne Cook, Heike Hofmann, Michael Lawrence, Eun-kyung Lee, Deborah F. Swayne,
and Hadley Wickham. 2009. “Statistical Inference for Exploratory Data Analysis and Model
Diagnostics.” Royal Society Philosophical Transactions A 367 (1906): 4361-83. https://doi.org/10.
1098/rsta.2009.0120.

Carpenter, James R, Harvey Goldstein, and Jon Rasbash. 2003. “A Novel Bootstrap Procedure for
Assessing the Relationship Between Class Size and Achievement.” Journal of the Royal Statistical
Society, Series C 52 (4): 431-43. https://doi.org/10.1111/1467-9876.00415.

Chambers, Raymond, and Hukum Chandra. 2013. “A Random Effect Block Bootstrap for Clustered
Data.” Journal of Computational and Graphical Statistics 22 (2): 452-70. https://doi.org/10.1080/
10618600.2012.681216.

Davidson, Russell, and Emmanuel Flachaire. 2008. “The Wild Bootstrap, Tamed at Last.” Journal of
Econometrics 146 (1): 162-69. https://doi.org/10.1016/j.jeconom.2008.08.003.

Davison, A. C., and D. V. Hinkley. 1997. Boostrap Methods and Their Application. Cambridge University
Press.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1098/rsta.2009.0120
https://doi.org/10.1098/rsta.2009.0120
https://doi.org/10.1111/1467-9876.00415
https://doi.org/10.1080/10618600.2012.681216
https://doi.org/10.1080/10618600.2012.681216
https://doi.org/10.1016/j.jeconom.2008.08.003

CONTRIBUTED RESEARCH ARTICLE 119

Farnan, Laura, Anastasia Ivanova, and Shyamal D. Peddada. 2014. “Linear Mixed Efects Models
Under Inequality Constraints with Applications.” PLOS ONE 9 (1). https://doi.org/10.1371/
journal.pone.0084778.

Field, Christopher A, and A H Welsh. 2007. “Bootstrapping Clustered Data.” Journal of the Royal
Statistical Society, Series B 69 (3): 369-90. https://doi.org/10.1111/3.1467-9868.2007.00593 . x.

Flachaire, Emmanuel. 2005. “Bootstrapping Heteroskedastic Regression Models: Wild Bootstrap Vs.
Pairs Bootstrap.” Computational Statistics & Data Analysis 49 (2): 361-76. https://doi.org/10.
1016/j.csda.2004.05.018.

Galecki, Andrzej, and Tomasz Burzykowski. 2013. Linear Mixed-Effects Models Using r: A Step-by-Step
Approach. New York: Springer. https://doi.org/10.1007/978-1-4614-3900-4.

Goldstein, Harvey. 2011. Multilevel Statistical Models. 4th ed. West Sussex: John Wiley & Sons, Ltd.
https://doi.org/10.1002/9780470973394.

Halekoh, Ulrich, and Seren Hojsgaard. 2014. “A Kenward-Roger Approximation and Parametric
Bootstrap Methods for Tests in Linear Mixed Models — the R Package pbkrtest.” Journal of Statistical
Software 59 (9): 1-30. https://doi.org/10.18637/jss.v059.109.

Haslett, John, and Stephen] Haslett. 2007. “The Three Basic Types of Residuals for a Linear Model.”
International Statistical Review 75 (1): 1-24. https://doi.org/10.1111/3.1751-5823.2006.00001 .
X.

Hui, Francis K C, Samuel Miiller, and Alan H Welsh. 2021. “Random Effects Misspecification Can
Have Severe Consequences for Random Effects Inference in Linear Mixed Models.” International
Statistical Review = Revue Internationale de Statistique 89 (1): 186-206. https://doi.org/10.1111/
insr.12378.

Jacqmin-Gadda, Hélene, Solenne Sibillot, Cécile Proust, Jean-Michel Molina, and Rodolphe Thiébaut.
2007. “Robustness of the Linear Mixed Model to Misspecified Error Distribution.” Computational
Statistics & Data Analysis 51 (10): 5142-54. https://doi.org/10.1016/j.csda.2006.05.021.

Kay, Matthew. 2021. gedist: Visualizations of Distributions and Uncertainty. https://doi.org/10.5281/
zenodo. 3879620.

Liu, Regina Y. 1988. “Bootstrap Procedures Under Some Non-i.i.d. Models.” Annals of Statistics 16 (4):
1696-1708. https://doi.org/10.1214/a0s/1176351062.

Loy, Adam, and Heike Hofmann. 2014. “HLMdiag: A Suite of Diagnostics for Hierarchical Linear
Models in R.” Journal of Statistical Software 56 (5): 1-28. https://doi.org/10.18637/jss.v056.105.

Loy, Adam, Heike Hofmann, and Dianne Cook. 2017. “Model Choice and Diagnostics for Linear
Mixed-Effects Models Using Statistics on Street Corners.” Journal of Computational and Graphical
Statistics 26 (3): 478-92. https://doi.org/10.1080/10618600.2017.1330207.

Mammen, Enno. 1993. “Bootstrap and Wild Bootstrap for High Dimensional Linear Models.” Annals
of Statistics 21 (1): 255-85. https://doi.org/10.1214/20s/1176349025.

Mccullagh, Peter. 2000. “Resampling and Exchangeable Arrays.” Bernoulli 6 (2): 285-301. https:
//doi.org/10.2307/3318577.

Microsoft, and Steve Weston. 2020a. doParallel: Foreach Parallel Adaptor for the 'Parallel” Package.
https://CRAN.R-project.org/package=doParallel.

Microsoft, and Steve Weston. 2020b. Foreach: Provides Foreach Looping Construct. https://CRAN.R-
project.org/package=foreach.

Modugno, Lucia, and Simone Giannerini. 2015. “The Wild Bootstrap for Multilevel Models.” Commu-
nications in Statistics - Theory and Methods 44 (22): 4812-25. https://doi.org/10.1080/03610926.
2013.802807.

Morris, Jeffrey S. 2002. “The BLUPs are not “best” when it comes to bootstrapping.” Statistics and
Probability Letters 56 (4): 425-30. https://doi.org/10.1016/50167-7152(02)00041-X.

Mortimore, Peter, Pamela Sammons, Louise Stoll, and Russell Ecob. 1988. School Matters. University of
California Press.

Nakagawa, Shinichi, and Holger Schielzeth. 2010. “Repeatability for Gaussian and Non-Gaussian
Data: A Practical Guide for Biologists.” Biological Reviews of the Cambridge Philosophical Society 85
(4): 935-56. https://doi.org/10.1111/3.1469-185X.2010.00141.x.

Pinheiro, Jose C, and Douglas M Bates. 2000. Mixed-Effects Models in s and s-PLUS. New York:
Springer-Verlag. https://doi.org/10.1007/b98882.

Pinheiro, Jose, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and R Core Team. 2017. nlme: Linear
and Nonlinear Mixed Effects Models. https://CRAN.R-project.org/package=nlme.

Raudenbush, Stephen W., and Anthony S. Bryk. 2002. Hierarchical Linear Models: Applications and Data
Analysis Methods. 2nd ed. Thousand Oaks, CA: Sage Publications, Inc.

Sanchez-Espigares, José A, and Jordi Ocafia. 2009. “An R Implementation of Bootstrap Procedures
for Mixed Models.” Rennes, France: The R User Conference 2009. https://www.r-project.org/
conferences/useR-2009/slides/SanchezEspigares+0Ocana.pdf.

Scheipl, Fabian, Sonja Greven, and Helmut Kuechenhoff. 2008. “Size and Power of Tests for a
Zero Random Effect Variance or Polynomial Regression in Additive and Linear Mixed Models.”
Computational Statistics & Data Analysis 52 (7): 3283-99. https://doi.org/10.1016/j.csda.2007.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://doi.org/10.1371/journal.pone.0084778
https://doi.org/10.1371/journal.pone.0084778
https://doi.org/10.1111/j.1467-9868.2007.00593.x
https://doi.org/10.1016/j.csda.2004.05.018
https://doi.org/10.1016/j.csda.2004.05.018
https://doi.org/10.1007/978-1-4614-3900-4
https://doi.org/10.1002/9780470973394
https://doi.org/10.18637/jss.v059.i09
https://doi.org/10.1111/j.1751-5823.2006.00001.x
https://doi.org/10.1111/j.1751-5823.2006.00001.x
https://doi.org/10.1111/insr.12378
https://doi.org/10.1111/insr.12378
https://doi.org/10.1016/j.csda.2006.05.021
https://doi.org/10.5281/zenodo.3879620
https://doi.org/10.5281/zenodo.3879620
https://doi.org/10.1214/aos/1176351062
https://doi.org/10.18637/jss.v056.i05
https://doi.org/10.1080/10618600.2017.1330207
https://doi.org/10.1214/aos/1176349025
https://doi.org/10.2307/3318577
https://doi.org/10.2307/3318577
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=foreach
https://doi.org/10.1080/03610926.2013.802807
https://doi.org/10.1080/03610926.2013.802807
https://doi.org/10.1016/S0167-7152(02)00041-X
https://doi.org/10.1111/j.1469-185X.2010.00141.x
https://doi.org/10.1007/b98882
https://CRAN.R-project.org/package=nlme
https://www.r-project.org/conferences/useR-2009/slides/SanchezEspigares+Ocana.pdf
https://www.r-project.org/conferences/useR-2009/slides/SanchezEspigares+Ocana.pdf
https://doi.org/10.1016/j.csda.2007.10.022
https://doi.org/10.1016/j.csda.2007.10.022

CONTRIBUTED RESEARCH ARTICLE 120

10.022.

Shao, Jun, and Dongsheng Tu. 1995. The Jackknife and Bootstrap. Springer.

Singer, Julio M, Francisco M M Rocha, and Juvéncio S Nobre. 2017. “Graphical Tools for Detecting
Departures from Linear Mixed Model Assumptions and Some Remedial Measures.” International
Statistical Review = Revue Internationale de Statistique 85 (2): 290-324. https://doi.org/10.1111/
insr.12178.

Stoffel, Martin A., Shinichi Nakagawa, and Holger Schielzeth. 2017. “rptR: Repeatability Estimation
and Variance Decomposition by Generalized Linear Mixed-Effects Models.” Methods in Ecology
and Evolution 8: 1639—44. https://doi.org/10.1111/2041-210X.12797.

Stram, Daniel O, and Jae Won Lee. 1994. “Variance Components Testing in the Longitudinal Mixed
Effects Model.” Biometrics 50 (4): 1171-77.

Van der Leeden, Rien, Erik Meijer, and Frank M. T. A. Busing. 2008. “Resampling Multilevel Models.”
In Handbook of Multilevel Analysis, edited by Jan de Leeuw and Erik Meijer, 401-33. Springer New
York. https://doi.org/10.1007/978-0-387-73186-5_11.

Vonesh, Edward F, and Randy L Carter. 1992. “Mixed-Effects Nonlinear Regression for Unbalanced
Repeated Measures.” Biometrics 48 (1): 1-17.

Webb, Matthew D. 2013. “Reworking Wild Bootstrap Based Inference for Clustered Errors.” Queen’s
Economics Department Working Paper. https://www.econstor.eu/handle/10419/97480.

Adam Loy

Carleton College

Northfield, MN, USA
https://aloy.rbind.io/
ORCiD: 0000-0002-5780-4611
aloy@carleton.edu

Jenna Korobova

Carleton College

Northfield, MN, USA
jenna.korobova@gmail.com

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://doi.org/10.1016/j.csda.2007.10.022
https://doi.org/10.1016/j.csda.2007.10.022
https://doi.org/10.1016/j.csda.2007.10.022
https://doi.org/10.1111/insr.12178
https://doi.org/10.1111/insr.12178
https://doi.org/10.1111/2041-210X.12797
https://doi.org/10.1007/978-0-387-73186-5_11
https://www.econstor.eu/handle/10419/97480
https://aloy.rbind.io/
https://orcid.org/0000-0002-5780-4611
mailto:aloy@carleton.edu
mailto:jenna.korobova@gmail.com

	Bootstrapping Clustered Data in R using lmeresampler
	Introduction
	Bootstrap procedures for clustered data
	Overview of lmeresampler
	Example applications
	Bootstrapping in parallel
	Summary
	Acknowledgements

	References

