
CONTRIBUTED RESEARCH ARTICLE 50

Generalized Mosaic Plots in the ggplot2
Framework
by Haley Jeppson and Heike Hofmann

Abstract Graphical methods for categorical variables are not well developed when compared with
visualizations for numeric data. One method available for multidimensional categorical data visual-
izations is mosaic plots. Mosaic plots are an easy and powerful option for identifying relationships
between multiple categorical variables. Although various packages have implemented mosaic plots,
no implementation within the grammar of graphics supports mosaic plots. We present a new im-
plementation of mosaic plots in R, ggmosaic, that implements a custom ggplot2 geom designed
for generalized mosaic plots. Equipped with the functionality and flexibility of ggplot2, ggmosaic
introduces new features not previously available for mosaic plots, including a novel method of in-
corporating a rendering of the underlying density via jittering. This paper provides an overview of
the implementation and examples that highlight the versatility and ease of use of ggmosaic while
demonstrating the practicality of mosaic plots.

1 Introduction

Graphical methods for categorical variables are not as thoroughly developed when compared with
what is available for numeric variables. Categorical variables in scientific publications often appear in
the form of bar charts (first published in the Commercial and Political Atlas by William Playfair in
1789, re-edited by Playfair, Wainer, and Spence (2005)) and spine plots (Hummel 1996).

Beyond those visualizations, categorical variables with a low number of levels are often incor-
porated in visualizations in the form of aesthetics such as color and shape. However, these indirect
methods of visualizing categorical information are better suited as supplemental information and
not as the primary source of information due to the associated loss of accuracy in retrieving the
corresponding information (Cleveland and McGill 1984).

Mosaic plots provide a direct method of visualizing multidimensional categorical data; they are
similar to a stacked bar chart but include the marginal distribution in addition to the conditional
distribution, can be extended beyond two variables, and provide additional flexibility. Modern mosaic
plots are usually attributed to Hartigan and Kleiner (Hartigan and Kleiner 1981, 1984; Kleiner and
Hartigan 1981), but historical versions of mosaic plots can be found as far back as the late 1800s. The
first mosaic plot is often attributed to Georg von Mayr (Friendly 2002); however, the mosaic plots in
the Statistical Atlas of the 1870 Decennial Census (United States Census office. 9th census, 1870 and
Walker 1874) pre-dates Mayr’s by a few years. Mosaic plots may also be identified as Marimekko
charts (mainly in the InfoVis world) or Eikosograms (Oldford et al. 2018).

In R, mosaic plots have been implemented in a variety of packages. Base R is equipped with
the function mosaicplot() from the graphics package based on code by Emerson (1998) adapted by
Kurt Hornik. The base R generic function plot() contains a method for table objects and produces
a mosaic plot from a contingency table using the mosaicplot() function. Similarly, the yardstick
package (Kuhn, Vaughan, and Hvitfeldt 2022) provides a method for the ggplot2 (Wickham et al. 2020)
function autoplot() to visualize confusion matrices, with one of the options being a mosaic plot.

The vcd package (Meyer, Zeileis, and Hornik 2020), influenced by Michael Friendly’s “Visualizing
Categorical Data,” provides the functions mosaic() and strucplot() which allow for expanded
versions of the original mosaic plot (Hartigan and Kleiner 1981). The eikosogram package (Oldford
et al. 2018) is another R package capable of producing mosaic plots. The function tileplot() in the
latticeExtra package (Sarkar and Andrews 2016) provides functionality to create mosaic plots in the
lattice framework (Sarkar 2020).

The productplots package (Wickham and Hofmann 2016) provides a wrapper of ggplot2 function-
ality but does not provide universal access to all aspects of the ggplot2 framework like a geom does.
The left plot in Figure 1 is an example of a mosaic plot created with the productplots package. While
the default plot can be annotated with additional aesthetics, labels, themes, and color schemes, we can
not add layers to this plot, and faceting is unavailable. A preview of the relevant code follows the next
paragraph.

We present a new implementation of mosaic plots in R, ggmosaic, that implements a ggplot2 geom
for mosaic plots. While several other packages are available for constructing mosaic plots, ggmosaic
allows users to fully leverage the widely used ggplot2 framework resulting in a flexible package for
generalized mosaic plots. More noteworthy, ggmosaic introduces several new features not previously

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=vcd
https://CRAN.R-project.org/package=latticeExtra
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=productplots
https://CRAN.R-project.org/package=ggmosaic

CONTRIBUTED RESEARCH ARTICLE 51

never

sometimes

usually
do

_y
ou

_r
ec

lin
e

no somewhat yes
rude_to_recline

never

sometimes

usually

do
_y

ou
_r

ec
lin

e

no somewhat yes
rude_to_recline

Figure 1: Example mosaic plots made with the productplots package (left) and the ggmosaic package
(right). While the differences are subtle in this basic example, the differences between the two packages
become more apparent as the customization of the mosaic plot increases.

available for mosaic plots, including a novel method of incorporating a rendering of the underlying
density via jittering. ggmosaic includes a Shiny app to preview plots interactively and allow for
model exploration. Many of the features we describe are possible because ggmosaic is implemented
within the architecture defined by ggplot2. A preview of the syntax used in ggmosaic is shown below
compared to that of the productplots package. The resulting plot is the right plot of Figure 1.

productplots
productplots::prodplot(flights, ~do_you_recline + rude_to_recline, mosaic()) +
aes(fill = do_you_recline)

ggmosaic
ggplot(data = flights) +

geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),
fill = do_you_recline))

In this paper, we motivate the ggmosaic implementation and introduce it with examples demon-
strating the versatility and ease of use of ggmosaic. Next, we describe new features available in
the latest release of ggmosaic, version 0.3.3, and discuss how these features can enhance the data
visualizations made with ggmosaic. Finally, we conclude with a preview of a shiny application
(Chang et al. 2021) designed for an exploratory model framework of logistic regression and loglinear
models. The Shiny application is included in the development version of ggmosaic available from
https://github.com/hjeppson/ggmosaic.

2 ggmosaic: A ggplot2 implementation of mosaic plots

ggplot2 implements an adaptation of the grammar of graphics (Wilkinson 1999), a layered grammar
(Wickham 2010). Because of its flexibility and ease of use, ggplot2 has become one of the most popular
plotting packages available in the R ecosystem. Version 2.0.0 of ggplot2 introduced a method for other
R packages to implement custom geometries, or “geoms”, allowing for an expansion of the utility of
ggplot2. In turn, the increasingly popular package has continued to appeal to a more extensive user
base.

In creating a ggplot2 geom for mosaic plots, we seek to appeal to this user base and leverage the
robust framework of the grammar of graphics. Having mosaic plots in the ggplot2 framework makes
creating mosaic plots more accessible as it is more straightforward for the novice user to create mosaic
plots for data exploration purposes. For many users, having mosaic plots function as a true ggplot2
geom reduces the amount of syntax required, eliminates the need for prior calculations, and provides
complete access to additional benefits of ggplot2, allowing for highly customized generalized mosaic
plots.

With the R package ggmosaic, a custom ggplot2 geom designed for generalized mosaic plots is
implemented. ggmosaic makes mosaic plots compatible with ggplot2 and creates a flexible method

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=shiny
https://github.com/hjeppson/ggmosaic

CONTRIBUTED RESEARCH ARTICLE 52

to generate a wide variety of categorical data visualizations. The remainder of the paper presents
a thorough description of the ggmosaic package featuring examples that go beyond how to use
ggmosaic and demonstrate how to make more informed decisions about how to use mosaic plots to
answer various questions.

We begin with an introduction to the package with examples of the flexible framework that
ggmosaic offers. The following three sections illustrate how to use ggmosaic. First, we address
the data structures required for constructing mosaic plots and which structures are compatible with
ggmosaic. Next, we demonstrate how ggmosaic fits mosaic plots into the ggplot2 framework and how
to define the aesthetic mappings to construct the desired plot from the variables in the data. Lastly, we
provide examples of mosaic plots customized with parameters unique to ggmosaic.

The remaining half of the paper presents the new features included in version 0.3.3 of ggmosaic.
Frist, we introduce geom_mosaic_text(), designed to place text, or labels, in the center of each tile,
followed by geom_mosaic_jitter(), a geom for jittered points designed to be superimposed on the
mosaic plot and with multiple proposed applications. Next, we present theme_mosaic(), a theme for
mosaic plots to remove items from the background of the plot. We conclude with an overview of an
interactive Shiny app for exploratory data analysis (EDA) of high-dimensional categorical data using
mosaic plots.

Many of the features we describe are possible because ggmosaic is implemented within the ggplot2
framework. While other packages are available for constructing mosaic plots, ggmosaic allows users
to leverage the widely used ggplot2 infrastructure to create highly customized generalized mosaic
plots. Most notably, ggmosaic introduces several new features not previously available for mosaic
plots. In total, ggmosaic offers users a way to make mosaic plots with ggplot2 to visualize and explore
categorical data more effectively.

3 The ggmosaic package

The R package ggmosaic implements a custom ggplot2 geom, geom_mosaic(), designed to offer a
flexible framework for visualizing categorical data. The geom for mosaic plots was created using
the productplots package and ggplot2’s custom object-oriented system and extension mechanism,
ggproto. A stable version of ggmosaic is available on CRAN, and a development version is available
at https://github.com/hjeppson/ggmosaic. This section provides a brief description of the package,
the methods used in its implementation, and an example that showcases the flexibility that ggmosaic
offers.

Designed to create visualizations of categorical data, geom_mosaic() has the capability to produce
bar charts, stacked bar charts, mosaic plots, and double-decker plots and therefore offers a wide range
of potential plots. Figures 2, 3, and 4 highlight the package’s versatility. The code for these examples is
provided below and can be summarized as consisting of the following components. First, the mosaic
plot is created by adding a mosaic geom. The x aesthetic takes one or more variables wrapped in the
product() function, and the fill aesthetic determines the fill color of the rectangles. An optional
divider parameter determines the partitioning strategy for the rectangles. The code will be explained
in greater detail in the subsequent sections.

one-dimensional examples:
spine plot
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline))

bar chart
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline),
divider = "hbar")

two-dimensional examples:
mosaic plot (2 variables)
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline))

stacked bar chart

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://github.com/hjeppson/ggmosaic

CONTRIBUTED RESEARCH ARTICLE 53

never sometimes usually

Spine Plot

never sometimes usually

Bar Chart

Do you recline?

usually

sometimes

never

Figure 2: Both plots represent the distribution of do_you_recline and allow the same comparisons,
though the spine plot does so with proportions and the bar chart with frequencies. The relative group
sizes are more difficult to compare in the spine plot, but the "sometimes" group is still discernable as
the largest and the "never" group as the smallest. The bar chart provides an easier comparisons of the
relative group sizes.

ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline),
divider = c("vspine", "hbar"))

never

sometimes

usually

no somewhat yes
Is it rude to recline?

Mosaic Plot (2 variables)

never

sometimes

usually

no somewhat yes
Is it rude to recline?

Stacked Bar Chart

Do you recline?

usually

sometimes

never

Figure 3: The conditional distribution of do_you_recline given rude_to_recline is represented by
the heights of the bars in both the mosaic plot (left) and the stacked bar chart (right). The mosaic plot
displays the joint and marginal distribution of rude_to_recline with the area and width of the tile,
respectively. The stacked bar chart reveals a nearly equal number of never reclining responses across
the categories of rude_to_recline. The conditional probabilities of "never" given "somewhat" and
"never" given "yes" have a more significant impact in the mosaic plot, from which we understand
that there is a positive correlation between a respondent considering reclining to be rude and electing
never to recline their seat. There are, however, respondents that do not consider reclining to be rude
and yet never recline, and perhaps more egregious, there are those that do regard reclining as rude
and yet usually recline their seats, a group that is important in the mosaic plot but challenging to see
in the stacked bar chart.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 54

three-dimensional examples:
mosaic plot (3 variables)
ggplot(data = flights) +
geom_mosaic(aes(x = product(eliminate_reclining, do_you_recline,

rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining))

double-decker plot
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, eliminate_reclining,

rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining),

divider = ddecker())

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no
:n

o

ye
s:

no

no
:s

om
ew

ha
t

ye
s:

so
m

ew
ha

t

no
:y

es
ye

s:
ye

s

Eliminate reclining?:Is it rude to recline?

Mosaic Plot (3 variables)

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no
:n

o

ye
s:

no

no
:s

om
ew

ha
t

ye
s:

so
m

ew
ha

t

no
:y

es
ye

s:
ye

s

Eliminate reclining?: Is it rude to recline?

Do you recline?

usually

sometimes

never

Eliminate reclining?

yes

no

Double−Decker Plot

Figure 4: The mosaic plot (left) and double-decker plot (right) include the three variables
(do_you_recline, rude_to_recline, eliminate_reclining), though the direction of the splits varies
between the two plots. Both plots display a connection between a passenger’s opinions of reclin-
ing and their tendency to recline. Those that consider reclining to be rude are less likely to recline
and more likely to wish for reclining to be eliminated. The mosaic plot reveals an increasing de-
sire to eliminate reclining when the respondents believe reclining to be rude across all categories of
do_you_recline. There appears to be a slight positive correlation between reclining and not electing to
eliminate reclining across all levels of rude_to_recline. The double-decker plot (a mosaic plot with a
specific structure) best highlights the conditional distribution of do_you_recline and allows for easier
comparisons across the categories of the other two variables. For example, the relationship between
do_you_recline and eliminate_reclining seems consistent across categories of rude_to_recline, a
conclusion that is less readily available from the mosaic plot.

Furthermore, ggmosaic allows various features to be customized:

• the type of data structure,

• the order of the variables (Figure 6),

• the formula setup of the plot (Figure 7),

• faceting (Figure 7),

• the type of partition (Figure 10 and Figure 11), and

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 55

• the space between the categories (Figure 12).

The following sections will discuss these features and provide examples of their use.

Data structure

The first step to creating a mosaic plot with ggmosaic is to ensure the data are in a supported format.
There are three data structures to consider (Friendly 2016), and two of the three data structures are
compatible with ggmosaic. The structure of the data impacts the use of geom_mosaic(), so the user
must understand their data’s structure. This section provides an example of each of the three data
structures and highlights the essential differences.

The data set used for these examples, and all examples in this paper, is from a SurveyMonkey
Audience poll conducted by FiveThirtyEight for two days in August of 2014. The survey asked
twenty-six questions ranging from background information regarding the respondent to feelings on
potentially aggravating behavior one might encounter on an airplane (Hickey 2014). The survey had
1,040 respondents (874 of whom had flown) aged 18-60+ from across the United States. The data set is
available from FiveThirtyEight’s data GitHub repository, and a cleaned version of it is one of the three
data sets included in the ggmosaic package.

Here, we will use three variables do_you_recline, rude_to_recline, and eliminate_reclining
from the fly data. For this paper, we made the following adjustments: remove all non-responses
and collapse the variable do_you_recline from a factor with five levels (always, usually, about half
the time, once in a while, and never) to a factor with three levels (usually, sometimes, never).
Incidentally, by removing all non-responses, we also remove responses from those that have never
flown. The code below completes the necessary modifications to the data.

A few modifications to data
flights <- fly %>%
select(do_you_recline, rude_to_recline, eliminate_reclining) %>%
filter(!is.na(do_you_recline), !is.na(rude_to_recline)) %>%
mutate(do_you_recline = do_you_recline %>%

forcats::fct_collapse(
usually = c("always", "usually"),
sometimes = c("about half the time", "once in a while"),
never = "never") %>%

forcats::fct_relevel("never", "sometimes", "usually")
)

Summary of the modified data
flights %>% summary()

#> do_you_recline rude_to_recline eliminate_reclining
#> never :170 no :502 no :595
#> sometimes:373 somewhat:281 yes:259
#> usually :311 yes : 71

To simplify the examples of the three data structures, we will focus on the two variables do_you_recline
and rude_to_recline from the flights data. The following code creates the desired subset:

flights_examp <- flights %>% select(do_you_recline, rude_to_recline)
names(flights_examp)

#> [1] "do_you_recline" "rude_to_recline"

The example data, flights_examp, contains the individual observations from the survey. Each
row accounts for one survey response to each of the questions, and there are two columns, one for
do_you_recline and one for rude_to_recline. This is the first of the three types of data structure.

glimpse(flights_examp)

#> Rows: 854
#> Columns: 2
#> $ do_you_recline <fct> sometimes, usually, usually, sometimes, usually, somet~
#> $ rude_to_recline <fct> somewhat, no, no, no, no, somewhat, no, no, yes, no, n~

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://github.com/fivethirtyeight/data/tree/master/flying-etiquette-survey

CONTRIBUTED RESEARCH ARTICLE 56

The second data structure is a summary of the first data structure. This format consists of a data
frame where each row is one of the possible combinations of levels of the categorical variables. In this
structure, there is an additional column for the variable freq that supplies the number of observations
in the first data structure with the row’s particular combination of levels.

flights_examp %>%
count(do_you_recline, rude_to_recline, name = "freq") %>%
glimpse()

#> Rows: 9
#> Columns: 3
#> $ do_you_recline <fct> never, never, never, sometimes, sometimes, sometimes, ~
#> $ rude_to_recline <fct> no, somewhat, yes, no, somewhat, yes, no, somewhat, yes
#> $ freq <int> 35, 81, 54, 198, 164, 11, 269, 36, 6

The second data structure also occurs with weighted data. In which case, rather than a variable
representing the counts or frequencies, a variable represents the weights. A typical example of
weighted data is census data, where a weighting variable is used to compensate for a representation
differential.

The final data structure summarizes the second data structure: it is the contingency table format.
This data structure is not supported by ggmosaic and needs to be transformed into data structure one
or two. Both as.data.frame() and as_tibble() provide a method for tables that converts this format
into the summary format of data structure two.

flights_examp %>% table()

#> rude_to_recline
#> do_you_recline no somewhat yes
#> never 35 81 54
#> sometimes 198 164 11
#> usually 269 36 6

While the contingency table data structure is incompatible with ggmosaic, or ggplot2, either the
first or second structure is acceptable, and neither is preferable to the other. The data structure will
affect the set of mappings constructed from the variables to the aesthetics, the topic of the next section.

Aesthetics

To fit ggmosaic within the ggplot2 infrastructure, we must create the desired plot from the variables
in the data. The first step, defining the aesthetic mappings, requires specifications of how variables
in the data will be mapped to the visual properties of the plot. In ggmosaic, the aesthetic mappings
are transformed into a model formula using the R formula notation with the ~ operator. The formula
then determines what is represented in the mosaic plot, or how the joint distribution of the variables is
broken down into the marginal distribution and conditional distribution(s). Understanding how the
aesthetics translate into the model formula helps a user specify the correct aesthetics for the desired
plot. This section describes each of the aesthetics used in geom_mosaic(), some of which are unique to
ggmosaic, describes how the aesthetics are translated into the model formula, and provides examples
of the impact changes in the aesthetic mappings have on the final plot.

Conflicting with the infrastructure provided by ggplot2, mosaic plots do not have a one-to-one
mapping between a variable and the x or y axis. Instead, the grammar of graphics defines the
coordinate system of mosaic plots as a system based on recursive partitioning that can integrate
several variables (Wilkinson 1999). To accommodate the variable number of variables, the mapping to
x is created by the product() function. For example, the variables var1 and var2 are read in as x =
product(var1, var2). However, if only one variable is to be included, it does not need to be wrapped
in product(), and can be read in simply as x = var1. The product() function alludes to ggmosaic’s
predecessor productplots and to the joint distribution as the product of the conditional and marginal
distributions. The product function creates a special type of list that is evaluated internally and is
what allows us to integrate multiple variables into the mosaic plot.

In order to include a variable in the mosaic plot, it must be specified as an aesthetic. In geom_mosaic(),
the following aesthetics can be specified:

• x: select variables to add to the formula

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 57

– declared as x = product(var1, var2, ...)

• alpha: add an alpha transparency to the rectangles of the selected variable

– unless the variable is already part of the formula, it is added explicitly in the formula in
the first position.

• fill: select a variable to determine the fill color of the rectangles

– unless the variable is already part of the formula, it is added explicitly in the formula in
the first position after the optional alpha variable.

• conds: select a variable to condition on

– declared as conds = product(cond1, cond2, ...)

• weight: select a weighting variable

The specified aesthetics are then translated into the formula, weight ~ alpha + fill + x | conds,
which determines what is to be represented in the mosaic plot and how to calculate the size of the
corresponding tiles and determine their placement. Understanding the ordering of the specified
aesthetics in the translation helps a user specify the correct aesthetics for the desired plot.

The minimal required aesthetics to create a mosaic plot is one variable mapped to the x aesthetic,
wrapped in the product() function. Without a defined weight aesthetic, all observations are assumed
to have equal weights, a weight of 1. In this minimal scenario, the resulting formula is 1 ~ x.

The weight aesthetic

A mosaic plot is constructed such that the area of each rectangle is proportional to the number
of observations that the tile represents. Without weighting, each row of a data set represents one
observation. Alternatively, the aesthetic weight is available to modify the interpretation of each row of
the data. For example, the weight aesthetic will need to be used with data that contains a variable that
supplies the number of observations for each row’s particular combination of levels. In this case, if the
weight aesthetic is left unused, the resulting mosaic plot will resemble the case of equal probabilities,
as can be seen in Figure 5.

unweighted plot
flights_examp %>%
count(do_you_recline, rude_to_recline, name = "freq") %>%
ggplot() +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline))

weighted plot
flights_examp %>%
count(do_you_recline, rude_to_recline, name = "freq") %>%
ggplot() +
geom_mosaic(aes(weight = freq,

x = product(rude_to_recline),
fill = do_you_recline))

The weight aesthetic is also necessary with weighted data, such as weighted surveys. Otherwise,
the resulting mosaic plot may not be a faithful representation of the relationship in the data. Here,
weights serve to correct imbalances between the sample and the population.

The ordering of the variables

Because of a mosaic plot’s hierarchical construction, the ordering of the variables in the formula is
vital. While any order of the variables ultimately represents the same data, different variable orders
may better support different comparisons. Ideally, the comparison of interest is positioned along a
common scale, an easier perceptual task than comparing areas (Cleveland and McGill 1984). In the
simple case of two variables, with one an explanatory variable and the other considered the response,
the explanatory variable is best placed on the first split of the mosaic and the response variable as
the last split, those that occur within each of the tiles created by the first split. The code below and
corresponding mosaic plots in Figure 6 illustrate the change that occurs when the variables in the
formula are swapped.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 58

never

sometimes

usually
D

o
yo

u
re

cl
in

e?

no somewhat yes
Is it rude to recline?

Unweighted

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no somewhat yes
Is it rude to recline?

Weighted

Figure 5: When using summarized data, a weighting aesthetic must be defined for the resulting mosaic
plot to remain a faithful representation of the data. The mosaic plot on the left contains nine equally
sized tiles for the nine combinations that result from the three levels of rude_to_recline crossed with
the three levels of do_you_recline. The mosaic plot on the right considers the frequency of those nine
combinations resulting in nine tiles proportional to the number of observations each tile represents.

original order
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline))

order reversed
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline, do_you_recline),

fill = do_you_recline))

The mosaic plots in Figure 6 represent the same joint distribution but are composed differently.
The original order, the plot on the left, shows that most of those who believe it is rude to recline never
recline their own seat. With the reversed order, we can see that of those who never recline their seats,
a roughly equal proportion consider reclining rude as those that do not. The difference highlights how
mosaic plots are more than a visualization of the joint distribution; mosaic plots are a visualization
of the product of the conditional distribution and marginal distribution, which results in the joint
distribution.

In the original order, x = product(do_you_recline, rude_to_recline), the joint distribution
is the product of the conditional distribution of do_you_recline given rude_to_recline and the
marginal distribution of rude_to_recline. With this order, we can address questions regarding
the marginal distribution of rude_to_recline, such as “what proportion of respondents believe it
is rude to recline?”, and questions regarding the conditional distribution of do_you_recline given
each response to rude_to_recline, such as “Is there an association between a passenger’s reclining
tendencies and their opinion reclining.

In contrast, x = product(rude_to_recline, do_you_recline), while resulting in the same joint dis-
tribution, is the product of the conditional distribution of rude_to_recline given do_you_recline and
the marginal distribution of do_you_recline. Here, we can compare the responses to rude_to_recline
within each response to do_you_recline, which reveals an interesting relationship between a passen-
ger’s perceived rudeness given their own inclination to recline. We can see that those that usually
recline their seats are more likely to not find reclining to be a rude behavior. Those that never re-
cline their seats, however, are evenly divided with their opinions on reclining. While it is easier to
estimate the proportion that never reclines in the reversed order, it is more challenging to decipher
what proportion of the respondents believe it is rude to recline, an artifact of the plot representing
rude_to_recline only through its conditional distribution given the responses to do_you_recline.

Ultimately, the preferred order of the variables depends on the comparisons of interest. To
(re)arrange the categories within a variable, the levels of the factor variable must be reordered before
using ggmosaic.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 59

never

sometimes

usually
D

o
yo

u
re

cl
in

e?

no somewhat yes
Is it rude to recline?

Original Order

no

somewhat

yes

Is
 it

 r
ud

e
to

 r
ec

lin
e?

never sometimes usually
Do you recline?

Order Reversed

Figure 6: While the mosaics represent the same data, each supports different comparisons. The mosaic
plot on the left emphasizes the effect rude_to_recline has on do_you_recline. The variable order
was reversed in the construction of the mosaic plot on the right resulting in a plot that emphasizes the
effect do_you_recline has on rude_to_recline.

The conds aesthetic

The formula setup of the plot can be further altered by electing to view a conditional distribution
rather than the full joint distribution. Conditioning can be used to better focus on the comparison
of interest either by removing relationships that are not of interest or positioning the comparison of
interest along a common scale (Wickham and Hofmann 2011; Cleveland and McGill 1984). When a
variable is mapped to the conds aesthetic, the mosaic plot is no longer represents the joint distribution,
but instead maps the conditional distribution.

Faceting splits the data into subsets and generates a plot for each subset. Faceting therefore
provides another method to accomplish conditioning. The result is the same as with the conds
aesthetic, but the formatting is altered. The formatting difference will be discussed in more detail later.
Figure 7 contains an example of each method of conditioning and is based on the code below.

not conditioned
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline))

conditioned with aesthetic mapping
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline,
conds = product(rude_to_recline)))

conditioned with facets
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline)) +
facet_grid(cols = vars(rude_to_recline))

For two variables, as in Figure 7, the difference between conditioning and not conditioning
amounts to the difference between a mosaic plot and a stacked bar chart with a standardized height
of 1. That is, when conditioning on rude_to_recline, the plot no longer represents the marginal
distribution of rude_to_recline. Instead, as in a stacked bar chart, the plot only represents the
conditional distribution of do_you_recline given the responses to rude_to_recline.

In the case of three variables, relationships can be removed via conditioning to focus on one
relationship in particular and position that relationship along a common scale (Wickham and Hofmann
2011). Figure 8 provides an example of conditioning used to focus on the conditional distribution
of eliminate_reclining by removing the joint distribution of do_you_recline and rude_to_recline.
The example is based on the code below.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 60

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no somewhat yes
Is it rude to recline?

Not Conditioned

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no somewhat yes
Is it rude to recline?

Conditioned via Aesthetic Mapping

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no somewhat yes

Is it rude to recline?

Conditioned via Facets

Figure 7: Mosaic plots typically depict the joint distribution (top left mosaic plot) but can instead
depict the conditional distribution using facetting (bottom left mosaic plot) or the ‘conds‘ aesthetic (top
right mosaic plot). Conditioning on rude_to_recline may provide a clearer view of the relationship
the responses to do_you_recline has with rude_to_recline. However, we lose information on the
marginal distribution of rude_to_recline, and the area of a tile is only comparable to the other tiles
within that same level of rude_to_recline.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 61

never

sometimes

usually
D

o
yo

u
re

cl
in

e?

no
:n

o

ye
s:

no

no
:s

om
ew

ha
t

ye
s:

so
m

ew
ha

t

no
:y

es
ye

s:
ye

s

Eliminate reclining?:Rude to recline?

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no
:n

o

ye
s:

no

no
:s

om
ew

ha
t

ye
s:

so
m

ew
ha

t

no
:y

es

ye
s:

ye
s

Eliminate reclining:Is it rude to recline?

Figure 8: An example of using conditioning to focus on one relationship. The left mosaic plot represents
the joint distribution of reclining tendencies, the perceived rudeness of reclining, and the desire to
eliminate reclining, providing an overall picture. In the mosaic plot on the right, conditioning on
rude_to_recline and do_you_recline removes the representation of the joint distribution of reclining
tendencies and the perceived rudeness of reclining but provides a clearer view of the conditional
distribution of eliminate_reclining.

not conditioned
ggplot(flights) +
geom_mosaic(aes(x = product(eliminate_reclining, do_you_recline,

rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining))

conditioned
ggplot(data = flights) +
geom_mosaic(aes(x = product(eliminate_reclining),

conds = product(do_you_recline, rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining))

The conditioning completed in Figure 8 provides a better view of how responses to eliminate_reclining
relate to do_you_recline and rude_to_recline responses. We can see that desires to eliminate reclin-
ing are less likely when the respondent reclines their seat. eliminate_reclining may have a stronger
association with responses to rude_to_recline, but that comparison is more difficult to make since it
is comparing areas rather than positions along a common scale.

When conditioning on multiple variables, it is again important to consider how the variables’
order impacts the plot. The two mosaic plots in Figure 9 display the same data, but the direction of the
final split is different. The orientation of the final split determines which comparisons are positioned
along a common scale.

conditioned order 1
ggplot(data = flights) +
geom_mosaic(aes(x = product(eliminate_reclining),

conds = product(do_you_recline, rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining))

conditioned order 2
ggplot(data = flights) +
geom_mosaic(aes(x = product(eliminate_reclining),

conds = product(rude_to_recline, do_you_recline),
fill = do_you_recline,

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 62

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no
:n

o

ye
s:

no

no
:s

om
ew

ha
t

ye
s:

so
m

ew
ha

t

no
:y

es

ye
s:

ye
s

Eliminate reclining:Is it rude to recline?

no:never

yes:never

no:sometimes

yes:sometimes

no:usually

yes:usually

E
lim

in
at

e
re

cl
in

in
g:

D
o

yo
u

re
cl

in
e?

ne
ve

r

so
m

et
im

es

us
ua

lly

Is it rude to recline?

Figure 9: The two mosaic plots both portray the distribution of eliminate_reclining conditioned
on do_you_recline and rude_to_recline, but the direction of the final split is different. The lefthand
plot is better suited to compare eliminate_reclining with do_you_recline, while the righthand plot
is better suited to compare eliminate_reclining with rude_to_recline. The comparison of interest
should influence the order of the conditioning variables.

alpha = eliminate_reclining)) +
coord_flip()

Figure 9 rearranges the conditioned variables’ order to gauge the strength of the relationship
between eliminate_reclining and rude_to_recline. For a fixed level of do_you_recline, the desire
to eliminate reclining correlates with an increasingly hostile stance on reclining. While this example
flips the orders of the conditioned variables and then uses coord_flip(), ggmosaic provides additional
methods of manually modifying the directions of the splits in the mosaic plot, which will be discussed
in the next section.

The defined set of aesthetic mappings impacts more than the look of the final graphic; it impacts
the analysis and the inquiries the plot can support. ggmosaic requires the x and cond aesthetics to be
defined using the product() function to accommodate a variable number of variables. The defined
set of aesthetic mappings will result in a model formula that will determine which of the potentially
numerous ways the mosaic plot will represent the decomposition of the joint distribution.

Parameters

Easy customization is necessary for mosaic plots to be effective. Additional aspects of the mosaic
plot that can be modified include the strategy used to partition the area into the tiles and the width
of the spacing between the tiles. ggmosaic provides the parameters divider and offset to facilitate
adjustments to the partitioning strategy and the spacing. This section demonstrates how to create
generalized mosaic plots modified by these parameters and how they can be used to highlight different
aspects of the data.

In ggmosaic, the desired type of partition is specified with the divider parameter (by setting
divider = " "). The area of a mosaic plot can be partitioned into bars or spines, and partitions can
be added horizontally or vertically, as shown in Figure 10 and the code below. When the area is
partitioned into bars, the height is proportional to value, and the width equally divides the space. Bars
can be arranged horizontally ("hbar") or vertically ("vbar"). Alternatively, space can be partitioned
into spines, where the section’s width is proportional to the value, and the height occupies full range.
Spines are space-filling and can be arranged horizontally ("hspine") or vertically ("vspine"). The
default divider for a single variable is "hspine".

default / hspine
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline))

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 63

vspine
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline),
divider = "vspine")

hbar
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline),
divider = "hbar")

vbar
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline),
divider = "vbar")

hspine vspine hbar vbar

Figure 10: Examples of the four ways each dimension in a mosaic plot can be partitioned. While the
values are easier to compare with the bars in this one-dimensional example, the advantages of spines
become more apparent in higher-dimensional examples.

In the case of multiple variables, a type of partition must be defined for each variable. The default
divider (divider = mosaic()) and the double-decker divider (divider = ddecker()) automatically
select a pre-defined pattern for the partitions. For example, if three variables are plotted, the default,
divider = mosaic(), partitions the plot with spines in alternating directions, beginning with a
horizontal spine, i.e. divider = c("hspine", "vspine", "hspine"). Alternatively, we can declare the
type of partition for each variable, e.g. divider = c("hbar", "vspine", "vspine"). The first partition
declared in the vector will be used last in the plot. As mentioned above, an unspecified divider leads
to the default divider = mosaic(), and the partition begins with a horizontal spine and alternate
directions for each subsequent variable. To begin with a vertical spine and alternate directions from
there, use divider = mosaic(direction = "v"). A preview of these options is available in Figure 11,
and the associated code is below.

default / mosaic("h")
ggplot(data = flights) +
geom_mosaic(aes(x = product(eliminate_reclining, do_you_recline,

rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining))

mosaic("v")
ggplot(data = flights) +
geom_mosaic(aes(x = product(eliminate_reclining, do_you_recline,

rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining),

divider = mosaic(direction = "v"))

ddecker

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 64

mosaic() (default) mosaic("v") ddecker() c("hbar", "hbar", "vspine")

Figure 11: When multiple variables are included, a partition type must be defined for each variable,
and the different partitions emphasize different relationships. The mosaic() and ddecker() functions
automatically define a partition for each variable, and are shown in the first and third mosaic plots,
respectively. mosaic("v"), shown in the second plot, is similar to mosaic("h"), but the coordinates are
flipped and inversed. Alternatively, a type of partition can be defined manually for each dimension.
ddecker() emphasizes the conditional distribution of the final variable. In the final plot, the divider
c("hbar", "hbar", "vspine") creates a plot similar to a faceted bar chart that supports compar-
isons similar to those supported by the double-decker plot but for relative values instead of relative
proportions.

ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, eliminate_reclining,

rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining),

divider = ddecker())

c("hbar", "hbar", "vspine")
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline,

eliminate_reclining),
fill = do_you_recline,
alpha = eliminate_reclining),

divider = c("hbar", "hbar", "vspine"))

The divider parameter provides an additional mechanism for modifying the plot’s arrange-
ment to focus on a particular relationship by enabling a user to modify any dimension of the di-
vider to position the comparison of interest along a common scale. For instance, the double-decker
plot in Figure 11 helps compare the effects changes in eliminate_reclining and rude_to_recline
have on the responses to do_you_recline and how the relationship between do_you_recline and
eliminate_reclining differs for different levels of rude_to_recline.

ggmosaic adopts the procedure followed by Hartigan and Kleiner (1981), Friendly (2002), Theus
and Urbanek (2009), and Hofmann (2003), where an amount of space is allocated for each of the splits,
with subsequent divisions receiving a smaller amount of space. The splits between the categories of the
first variable are the widest and the splits decrease in width with each additional variable. Decreasing
the widths of the splits with each additional variable allows the categories to group together according
to the recursive strategy (Theus and Urbanek 2009) and the created spaces preserve the impact of small
counts (Friendly 2002). The effect becomes apparent when an empty group is included. In this case,
the spaces between the empty categories create a gap equal to the amount of space that is between
non-empty categories.

For variables with many categories, it may be of interest to decrease the size of the spacing between
the spines. The parameter offset can widen or shrink the size of the spacing between the categories
of the first variable and the subsequent splits then gradually decrease in width with each additional
variable. The default setting of this parameter is offset = 0.01, equivalent to 1% of the width of the
plotting area. The code below and the corresponding mosaic plots in Figure 12 demonstrate how to
use the offset parameter.

increased spacing
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline),

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 65

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no somewhat yes
Is it rude to recline?

Increased spacing

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no somewhat yes
Is it rude to recline?

Decreased spacing

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no somewhat yes
Is it rude to recline?

Default spacing

Figure 12: Three examples of how the spacing of the splits in the mosaic plot can be increased or
decreased with the offset parameter.

offset = 0.03)

decreased spacing
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline),
offset = 0)

default spacing
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline))

While the examples so far include up to three variables, there is no technical limit to the number of
variables in a mosaic plot. However, when many categorical variables are present, mosaic plots can
quickly become cluttered and difficult to interpret, and a judgment call must be made on the practical
limit to the number of variables included in the mosaic plot. This practical limit could depend on
many factors, including the number of categories within each variable, the viewing size of the result
mosaic plot, and the viewer’s familiarity with the data.

The customization offered via the ggmosaic parameters allows users to easily make complex
generalized mosaic plots that are more readable and simpler to interpret. The parameters provide
additional dimensions of freedom with the ability to switch between bars and spines and allow
users to highlight different aspects of high-dimensional categorical data to identify and communicate
interesting patterns.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 66

Figure 13: Users can create interactive mosaic plots using ggmosaic with plotly. With plotly, users
gain the ability to hover over a tile to see the names of the combination of levels and the number of
observations that the tile represents.

Interactivity

Having a geom designed for generalized mosaic plots allows for a ggplotly() hook to create interac-
tive mosaic plots with the plotly package, version 4.9.3 (Sievert et al. 2016). The ggplotly() function
translates most of the basic geoms bundled with the ggplot2 package. To expand the functionality
to custom geoms, we make use of the infrastructure provided in the plotly package that allows for
a translation. In ggplot2, many geoms are special cases of other geoms. For example, geom_line()
is equivalent to geom_path() once the data is sorted by the x variable. Because GeomMosaic can be
reduced to the lower-level geom GeomRect, we were able to write a method for the to_basic() generic
function in plotly (Sievert 2020). Figure 13 features an example of an interactive mosaic plot created
with ggplotly() and the corresponding code is below.

p1 <- ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline))

plotly::ggplotly(p1)

4 New features in ggmosaic version 0.3.3

The layered grammar implemented by ggplot2 provides a means to add additional layers (typically
resulting in additional geometric objects) to a graphic. The unique scale system in ggmosaic, however,
makes a correct placement of items in additional layers tricky. The x and y scales in a mosaic plot are
both numeric and categorical; the numeric scale determines the placement of additional objects on a
range between 0 and 1. Thus, to place an object in the center of each tile, it is necessary to know the
numeric values for the corners of each of the tiles. Version 0.3.3 of ggmosaic introduced two additional
geoms designed to build on stat_mosaic() and geom_mosaic() that bypass these calculations.

The two geoms, geom_mosaic_text() and geom_mosaic_jitter(), are provided to further enhance
the generalized mosaic plots created with ggmosaic. These features are designed to add labels
to the mosaic plot tiles and to view the tiles’ density via jittered points, and are implemented as
additional geom items that can layer on top of the original mosaic geom. Lastly, we also provide
a new minimal theme, theme_mosaic(), designed for mosaic plots. The theme removes items from
the plot background in order to reduce clutter and increase readability. Together, these features add

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=plotly

CONTRIBUTED RESEARCH ARTICLE 67

new functionality to mosaic plots to increase their usability and facilitate more profound insights into
high-dimensional categorical data.

A labeling geom

The flexibility of generalized mosaic plots can lead to inadequate space around the perimeter of the
plot to label each of the categories for the variables displayed, making labeling a challenge. To ease
the burden on the axis labels, geom_mosaic_text() applies labels to the tiles. This section introduces
geom_mosaic_text(), its parameters, and its customization options with sample code and graphics.

One aspect of mosaic plots is that while the text and tick marks on the axes may be aligned with
the correct category levels on one side of the plot, the alignments may not be appropriate for category
levels on the opposite side of the plot. Thus, it may be advantageous to label the tiles to ensure the
group identities are apparent to a viewer. geom_mosaic_text() provides the means to place text, or
labels, in each of the tiles. geom_mosaic_text() has its counterpart, stat_mosaic_text(), perform the
necessary mapping calculations to place each tile’s label in the center of the tile. Figure 14 features
an example created with geom_mosaic() with geom_mosaic_text() added to place text in each of the
tiles corresponding to the tiles’ combination of categories. The associated code is below.

ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline)) +
geom_mosaic_text(aes(x = product(do_you_recline, rude_to_recline)))

never
no

sometimes
no

usually
no

never
somewhat

sometimes
somewhat

usually
somewhat

never
yes

sometimes
yes

usually
yes

Is it rude to recline?

D
o

yo
u

re
cl

in
e?

Figure 14: In this example, a geom of labels is layered on top of the mosaic geom to produce a
mosaic plot with labels centered in each tile. Directly labeling each tile can alleviate issues caused by
inadequate space around the perimeter for labels.

As a default, the label text contains the combinations of category levels the tile represents. Alter-
native labels may be desired and are achievable through the label aesthetic. For example, to label
the tiles of a mosaic with counts, that variable can be mapped to the label aesthetic. The counts,
however, need not be contained in the underlying data before plotting; the function after_stat()
supports aesthetic mappings of variables calculated by the stat, in this case, the variable .wt calculated
in stat_mosaic_label() (see Figure 15 and the code below).

ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline)) +
geom_mosaic_text(aes(x = product(do_you_recline, rude_to_recline),

label = after_stat(.wt)))

To help label the areas of the plots where labels may be densely packed and overlapping, ggmosaic
uses the ggplot2 extension package, ggrepel (Slowikowski 2021). The geoms provided by ggrepel help
ensure the text is readable by repelling the labels away from each other, data points, and edges of the
plot panel. In addition to the standard "Text" and "Label" geoms, ggmosaic’s use of ggrepel allows

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=ggrepel

CONTRIBUTED RESEARCH ARTICLE 68

35

198

269

81

164

36

54

11

6

Is it rude to recline?

D
o

yo
u

re
cl

in
e?

‘label = after_stat(.wt)‘

Figure 15: Variables calculated by the associated stat can be used for the label. In this example, .wt is
used to place the frequencies represented by the tile in the center of that tile, providing a glance at the
size of the data and removing potential guessing work aimed at comparing areas of unaligned tiles.

the use of the "TextRepel" and "LabelRepel" geoms within mosaic plots. Thus, geom_mosaic_text()
provides access to the features of four geoms. To access these four geoms, the parameters as.label
and repel are introduced; their use is demonstrated in Figure 16, and the code is below. Furthermore,
the parameter repel_params is available to use with either of the ggrepel options, and the parameter
check_overlap is available to use with the "Text" geom.

default / text
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline)) +
geom_mosaic_text(aes(x = product(do_you_recline, rude_to_recline)))

label
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline)) +
geom_mosaic_text(aes(x = product(do_you_recline, rude_to_recline)),

as.label = TRUE)

repel text
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline)) +
geom_mosaic_text(aes(x = product(do_you_recline, rude_to_recline)),

repel = TRUE)

repel label
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline)) +
geom_mosaic_text(aes(x = product(do_you_recline, rude_to_recline)),

repel = TRUE, as.label = TRUE)

Mosaic plots with many categories can quickly become unreadable, geom_mosaic_text() helps alle-
viate congestion-related confusion by providing quick and effective labeling in various formats. The pa-
rameters repel and as.label provide access to three additional geoms. The geom geom_mosaic_text()
can add the text geom, the label geom, the ggrepel text geom, or the ggrepel label geom. The parame-
ters repel_params and check_overlap provide access to the parameters native to the ggrepel geoms
and label geoms, respectively. Labels add value to the mosaic plot as they ensure easy and correct
identification of the tiles, which, in turn, eases the visual analysis.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 69

never
no

sometimes
no

usually
no

never
somewhat

sometimes
somewhat

usually
somewhat

never
yes

sometimes
yes

usually
yes

D
o

yo
u

re
cl

in
e?

Is it rude to recline?

never
no

sometimes
no

usually
no

never
somewhat

sometimes
somewhat

usually
somewhat

never
yes

sometimes
yes

usually
yes

D
o

yo
u

re
cl

in
e?

Is it rude to recline?

‘as.label = TRUE‘

never
no

sometimes
no

usually
no

never
somewhat

sometimes
somewhat

usually
somewhat

never
yes

sometimes
yes

usually
yes

D
o

yo
u

re
cl

in
e?

Is it rude to recline?

repel = TRUE

never
no

sometimes
no

usually
no

never
somewhat

sometimes
somewhat

usually
somewhat

never
yes

sometimes
yes

usually
yes

D
o

yo
u

re
cl

in
e?

Is it rude to recline?

repel = TRUE, as.label = TRUE

Figure 16: Examples of the four geoms accessible to geom_mosaic_text(). The geoms, from left to
right and top to bottom, are "Text", "Label", "TextRepel", and "LabelRepel".

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 70

A jittering geom

In constructing of a mosaic plot, the tile area is proportional to the number of observations that the
tile represents. In other words, the density of each tile in a mosaic plot is constant throughout the
plot. While the number of observations, or density, is typically masked in a mosaic plot, a user can
visualize these individual data points with geom_mosaic_jitter(). This added layer of visualization
unlocks a range of applications, from adding additional aesthetic mappings, both included in the
formula and not, to model diagnosis. Research suggests visualizations that incorporate individuals in
charts allow viewers to digest and understand probabilities and risks involved more easily (Galesic,
Garcia-Retamero, and Gigerenzer 2009; Ancker et al. 2006). These features further extend the ability of
generalized mosaic plots to communicate interesting features of high-dimensional categorical data.

When used in conjunction with geom_mosaic(), geom_mosaic_jitter() adds a layer of jittered
points superimposed on the mosaic plot. The number of points in each rectangle is equal to the number
of observations that the rectangle represents. The result is an even dispersal of points throughout the
one-by-one square mosaic plot.

When conditioning on a variable, geom_mosaic_jitter() provides a visual representation of the
differences between the conditional probability and the joint probability; the spread of the points
throughout the mosaic plot can help decipher a conditioning variable’s effect on a mosaic plot’s
construction. In Figure 17, conditioning on the variable rude_to_recline causes a change in the
density of the jittered points. The visual difference serves as an effective tool for teaching the concept.
The plots are based on the following lines of code:

not conditioned
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline),
alpha = 0.3) +

geom_mosaic_jitter(aes(x = product(rude_to_recline),
color = do_you_recline))

conditioned
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

conds = product(rude_to_recline),
fill = do_you_recline),

alpha = 0.3) +
geom_mosaic_jitter(aes(x = product(do_you_recline),

conds = product(rude_to_recline),
color = do_you_recline))

Including the jittered points generates an awareness of the size of the data, something customarily
masked in a mosaic plot. For smaller data sets such as the titanic data set, using geom_mosaic_jitter()
may encourage engagement as the points connect with the individuals in the data. This connection
may provide a more compelling and profound visual impact.

geom_mosaic_jitter() is more effective when the alpha argument is used in both geom_mosaic_jitter()
and geom_mosaic() to create semi-transparent jittered points and semi-transparent rectangles. An
alpha value of 0.3 for geom_mosaic() and an alpha value of 0.7 for geom_mosaic_jitter() is aesthet-
ically pleasing.

geom_mosaic_jitter() introduces an additional parameter, drop_level. The drop_level parame-
ter controls which level defines the color of the generated points. In other words, if a color aesthetic is
defined, should that variable be included in the formula? If the formula includes the color aesthetic,
drop_level = FALSE, the colored points are at the top level. If the formula does not include the color
aesthetic, drop_level = TRUE, color is added to the points one level down. Figure 18 provides an
example of these two options.

drop level
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline)),

alpha = 0.1) +
geom_mosaic_jitter(aes(x = product(rude_to_recline),

color = do_you_recline),
drop_level = TRUE)

do not drop level

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 71

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no somewhat yes
Is it rude to recline?

Not conditioned

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no somewhat yes
Is it rude to recline?

Conditioned

Figure 17: This example highlights the differences between the conditional (right) and joint (left)
probability with the density of the jittered dots. When conditioning, the columns are equally sized,
and the jittered points condense into the leftmost column, previously the widest column, rather than
being evenly dispersed.

ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline)),

alpha = 0.1) +
geom_mosaic_jitter(aes(x = product(rude_to_recline),

color = do_you_recline),
drop_level = FALSE)

An additional aesthetic, weight2, is implemented in geom_mosaic_jitter(). The weight2 aesthetic
allows the number of points generated within each tile to be different from the number of points the
cell represents.

While mosaic plots are typically drawn according to the observed values, they can be drawn
according to the model’s expected values.

flights_model %>% glimpse()

#> Rows: 9
#> Columns: 4
#> $ do_you_recline <fct> never, never, never, sometimes, sometimes, sometimes, ~
#> $ rude_to_recline <fct> no, somewhat, yes, no, somewhat, yes, no, somewhat, yes
#> $ Observed <int> 35, 81, 54, 198, 164, 11, 269, 36, 6
#> $ Expected <dbl> 100, 56, 14, 219, 123, 31, 183, 102, 26

Figure 19 displays the observed values on the left and the expected values from the independence
model on the right. The difference between the two plots represents the lack of fit. The plot is based
on the following lines of code:

flights_model %>%
gather("wt_type", "wt", Expected:Observed) %>%
ggplot() +
geom_mosaic(aes(weight = wt,

x = product(rude_to_recline),
fill = do_you_recline)) +

facet_wrap(vars(wt_type))

In Figure 19, the mosaic plot drawn according to the observed values represents the data space,
whereas the mosaic plot drawn according to the expected values represents the model space. Rather
than requiring two plots, jittering connects in one plot both the data space with the model space
highlighting the differences between the two.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 72

no somewhat yes
Is it rude to recline?

‘drop_level = TRUE‘

no somewhat yes
Is it rude to recline?

Do you recline?

usually

sometimes

never

‘drop_level = FLASE‘

Figure 18: The parameter drop_level controls which level defines the colors of the generated points.
On the left, color is added to the points one level down, and a mixing of the colored points occurs. In
the plot on the right, the heights of the sorted points’ spaces represent the conditional distribution of
do_you_recline given rude_to_recline.

In Figure 20, the jittered points represent the observed values, while the tiles’ size represents
the expected values. We can evaluate the fit of the model according to how evenly the points
spread throughout the plot. For example, the overcrowded points seen in the leftmost bottom tile
communicate that the independence model underestimates the number of respondents that think it is
rude to recline and never recline their seats.

ggplot(flights_model) +
geom_mosaic(aes(weight = Expected,

x = product(do_you_recline, rude_to_recline)),
alpha = .2) +

geom_mosaic_jitter(aes(weight2 = Observed,
weight = Expected,
x = product(do_you_recline, rude_to_recline)))

The jitter geom, with its additional aesthetic mappings, provides a convenient visual aide that
can help solidify what the mosaic plot represents and help communicate the differences between
conditional and joint probabilities. The implementation of the jitter geom allows the user to extend the
functionality of mosaic plots beyond what has previously been available.

A custom theme

Mosaic plots have two main characteristics that set mosaic plots apart from other graphics. First, at
its foundation, a mosaic plot is a one-by-one square, and the area of each tile in the mosaic plot is
proportional to the frequency of the combination of categories that the tile represents. Second, mosaic
plots do not have a standard coordinate system. Rather, mosaic plots have a coordinate system based
on recursive partitioning that can integrate several variables. These two characteristics clash with the
default ggplot2 theme. For this reason, version 0.3.3 of ggmosaic includes a custom theme for mosaic
plots, theme_mosaic(), that can be added to the plot in the same manner as any other ggplot2 theme.
(Figure 21)

The plot grid lines suffer from the same issue as the axis labels; while the grid lines may be aligned
with the correct category levels on one side of the plot, the alignments may not be appropriate for
category levels on the opposite side of the plot. theme_mosaic() removes all grid lines but does not
remove the axis labels and ticks.

Seeking a more faithful representation of a mosaic plot, theme_mosaic() enforces a fixed aspect
ratio of 1. When faceting, the aspect ratio should be modified according to the number of panels
and the direction of the faceting. For example, in Figure 22, the faceting represents the responses
to do_you_recline conditioned on the responses to rude_to_recline. The conditioning variable,

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 73

Observed Expected

no somewhat yes no somewhat yes

never

sometimes

usually

Is it rude to recline?

D
o

yo
u

re
cl

in
e?

Figure 19: While mosaic plots are typically drawn according to the observed values, they can be drawn
according to the model’s expected values. The mosaic plot on the right displays the expected values
from the independence model, recognizable by the lattice structure. The differences in the heights
of the tiles in the observed data mosaic plot on the left reveal a strong association between the two
variables, and the differences between the two plots highlight the lack of model fit.

rude_to_recline, contains three categories, and the faceting represents a horizontal spine. Hence, the
aspect ratio is modified from 1 (the default) to 3.

The custom theme, theme_mosaic(), seeks to help a viewer extract the correct information from
the plot by providing a more suitable default aspect ratio and removing the axes lines that are not
always appropriate across the entire plot. As with any theme, however, theme_mosaic() is merely a
suggestion of a starting-off point, and it can be modified as seen fit for each individual plot.

5 Interactive exploratory mosaic plot building

Mosaic plots help identify interesting relationships in high-dimensional categorical data and are
an influential tool for exploratory data analysis (EDA). Because of the complexities that arise from
comparing many categories, it is often necessary to iterate through many of the potential mosaic plots
and obtain many views on the data. The addition of interactivity to the generation of mosaic plots can
ease this process and help mosaic plots become more valuable and insightful (Hofmann 2003).

To facilitate exploring data with mosaic plots, ggmosaic version 0.3.4 includes a Shiny application
that can be launched with the function ggmosaic_app() (Figure 23). This app accommodates structural
changes to the mosaic plot with the press of certain keystrokes or buttons provided in the side panel.
The app enables quick iterations between visualizations, providing a mechanism for discoveries and
achieving more profound insight.

The app is organized into two tabs (Figure 23), “MOSAIC PLOT” and “DATA”, setting the stage for
data set and variable selection. Creating a mosaic plot consists of several steps. Using the drop-down
menu provided on the left-hand side, the user first selects from one of the three data sets exported with
ggmosaic, the titanic data set, the happy data set, or the fly data set (the default selection). After
the data set is selected, the user can create mosaic plots by selecting various variables to include and
different dividers to be used, all completed with keystrokes or a set of buttons in the side panel.

The arrow keys (up, down, left, right) add, remove, or switch variables. The ordering of the
variables can be quickly modified, allowing the user to find a sensible order for the variables in a
streamlined manner. Additionally, the ‘h’, ‘v’, ‘s’, and ‘b’ keys switch the type of divider. The ‘h’ and
‘v’ keys switch between horizontal and vertical spines or bars, switching between ‘hspine’ and ‘vpsine’
or ‘hbar’ and ‘vbar’. Similarly, the ‘s’ and ‘b’ keys can be used to select to split the categories into
spines or bars, switching between ‘hspine’ and ‘hbar’ or ‘vspine’ and ‘vbar’. If the user does not press
the ‘h’, ‘v’, ‘s’, or ‘b’ keys, the ‘mosaic()’ divider is the default, corresponding to the default divider in
geom_mosaic(). The ‘h’, ‘v’, ‘s’, or ‘b’ keystrokes and buttons will only affect the top-level variable. To
modify the divider used on a lower-level variable, the user must backtrack via the down arrow key.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 74

never

sometimes

usually

no somewhat yes
Is it rude to recline?

D
o

yo
u

re
cl

in
e?

Figure 20: In this example, the tiles of the mosaic plot are drawn according to the expected values. A
jitter geom representing the observed values is layered on top. The uneven dispersal of the points
indicates a lack of fit.

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no somewhat yes
Is it rude to recline?

‘plot + theme_mosaic()‘

never

sometimes

usually

no somewhat yes

Is it rude to recline?

D
o

yo
u

re
cl

in
e?

default ggplot2 theme

Figure 21: This example highlights the differences between the custom theme (left) and the default
theme (right). The custom theme for mosaic plots seeks to minimize clutter by removing the plot
background and the grid lines.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 75

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no somewhat yes

Is it rude to recline?

Aspect Ratio = 1 (theme default)

never

sometimes

usually

D
o

yo
u

re
cl

in
e?

no somewhat yes

Is it rude to recline?

Aspect Ratio = 3

Figure 22: When using faceting, the aspect ratio might need to be adjusted according to the desired
outcome. The default (left) represents each facet as a 1-by-1 mosaic plot, whereas an aspect ratio of 3
(right) represents each facet as one equal-sized column within a 1-by-1 mosaic plot.

Figure 23: A snapshot of the Shiny application that can be launched with the function ggmosaic_app().
The Shiny app facilitates learning how to create mosaic plots. The user can explore one of three data
sets provided with the package with mosaic plots created and modified via keystrokes or buttons, and
no coding is required.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 76

The Shiny app accommodates a better understanding of the myriad of possible forms a mosaic
plot can take by accommodating a thorough search through the variables and structural changes to the
mosaic plot with the simple press of certain keystrokes. The app provides an exploratory setting for
visualizing many mosaic plots, and provide the user with the code necessary to recreate the selected
mosaic plot.

6 Summary

By bringing mosaic plots into the ggplot2 infrastructure, ggmosaic provides a highly customizable
framework for generalized mosaic plots with a familiar syntax. The latest release of ggmosaic
introduces novel uses of mosaic plots and exemplifies the opportunity the methods of visualizing
multidimensional categorical data have for growth.

This manuscript is based on version 0.3.3 of the ggmosaic package. It can be installed from CRAN.
The development version is available from the GitHub repository.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://github.com/haleyjeppson/ggmosaic

CONTRIBUTED RESEARCH ARTICLE 77

References

Ancker, Jessica S., Yalini Senathirajah, Rita Kukafka, and Justin B. Starren. 2006. “Design Features of
Graphs in Health Risk Communication: A Systematic Review.” Journal of the American Medical
Informatics Association 13 (6): 608–18. https://doi.org/10.1197/jamia.M2115.

Chang, Winston, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff Allen, Jonathan
McPherson, Alan Dipert, and Barbara Borges. 2021. Shiny: Web Application Framework for r.
https://CRAN.R-project.org/package=shiny.

Cleveland, W. S., and R. McGill. 1984. “Graphical Perception: Theory, Experimentation and Applica-
tion to the Development of Graphical Methods.” Journal of the American Statistical Association 79
(387): 531–54. https://doi.org/10.1080/01621459.1984.10478080.

Emerson, John W. 1998. “Mosaic displays in S-PLUS: A general implementation and a case study.”
Statistical Computing and Graphics Newsletter 9 (1): 17–23.

Friendly, Michael. 2002. “A Brief History of the Mosaic Display.” Journal of Computational and Graphical
Statistics 11 (1): 89–107. https://doi.org/10.1198/106186002317375631.

———. 2016. “Working with categorical data with R and the vcd and vcdExtra packages.” In.
https://cran.r-project.org/web/packages/vcdExtra/vignettes/vcd-tutorial.pdf.

Galesic, Mirta, Rocio Garcia-Retamero, and Gerd Gigerenzer. 2009. “Using Icon Arrays to Com-
municate Medical Risks: Overcoming Low Numeracy.” Health Psychology 28 (2): 210–16. https:
//doi.org/10.1037/a0014474.

Hartigan, John A., and Beat Kleiner. 1981. “Mosaics for Contingency Tables.” In Computer Science and
Statistics: Proceedings of the 13th Symposium on the Interface, 268–73. Fairfax Station, VA: Interface
Foundation of North America, Inc. https://doi.org/10.1007/978-1-4613-9464-8_37.

———. 1984. “A Mosaic of Television Ratings.” The American Statistician 38: 32–35. https://doi.org/
10.1080/00031305.1984.10482869.

Hickey, Walt. 2014. “41 Percent of Fliers Think You’re Rude If You Recline Your Seat.” FiveThirtyEight.
http://fivethirtyeight.com/datalab/airplane-etiquette-recline-seat/.

Hofmann, Heike. 2003. “Constructing and Reading Mosaicplots.” Computational Statistics and Data
Analysis 43 (4): 565–80. https://doi.org/10.1016/S0167-9473(02)00293-1.

Hummel, Jürgen. 1996. “Linked Bar Charts: Analysing Categorical Data Graphically.” Computational
Statistics 11 (1): 23–33.

Kleiner, B., and J. A. Hartigan. 1981. “Representing Points in Many Dimensions by Trees and Castles.”
Journal of the American Statistical Association 76 (374): 260–69. https://doi.org/10.1080/01621459.
1981.10477638.

Kuhn, Max, Davis Vaughan, and Emil Hvitfeldt. 2022. Yardstick: Tidy Characterizations of Model
Performance. https://CRAN.R-project.org/package=yardstick.

Meyer, David, Achim Zeileis, and Kurt Hornik. 2020. Vcd: Visualizing Categorical Data. https:
//CRAN.R-project.org/package=vcd.

Oldford, Wayne, Erle Holgersen, Ben Lafreniere, and Tianlu Zhu. 2018. Eikosograms: The Picture of
Probability. https://CRAN.R-project.org/package=eikosograms.

Playfair, William, Howard Wainer, and Ian Spence. 2005. Playfair’s Commercial and Political Atlas and
Statistical Breviary. Cambridge University Press.

Sarkar, Deepayan. 2020. Lattice: Trellis Graphics for r. https://CRAN.R-project.org/package=lattice.
Sarkar, Deepayan, and Felix Andrews. 2016. latticeExtra: Extra Graphical Utilities Based on Lattice.

https://CRAN.R-project.org/package=latticeExtra.
Sievert, Carson. 2020. Interactive Web-Based Data Visualization with R, Plotly, and Shiny. Chapman;

Hall/CRC. https://plotly-r.com.
Sievert, Carson, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec,

and Pedro Despouy. 2016. Plotly: Create Interactive Web Graphics via ’Plotly.js’. https://CRAN.R-
project.org/package=plotly.

Slowikowski, Kamil. 2021. Ggrepel: Automatically Position Non-Overlapping Text Labels with ’Ggplot2’.
https://CRAN.R-project.org/package=ggrepel.

Theus, Martin, and Simon Urbanek. 2009. Interactive Graphics for Data Analysis: Principles and Examples.
Chapman & Hall/CRC Computer Science & Data Analysis. CRC Press.

United States Census office. 9th census, 1870, and Francis Amasa Walker. 1874. “Statistical atlas of the
United States based on the results of the ninth census, 1870 with contributions from many eminent
men of science and several departments of the government.” digitized version provided through
Library of Congress, https://www.loc.gov/item/05019329/.

Wickham, Hadley. 2010. “A Layered Grammar of Graphics.” Journal of Computational and Graphical
Statistics 19: 3–28. https://doi.org/10.1198/jcgs.2009.07098.

Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus
Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. 2020. Ggplot2: Create Elegant Data
Visualisations Using the Grammar of Graphics. https://CRAN.R-project.org/package=ggplot2.

Wickham, Hadley, and Heike Hofmann. 2011. “Product Plots.” IEEE Transactions on Visualization and

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://doi.org/10.1197/jamia.M2115
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1080/01621459.1984.10478080
https://doi.org/10.1198/106186002317375631
https://cran.r-project.org/web/packages/vcdExtra/vignettes/vcd-tutorial.pdf
https://doi.org/10.1037/a0014474
https://doi.org/10.1037/a0014474
https://doi.org/10.1007/978-1-4613-9464-8_37
https://doi.org/10.1080/00031305.1984.10482869
https://doi.org/10.1080/00031305.1984.10482869
http://fivethirtyeight.com/datalab/airplane-etiquette-recline-seat/
https://doi.org/10.1016/S0167-9473(02)00293-1
https://doi.org/10.1080/01621459.1981.10477638
https://doi.org/10.1080/01621459.1981.10477638
https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=vcd
https://CRAN.R-project.org/package=vcd
https://CRAN.R-project.org/package=eikosograms
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=latticeExtra
https://plotly-r.com
https://CRAN.R-project.org/package=plotly
https://CRAN.R-project.org/package=plotly
https://CRAN.R-project.org/package=ggrepel
https://www.loc.gov/item/05019329/
https://doi.org/10.1198/jcgs.2009.07098
https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 78

Computer Graphics 17 (12): 2223–30. https://doi.org/10.1109/tvcg.2011.227.
———. 2016. Productplots: Product Plots for r. https://CRAN.R-project.org/package=productplots.
Wilkinson, Leland. 1999. The Grammar of Graphics. Springer New York. https://doi.org/10.1007/

978-1-4757-3100-2.

Haley Jeppson
Department of Statistics
Iowa State University
2438 Osborn Dr
Ames, IA 50011
ORCiD: 0000-0003-2524-4063
hjeppson@iastate.edu

Heike Hofmann
Department of Statistics
Center for Statistics and Applications in Forensic Evidence
Iowa State University
2438 Osborn Dr
Ames, IA 50011
ORCiD: 0000-0001-6216-5183
hofmann@iastate.edu

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://doi.org/10.1109/tvcg.2011.227
https://CRAN.R-project.org/package=productplots
https://doi.org/10.1007/978-1-4757-3100-2
https://doi.org/10.1007/978-1-4757-3100-2
https://orcid.org/0000-0003-2524-4063
mailto:hjeppson@iastate.edu
https://orcid.org/0000-0001-6216-5183
mailto:hofmann@iastate.edu

	Generalized Mosaic Plots in the ggplot2 Framework
	Introduction
	: A implementation of mosaic plots
	The package
	Data structure
	Aesthetics
	Parameters
	Interactivity

	New features in version 0.3.3
	A labeling geom
	A jittering geom
	A custom theme

	Interactive exploratory mosaic plot building
	Summary
	References

