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dycdtools: an R Package for Assisting
Calibration and Visualising Outputs of an
Aquatic Ecosystem Model
by Songyan Yu, Christopher G. McBride, Marieke A. Frassl, Matthew R. Hipsey and David P.
Hamilton

Abstract The high complexity of aquatic ecosystem models (AEMs) necessitates a large number of
parameters that need calibration, and visualisation of their multifaceted and multi-layered simulation
results is necessary for effective communication. Here we present an R package “dycdtools” that
contains calibration and post-processing tools for a widely applied aquatic ecosystem model (DYRESM-
CAEDYM). The calibration assistant function within the package automatically tests a large number
of combinations of parameter values and returns corresponding values for goodness-of-fit, allowing
users to narrow parameter ranges or optimise parameter values. The post-processing functions enable
users to visualise modelling outputs in four ways: as contours, profiles, time series, and scatterplots.
The “dycdtools” package is the first open-source calibration and post-processing tool for DYRESM-
CAEDYM, and can also be adjusted for other AEMs with a similar structure. This package is useful to
reduce the calibration burden for users and to effectively communicate model results with a broader
community.

1 Introduction

Aquatic ecosystem models are important tools to understand the structure and function of aquatic
ecosystems, fill observation gaps, and support scientific management of water quality of inland
waters (Jakeman et al., 2006). Processed-based aquatic ecosystem models represent the major physical,
chemical and biological processes as a series of mathematical equations, offering opportunities for
exploratory or predictive management applications (Frassl et al., 2019; Özkundakci et al., 2011). These
models are increasingly used to simulate observed data and forecast changes that may occur under
scenarios in a changing climate (Elliott, 2012; Nielsen et al., 2017; Rousso et al., 2020). A typical example
of such models is DYRESM-CAEDYM (DYnamic REservoir Simulation Model – Computational
Aquatic Ecosystem Dynamics Model), which has been developed from a one-dimensional coupled
hydrodynamic-ecological lake model (Hamilton and Schladow, 1997) and has been widely used to
simulate water quality and ecosystem processes for a large number of lakes and reservoirs (Cui et al.,
2016; Lewis et al., 2004; Takkouk and Casamitjana, 2016).

Aquatic ecosystem models, particularly those with a large number of physical and biogeochemical
parameters, need calibration before they can be used for reliable simulation outputs (Luo et al., 2018).
For example, water quality simulations with DYRESM-CAEDYM usually involve calibration of 20-30
parameters (e.g. 18 parameters in Luo et al. (2018); 28 parameters in Schladow and Hamilton (1997)).
Parameter values are usually chosen via trial and error (Takkouk and Casamitjana, 2016), parameter
ranges in the literature and modeller experience (Lehmann and Hamilton, 2018; Robson and Hamilton,
2004), laboratory experimental data (Robson and Hamilton, 2003), or small-scale field measurements
(Burger et al., 2008). The calibration process of stepwise iterative manual adjustment of parameters
is labour intensive and time consuming, partly due to the interdependent nature by which state
variables respond to individual parameter adjustments (Lehmann and Hamilton, 2018). The success of
calibration (i.e., ability to accurately reproduce a set of observed data) relies strongly on the skill and
experience of the modeller, and the calibration process is often considered to be complete when the
difference between observations and simulations is within an acceptable level of statistical compliance
(Hipsey et al., 2020).

Numerous development efforts are underway to provide assistance in the calibration process.
A promising approach is to take advantage of increasing computational power to overcome some
shortcomings of traditional manual calibration methods and to automatically trial a large number of
possible combinations of parameters in silico. For example, a model independent parameter estimator
tool, PEST (Parameter ESTimation), is able to carry out nonlinear parameter estimation for most
environmental simulation models (Doherty et al., 1994; Doherty, 2018). PEST has been widely used for
parameter calibration and to quantify errors in surface water and groundwater models (Christensen
and Doherty, 2008; Gallagher and Doherty, 2007; White et al., 2014), but has rarely been applied
in numerical lake models. In addition, multiple calibration assistant tools have been developed
for specific lake models, but many are not open-source or freely accessible to model users, limiting
their potential application to a broad community. Developing tools in a more open way to facilitate
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aquatic ecosystem model calibration and output processing can facilitate accessibility and create
user-friendly tools, as evidenced in the lake modelling community (Frassl et al., 2019). Such tools have
been developed for a range of lake models, including the Freshwater Lake Model (FLake), General
Lake Model (GLM), General Ocean Turbulence Model (GOTM) and Simstrat in the LakeEnsembleR
package (https://github.com/aemon-j/LakeEnsemblR). However, currently no such open-source
tools have been developed to assist calibration for the widely applied lake model, DYRESM-CAEDYM.

Visualisation is fundamental to studying complex subject matter and supporting the whole in-
formation pipeline, from acquiring and exploring data and analysing models, to visual analytics,
through to storytelling to communicate background information, results, and conclusions (McInerny
et al., 2014). Simulation results from lake models are often multi-layered across different depths,
multifaceted across different modelling variables, and dynamic over a simulation period, posing
difficulties in effective presentation for many end users. Although some lake models have a default
Graphical User Interface (GUI) to visualise modelling results for different layers and variables, the
built-in plotting functions in these GUIs are often limited and inflexible. For example, users are not
able to compare observations and simulations in the same figure using the current GUI in DYRESM,
undermining the ability of visual checks to assess goodness-of-fit to inform parameter calibration.

To bridge this gap, we demonstrate in this study the development and application of an R package
dycdtools for assisting calibration of DYRESM-CAEDYM and post-processing of simulation outputs.
A calibration assistant tool has previously been developed for DYRESM-CAEDYM (Luo et al., 2018),
but was coded in Fortran language and was not stored on an open platform, such as GitHub, to support
further development. By contrast, the dycdtools package designed to support additional development
can be freely downloaded and used by DYRESM-CAEDYM users. The package also includes advanced
tools to support visual assessments and enable effective communication of modelling outcomes. This
package not only works with DYRESM-CAEDYM but can be adjusted for other aquatic ecological
models with a similar structure, such as the General Lake Model (Hipsey et al., 2019).

In the following, we first describe briefly the structure of DYRESM-CAEDYM and the shortcomings
in its application that were the primary driver for development of dycdtools. We also present in detail
the structure of the R package, including a demonstration of the package through application to a
monomictic lake. We conclude with the development and application of calibration assistant and
visualisation tools for aquatic ecosystem models.

2 DYRESM-CAEDYM

DYRESM-CAEDYM consists of a hydrodynamic model DYRESM coupled with an ecological model
CAEDYM. DYRESM is one-dimensional and resolves vertical distributions of temperature, salinity and
density in lakes and reservoirs based on a dynamic Lagrangian layer structure, which simulates the
lake as horizontally uniform layers that expand and contract in response to heat, mass and momentum
exchanges (Gal et al., 2003). CAEDYM is an aquatic ecological model designed to simulate processes
affecting carbon, nitrogen, phosphorus, silicon and dissolved oxygen cycles, including several size
classes of inorganic suspended solids, and phytoplankton dynamics.

DYRESM-CAEDYM takes a wide variety of forcing and morphometry data and configuration files
as input to represent the major aquatic physical and biogeochemical processes. The required forcing
and morphometry data include meteorology, morphometry, inflows and outflows. Configuration files
allow users to adjust sensitive parameter values for a model simulation. It is the configuration files
that the auto-calibration function in dycdtools deals with, assuming that the forcing (e.g., meteorology,
inflows and outflows) and fixed data (morphometry) have been obtained from external sources
(Figure 1). The scientific foundations of DYRESM-CAEDYM and information on data input preparation
can be found in its scientific manual (Imerito, 2007) and in Robson and Hamilton (2004), Romero et al.
(2004), Luo et al. (2018).

DYRESM-CAEDYM is supported by a proprietary GUI, but the GUI provides limited means
to visualise simulation results. So far, only time series and contour plots are built in the GUI, and
they require users to take complex steps to plot the observation and simulation in the same figure.
The dycdtools package provides four different types of visualisation plots that could be used to
complement the default GUI and to examine model simulation results in more detail (Figure 1).

3 Structure of the dycdtools package

There are two main function categories in the dycdtools package: calibration assistant and post-
processing (Table 1). After the forcing and morphometry input data to DYRESM-CAEDYM have been
prepared, the calibration assistant function can be used to 1) choose the optimal set of parameter
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Figure 1: DYRESM-CAEDYM simulation process. The calibration assistant function in the dycdtools
package deals with the model configuration files (the top shading rectangle), while the post-processing
functions can be used to visualise model outputs (the bottom shading rectangle). *The calibration
assistant function works only on the Windows platform, as it needs to call the Windows executable of
DYRESM-CAEDYM to run model simulations, while the post-processing functions are cross-platform.

values for a model simulation application to a lake, or 2) conduct sensitivity analysis of parameters of
interest including using a Monte-Carlo parameter perturbation function. Post-processing includes
a suite of R functions to visualise DYRESM-CAEDYM output in multiple ways, such as contours,
profiles, time series, and scatterplots, for different simulation and observation depths (Table 1).

Calibration assistant function

The calibration assistant function carries out simulations with a large number of possible combinations
of parameter values that users regard as potentially suitable for their model calibration, and calculates
the values of nominated objective functions (i.e. statistical measures of goodness-of-fit) for each
combination. Based on the calculated objective function values, users can determine the optimal set(s)
of parameter values or narrow the ranges of possible parameter values. Note that the calibration
assistant function does not have the source codes of DYRESM-CAEDYM, but calls the Windows
executable of the lake model to run separate simulations with various combinations of parameter
values. For this reason, the calibration assistant function can only work on the Windows platform.

The calibration assistant function first requires that users prepare a list of sensitive parameters for
their simulation (Figure 2). The selection of sensitive parameters can be made by referring to previous
literature (Bruce et al., 2006; Robson and Hamilton, 2004; Schladow and Hamilton, 1997) or through
expert opinion (Lehmann and Hamilton, 2018) as well as by using a parameter sensitivity analysis,
which is a part of the calibration assistant function (Ofir et al., 2017). The list of selected sensitive
parameters should be prepared as comma-separated values (.csv) in a file input to the function. The
potential value range and the preferred number of values within the range for each parameter also
need to be defined by users in the csv file. To facilitate this process, an example csv file of many
common parameters has been included in the package data set, so that users can follow the given
format and adjust values to their specific case study.

Based on the user-defined potential value range and the preferred number of values, the calibration
assistant function forms all possible combinations of parameter values (Figure 2). For example, for
three parameters that have three different values, there are 33=27 possible combinations. Users can
choose to make the function try every possible combination for model calibration or only a subset
of randomly selected combinations. To help users deal with complicated situations where much
more parameter combinations are involved, the calibration assistant function is able to parallelise
DYRESM-CAEDYM simulations with multiple cores, which could substantially reduce model running
time.
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Table 1: List of functions in the dycdtools package for calibration assistant and post-processing and
their descriptions.

Function name Description Categories

calib.assist Apply different combinations of selected pa-
rameter values and output corresponding val-
ues of goodness-of-fit by calculating objective
functions. Users can choose the optimal set of
parameter values or refine potential parameter
value ranges based on the calculated values of
goodness-of-fit.

calibration assistant

plot_cont Contour plot (heat map) showing a depth- and
time-resolved matrix of biogeochemical vari-
ables.

post-processing

plot_prof Profile graph of simulations over time (only
for dates when observations are available),
with variable values shown in the x axis and
depth in the y axis.

post-processing

plot_ts Time series plot of simulations for one or mul-
tiple specific depths, with time as the x axis
and variable values as the y axis.

post-processing

plot_scatter Scatter plot with observations as the x axis and
simulations as the y axis. Points in the scatter
plot are colour coded by depth.

post-processing

For each of the combinations, the calibration assistant function makes changes to configuration files
and then calls the DYRESM-CAEDYM model to run simulations (Figure 2). After each model run, the
function extracts model outputs to compare against the observations and calculates objective function
values. Five commonly used objective functions are currently available in the package: Nash-Sutcliffe
Efficiency (NSE) coefficient, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Relative
Absolute Error (RAE), and Pearson’s r (Pearson), with more to be added in an update of the package
by referring to the inventory of different statistical measures in Bennett et al. (2013). The output of the
calibration assistant function is a table that outlines all combinations of parameters that were used and
the corresponding objective function values. Based on the output, users can determine the optimal
set(s) of parameter values (e.g., the set that gives the highest NSE value or highest weighted average
values for NSE and RMSE) or narrow the range of suitable parameter values.

Figure 2: Structure of the calibration assistant function. Three key inputs to the calibration assistant
function include a list of sensitive parameters and their assigned value ranges, objective functions,
and observation data. The function forms scenarios, runs DYRESM-CAEDYM model on each of the
scenarios, and outputs objective function values.

The calibration assistant function can also be used for parameter sensitivity analysis by automati-
cally modifying parameter values. Two commonly used methods for sensitivity analysis, One At a
Time (OAT) and All At a Time (AAT), can be carried out through this function by setting the “com-
bination” argument as “all” and preparing specifically designed parameter combinations. An OAT
analysis changes a single parameter at a time and is suitable for local sensitivity analysis, while ATT
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modifies multiple parameters simultaneously and is suitable for global sensitivity analysis, notably
when there are nonlinear relationships between parameter and model outputs. Increasing numbers
of environmental modelling studies report model uncertainty for a variety of purposes, including
assessment of model errors, model calibration communication and diagnostic evaluation (Couture
et al., 2018; Dietzel and Reichert, 2014; Pianosi et al., 2016). This function is also flexible, allowing
users to try a subset of randomly selected parameter combinations (e.g. Monte-Carlo parameter
perturbation) or a carefully selected combination by setting the “combination” argument as “random”.

Post-processing functions

Post-processing functions provide multiple ways to visualise DYRESM-CAEDYM outputs, as follows:

• Function “plot_cont” displays a heat map of variable values with depth within the water column
and over time. This visualisation is particularly suitable for displaying temporal and depth
dynamics of a variable at one lake site.

• Function “plot_prof” shows vertical profiles of the simulation and corresponding observations,
for all dates where observations are available.

• Function “plot_ts” plots simulated values and observations for a specified variable and depth
over time. It can be used to compare temporal changes of a variable for simulations and
observations at specific depths.

• Function “plot_scatter” shows observations against simulated values for corresponding time
and depth, with a colour scale representing measured depth. It can be used to demonstrate
visually the goodness of fit for a variable across the water column.

All four types of graphs can be used to compare simulations and observations in the same figure.
Examples of each type of graph are shown in the following section.

4 Minimal case study example

Lake Okareka is a medium size lake in the Bay of Plenty region of North Island, New Zealand. It has a
surface area of 3.46 km2, a land catchment area of 16.7 km2 and a maximum depth of 33.5 meters. Water
drains from the lake via an outlet canal towards a large downstream lake, Tarawera. The dycdtools
package was used to calibrate three parameters for the lake temperature simulation and visualise
the temperature simulation against observed data with the four aforementioned plotting functions.
The three calibrated parameters were wind stirring efficiency, vertical mixing coefficient, and light
extinction coefficient, as they have been found to be most sensitive in temperature simulations in other
lake systems (Weinberger and Vetter, 2012).

The simulations were conducted with forcing inputs (e.g., meteorology, inflows and outflow) at a
daily time step over the period of 2002-01-23 to 2016-12-31. The meteorology and outflow data were
respectively collected from the New Zealand National Climate Database (https://cliflo.niwa.co.
nz) and an environmental monitoring website (https://www.boprc.govt.nz/environment/maps-and-
data/environmental-data). Discharge output from a SWAT model application (unpublished) was
used as catchment surface inflow to the lake. All example data are provided in a public data repository
(https://doi.org/10.5281/zenodo.7431128) for users to familiarise themselves with model runs,
calibration and visualisation.

The calibration assistant function deals with the configuration files. In this simulation, both the
wind stirring efficiency and vertical mixing coefficient are in the parameter (.par) file, while the light
extinction coefficient is in the configuration (.cfg) file. We assigned a range and a preferred number of
values to try for each of the three parameters to form a sequence of possible values (Table 2).

Table 2: Three parameters that were calibrated with assigned value ranges and preferred number of
values to try (N_values). The columns of “Input file” and “Line No.” describe the line of the input file
where the parameter is located.

Parameter Unit Min Max N_values Input file Line No.

Wind stirring efficiency - 0.2 0.8 4 Okareka.par 12
Vertical mixing coefficient - 100 700 4 Okareka.par 15
Light extinction coefficient m-1 0.1 0.25 4 Okareka.cfg 7
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The calibration assistant function tried all combinations of the three parameter values and calcu-
lated the objective function NSE for each model run. We chose the combination of parameter values
that gave the highest NSE values as the optimal set and then used the post-processing tools to plot
simulations against observations in four different ways. The R code for using the calibration assistant
function in this example is as follows:

# Assisting calibration of DYRESM-CAEDYM using the dycdtools package
library(dycdtools)
calib.assist(cal.para = "calibration_data/Calibration_parameters.csv",

combination = "all",
model.var = "TEMP",
obs.data = "calibration_data/Obs_data_template.csv",
objective.function = "NSE",
start.date = "2002-01-23",
end.date = "2016-12-31",
dycd.wd = "calibration_data/DYRESM_CAEDYM_Lake-Okareka/",
dycd.output = "calibration_data/DYRESM_CAEDYM_Lake-Okareka/DYsim.nc",
file.name = "calibration_data/Calibration_outputs.csv",
write.out = TRUE,
parallel = TRUE,
verbose = TRUE)

Given each parameter had four assigned values, the calibration assistant function called DYRESM-
CAEDYM to run a total of 43 = 64 combinations for the three parameters. For each model run, the
objective function NSE was calculated for temperature simulations. A heat map is a good way to
visualise the variations in these NSE values under different combinations of parameter values. An
example of R code for producing a heat map of the auto-calibration outcome is as follows:

# Read in model calibration results
calibration <- read.csv("calibration_data/Calibration_outputs.csv")

# Heat map
library(ggplot2)
ggplot(calibration, aes(x = wse,y = vmc,fill = NSE.TEMP)) +

geom_tile() +
scale_fill_distiller(palette = "PuBu", direction = 1) +
facet_grid(~lec, scales = "free") +
xlab("Wind stirring efficiency") +
ylab("Vertical mixing coefficient") +
labs(title = "Light extinction coefficient", fill = "NSE") +
theme_bw() +
theme(plot.title = element_text(size = 11, hjust = 0.5))

ggsave(filename = "Figure_03.png", width = 8, height = 4)

The calculated NSE values varied significantly among the combinations, ranging from 0.03 to 0.95.
The combination of wind stirring efficiency = 0.6, vertical mixing coefficient = 500, and light extinction
coefficient = 0.25 m-1 achieved the highest NSE value of 0.95 (i.e., considered to be the optimal set of
parameter values) (Figure 3).

A few other combinations could also achieve similar outcomes. For example, when the light
extinction coefficient = 0.25 m-1, the NSE values ranged between 0.90 and 0.95, regardless of the wind
stirring efficiency and vertical mixing coefficient values shown in Table 2. Figure 3 also revealed that
temperature simulations were generally poor when light extinction coefficient = 0.1 and 0.15 m-1,
suggesting that these values of light extinction coefficient are too low to achieve a suitably accurate
temperature simulation for Lake Okareka.

Under the optimal set of parameter values identified from the calibration assistant function
(Figure 3), we re-ran the DYRESM-CAEDYM model and visualised the temperature simulations with
the four post-processing functions. An example R code for visualisation functions is shown preceding
the corresponding figure.

The temperature simulations in Lake Okareka displayed a clear and consistent seasonal pattern.
Temperature was up to 24 °C in the summer season and was below 10 °C in the winter (Figure 4).
The simulation contour plot showed that the thermocline of Lake Okareka (the layer of most rapid
temperature change) was around 15 m in summer, but the lake always mixed in winter (Figure 4),
corresponding to isothermal conditions over the water depth, suggesting a monomictic lake mixing
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Figure 3: Heat map of Nash-Sutcliffe Efficiency (NSE) coefficient values for temperature simulations
in Lake Okareka estimated for the combinations of three parameters given in Table 2 (wind stirring
efficiency, vertical mixing coefficient, and light extinction coefficient [m-1]). The darker the colour, the
better the model performance (measured as NSE).

regime. Observations are shown as dots in Figure 4 and match well with simulations both spatially
(i.e., vertically) and temporally (i.e., horizontally).

# Extract temperature simulations
var.values <- ext_output(dycd.output = "DYCD_Okareka/DYsim.nc",

var.extract = c("TEMP"))

# Interpolation of temperature across water column at an interval of 0.5 m
temp.interpolated < -interpol(layerHeights = var.values$dyresmLAYER_HTS_Var,

var = var.values$dyresmTEMPTURE_Var,
min.dept = 0, max.dept = 33, by.value = 0.5)

# Read in observed water quality data
obs.okareka <- read.csv("plotting_data/Obs_data_template.csv")
obs.okareka$Date <- as.Date(obs.okareka$Date,format="%d/%m/%Y")
# subset observed data to remain temperature observations
obs.temp <- obs.okareka[, c('Date','Depth','TEMP')]

# Contour plot
png(filename = 'Figure_04.png', width = 1200, height = 700)
plot_cont_com(sim = temp.interpolated,

obs = obs.temp,
plot.start = "2002-01-23",
plot.end = "2006-12-31",
sim.start = "2002-01-23",
sim.end = "2016-12-31"
legend.title = "T\n(\u00B0C)",
min.depth = 0,
max.depth = 33,
by.value = 0.5,
nlevels = 20)

dev.off()
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Figure 4: Example contour plot of temperature simulations and observations for Lake Okareka from
2002-01-23 to 2006-12-31. Each dot represents an observation at a specific depth on a specific date.
Dots are colour coded on the same scale (right-hand side) as the simulation.

Simulations and observations of temperature with depth are shown in Figure 5 for the dates when
observations were available. The vertical profiles provide a more discerning view of details such as the
thermocline depth in Lake Okareka. The simulated temperature profile mostly aligned well with the
observed profile but had a tendency to overestimate the depth of the thermocline in the first summer
(early 2002), whilst capturing the timing of mixing (little or no temperature gradient) in winter.

# Profile plot
plot_prof(sim = temp.interpolated,

obs = obs.temp,
sim.start = "2002-01-23",
sim.end = "2016-12-31",
plot.start = "2002-01-23",
plot.end = "2002-12-31",
min.depth = 0,
max.depth = 33,
by.value = 0.5,
xlabel = "Temperature \u00B0C")

ggsave(filename = "Figrue_05.png", height = 4, width = 7)
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Figure 5: Example profile plots of temperature simulations (black line) and observations (brown dots)
for Lake Okareka from 2002-01-23 to 2002-12-19, available for each observation occasion. The profile
plots shows a seasonable pattern of stratification and mixing in the lake over the 12 months time, and
the model was able to repeat the pattern.

The time series figure displays temperature simulations as a continuous line for a specific depth
over the entire simulation period, with observations shown as dots (Figure 6). The temperature in the
surface of the lake (1 m deep) varied strongly over the years, with a clear seasonal pattern, while at
mid-depth (14 m deep) it varied to a lesser degree but showed a similar pattern, and in the near-bottom
(30 m deep) layer it remained relatively unchanged.

# Time series plot
p <- plot_ts(sim = temp.interpolated,

obs = obs.temp,
target.depth = c(1, 14, 30),
sim.start = "2002-01-23",
sim.end = "2016-12-31",
plot.start = "2002-01-23",
plot.end = "2012-12-31",
min.depth = 0,
max.depth = 33,
by.value = 0.5,
ylabel = "Temperature \u00B0C")

rmse_dpt01 <- objective_fun(sim = temp.interpolated[2:4,],
obs = obs.temp[obs.temp$Depth == 1, ],
fun = c('RMSE'),
start.date = '2002-01-23',
end.date = '2016-12-31',
min.depth = 0.5,
max.depth = 1.5,
by.value = 0.5)

rmse_dpt14 <- objective_fun(sim = temp.interpolated[28:30,],
obs = obs.temp[obs.temp$Depth == 14, ],
fun = c('RMSE'),
start.date = '2002-01-23',
end.date = '2016-12-31',
min.depth = 13.5,
max.depth = 14.5,
by.value = 0.5)
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rmse_dpt30 <- objective_fun(sim = temp.interpolated[60:62,],
obs = obs.temp[obs.temp$Depth == 30, ],
fun = c('RMSE'),
start.date = '2002-01-23',
end.date = '2016-12-31',
min.depth = 29.5,
max.depth = 30.5,
by.value = 0.5)

rmse_text <- data.frame(x = as.Date('2007-06-01'),
y = 25,
Depth = c(1, 14, 30),
label = c(paste0('RMSE = ', round(rmse_dpt01$RMSE,2), ' \u00B0C'),

paste0('RMSE = ', round(rmse_dpt14$RMSE,2), ' \u00B0C'),
paste0('RMSE = ', round(rmse_dpt30$RMSE,2), ' \u00B0C')))

p + ylim(8,26) +
geom_text(data = rmse_text,

mapping = aes(x = x, y = y, label = label))

ggsave(filename = 'Figure_06.png', height = 4, width = 7)

Figure 6: Example time series plot of temperature simulations (black line) and measurements (brown
dots) for three depths (upper row box; 1 m – near-surface layer, 14 m – middle layer close to the
thermocline, and 30 m – near-bottom layer) of Lake Okareka from 2002-01-23 to 2012-12-31. The RMSE
values calculated from the ’objective_fun’ function in the package are also shown for each depth
profile.

The scatter plot compares all temperature simulation values against observations denoted as dots
in a Cartesian coordinate system, with a reference line of y=x to indicate the ideal fit (1:1) of simulations
to observations. Each point is colour coded by depth. The majority of dots were close to the reference
line, indicating good performance of DYRESM-CAEDYM in the temperature simulation (Figure 7).
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# Scatter plot
plot_scatter(sim=temp.interpolated,

obs=obs.temp,
sim.start="2002-01-23",
sim.end="2016-12-31",
plot.start = "2002-01-23",
plot.end="2012-12-31",
min.depth = 0,
max.depth = 33,
by.value = 0.5)

ggsave(filename = 'Figure_07.png', height = 4, width = 7)

Figure 7: Example scatterplot of temperature simulations and observations for Lake Okareka from
2002-01-23 to 2012-12-31. Note that the dots are colour coded by depth. The red line is a 1:1 slope, i.e.,
simulated temperature = observed temperature. The plot indicates a good model performance as the
majority of the dots are located around the black line.

5 Discussion

Aquatic ecosystem models have increasingly been used to shed light on lake ecosystem function
(Scheffer et al., 2001) and inform policy and management decisions to improve water quality and
control eutrophication (Wang et al., 2012). With progressive increases in the number and complexity of
processes represented, and increasing computational power, these models have increased in complexity
and have a large number of parameters. These types of models generally require extensive calibration
to be suitable for lake-specific simulations, which is quite challenging, despite the development of
parameter priors libraries (Robson et al., 2018) that can help with understanding possible ranges of
parameters and synthesise values used in other studies. In addition, multifaceted and multi-layered
modelling results need to be visualised in various ways to express model uncertainty and communicate
effectively with a broader community that may be engaged in understanding and interpreting the
implications of model scenarios. Here, we have presented an open-source R package dycdtools to help
address these challenges in calibrating a widely used aquatic ecosystem model DYRESM-CAEDYM
and visualising its simulation results. Importantly, this package has the potential to be adjusted for
other aquatic ecological models with a similar structure.

Calibration assistant function

The output of the calibration assistant function in the dycdtools package is a list of combinations of
parameter values with their objective function values, rather than a single optimal set of parameter
values provided by many auto-calibration algorithms, such as the auto-calibration module in the
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RAPID model developed in David et al. (2011), the auto-calibration algorithm proposed in Luo et al.
(2018), and the Genetic Algorithm developed in Goldberg and Holland (1988). We chose not to
provide a single parameter set partly due to the potential for parameter equifinality (Beven and
Binley, 1992), a classical problem of optimisation where different sets of parameter values may provide
similar simulation fit to observations. This problem is particularly pertinent for complex aquatic
ecosystem models (e.g., DYRESM-CAEDYM) that include a large number of parameters. Many studies
illustrated the difficulties of finding a single optimal set of parameter values in the high-dimensional
parameter space, due to inter-correlation between parameters and autocorrelation of the residuals
(Fernández Slezak et al., 2010; Gupta et al., 2006). Therefore, instead of using an auto-calibration
algorithm to decide the optimal set of parameter values, we suggest users compare those combinations
of parameter values that result in high objective values and manually choose the combination that
they believe is the most physically meaningful. Such a process aligns with the concept of development
of user expertise and knowledge that are critical for successful model applications (Hipsey et al., 2015).

It is worth noting that an objective function is a means to characterise the performance of environ-
mental models, and is useful and often necessary (Bennett et al., 2013). A substantial body of work has
been done to propose methods and criteria to judge the performance of environmental models, often
for hydrological models (Jakeman et al., 2006; Krause et al., 2005) and less frequently for ecological
models (Risbey et al., 1996). Many of the proposed objective functions have been summarised in
Bennett et al. (2013) and can be applied to characterise performance of lake models. Five of the
most commonly used objective functions have been included in the current package, and we plan to
add functions to give users more choices of characterising model performance and to better inform
parameter calibration.

Given that it is not realistic to expect any one set of parameter values to be truly representative of
the actual parameter set (Beven and Binley, 1992), it is also important to convey the accuracy of the
simulations and the associated uncertainties. In lake modelling, multi-parameter perturbation has
been conducted using Monte-Carlo techniques to inform parameter uncertainty effects (Luo et al.,
2018; Muraoka, 2019). The calibration assistant function developed here can be used to carry out such a
sensitivity analysis by perturbing multiple parameters within a certain range when the “combination”
argument is set to “random”. User expert knowledge (Lehmann and Hamilton, 2018) and parameter
priors libraries (Robson et al., 2018) are also valuable in narrowing parameter ranges which can be
important in reducing computation times of calibration and sensitivity analysis, as well as reducing
the incidence of common issues such as equifinality.

Suggestions on the use of calibration assistant function

The calibration assistant function developed in this study is not intended to replace manual calibration,
rather, it is aimed to save time assigned to calibration and sensitivity analysis by automatically trialling
a number of parameter values so as to bring a focus to the range of sensitive parameter values. We
recommend manual calibration as a means to develop expert knowledge about model parameter
values, in an iterative procedure that includes assistant calibration and sensitivity analysis, as well
as literature review of parameters. We also recommend a combination of OAT and AAT calibration,
with the former used to better understand individual responses of parameters and the latter used with
care because exponentially large numbers of possible parameter value combinations are possible and
computational times could become untenable even with parallel processing enabled. For example, in
the case of 10 parameters where each parameter has three possible values, the total number of possible
combinations is 310 = 59,049. If each model run takes 2 minutes, then it would take 59,049 × 2 = 118,098
minutes (> 32 days) to run these combinations.

Manual calibration has also been used as a way to work around the difficulties with weighting
and prioritising state variables using an auto-calibration procedure (Lehmann and Hamilton, 2018).
Therefore, while acknowledging the benefits of assistant calibration in trialling a number of parameter
values without the heavy time burden of manual adjustment, we encourage users to actively engage
in the calibration process. More specifically, users may first define suitable value ranges of various
parameters from the literature (including other modelling studies) and lab or field experiments (Robson
et al., 2018), and then conduct both manual and automated sensitivity analysis to understand which
parameters are sensitive and should be more strategically evaluated. Finally, users can apply both the
calibration assistant function and manual calibration to optimise parameter values. This process can
be repeated multiple times until users are satisfied with accuracy of the simulations, assessed using
quantitative output statistics and qualitative comparisons with observed data.
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Visualisation of model outputs

Visualisation of model outputs is an important tool for effectively engaging academic, the public
and environmental managers in expressing model uncertainty, and as a prerequisite for improving
confidence in scenario simulations. This is particularly true for multidimensional model outputs that
are intangible, and visualisation has a fundamental role in exploring information and generating
understanding (McInerny et al., 2014). The dycdtools package expands on existing lake model
visualisation tools, such as contours, profiles and time series used by the glmtools and LakeEnsemblR
packages, by providing additional functionality including scatterplots. Each of the plotting functions
is designed to best suit different presentation purposes, as outlines in the "Post-processing functions"
Section. We anticipate that the developed visualisation tools in dycdtools package can not only
complement the existing associated GUI by providing more flexible ways of visualising DYRESM-
CAEDYM model outputs, but can also be adapted for other lake ecosystem models, such as the
General Lake Model (Hipsey et al., 2019) and the Fresh-water Lake Model for LM (Mironov et al.,
2010).

In summary, dycdtools is a modular, flexible, and open-source tool that is designed to make
the calibration process of the DYRESM-CAEDYM model substantially less time-consuming and to
visualise complex modelling results in multiple ways for effective communication. It is suitable for
users with various levels of expertise. This study places great emphasis on tools to evaluate the quality
of model calibration as many of these models need to provide robust simulations that form the basis
of scenario simulations, often designed to evaluate different management and environmental (e.g.,
climate change, land use change) scenarios.
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