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remap: Regionalized Models with
Spatially Smooth Predictions
by Jadon Wagstaff and Brennan Bean

Abstract Traditional spatial modeling approaches assume that data are second-order stationary,
which is rarely true over large geographical areas. A simple way to model nonstationary data is to
partition the space and build models for each region in the partition. This has the side effect of creating
discontinuities in the prediction surface at region borders. The regional border smoothing approach
ensures continuous predictions by using a weighted average of predictions from regional models. The
R package remap is an implementation of regional border smoothing that builds a collection of spatial
models. Special consideration is given to distance calculations that make remap package scalable to
large problems. Using the remap package, as opposed to global spatial models, results in improved
prediction accuracy on test data. These accuracy improvements, coupled with their computational
feasibility, illustrate the efficacy of the remap approach to modeling nonstationary data.

1 Introduction

When observations exhibit spatial autocorrelation, geographic location can be leveraged to improve
predictions of the response variable by considering responses in nearby observations. Typical spatial
statistical models assume that the covariance between two observations can be modeled as a function
of location difference, i.e., the relationship needs to be second-order stationary. For sufficiently large
distances, the stationarity assumption often fails. Even when external drift or secondary variables are
used, continental scale models may still not be second-order stationary.

The simplest way to use traditional spatial modeling with nonstationary data is to partition the
global region into smaller sub-regions that are locally stationary and create separate models for each
region. The naïve implementation of this approach leads to noncontinuous predictions at the borders
of each region. Previous attempts to smooth out discontinuities at region boundaries often involved
taking weighted averages of local regional model output where the weights of each local model
prediction or covariance structure are a function of the distance between a new observation and the
centers of each region (Fuentes, 2001; Fuentes and Smith, 2001; Gosoniu et al., 2006, 2009; Konomi
et al., 2014). While the center based approach may be appropriate for symmetrical regions, it is likely
not appropriate for oddly shaped or disjoint regions not well represented by their centers. In some
cases, a region may not even contain its center. The center-based approach also fails to respect major
geographic features that can cause sharp changes in response variables over very short distances.

The regional border smoothing approach described in this article is a novel method that uses a
weighted average of predictions from local models, but gives weight to regional models based on the
nearest distance to the border of each region rather than distance to the center of each region. With
this method, regions may be chosen that more naturally reflect local climate and topography with
smoothing only occurring near the borders of each region. Figure 1 is an example of the regional
border smoothing approach applied to three regions with different spatial models.

The R package remap is a General Public License implementation of this regional border smoothing
method that scales well to large problems (Wagstaff, 2022). Using remap, regional border smoothing
is applied to two different modeling problems. The first problem is a national set of 50-year ground
snow loads and the second problem is modeling April 1st snow water content for Utah. Mapped
values from both projects show improvement in model accuracy using the regional border smoothing
approach over global models for a variety of spatial modeling approaches.

The body of this article will proceed with a description of the regional border smoothing approach.
This will be followed by an illustration of the available functions and tools in remap as well as two
demonstrations of the software on a state and national-level data set. These examples show the
utility of remap in producing smooth estimates when applied to spatial modeling problems over large
geographical areas with irregularly shaped partitions.

Background

There are many proposed methods to model nonstationary data using locally stationary models. Haas
(1990b,a) describes a moving window approach where only data within a pre-specified bounding box
are used to fit a local dependence structure and then make predictions. This process is computationally
intensive and may not result in continuous predictions.
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Figure 1: With (bottom) and without (top) application of regional border smoothing where predictions
are a linear combination of longitude and latitude. The gray line shows predicted values at 0.7°N.
Left region predicts lon − lat + 1, bottom region predicts lat − lon + 1.4, and right region predicts
lon − lat + 0.7. Smoothing zone is 30 km (≈ 0.27°).
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Fuentes (2001) and Fuentes and Smith (2001) propose a method for nonstationary problems where
a global covariance structure that changes continuously as a function of location is used in a Gaussian
process model. The data are first partitioned into locally stationary regions and a global covariance
structure is calculated by taking a weighted average of regional covariance structures. Weights are
based on the distance from the prediction location to a point in each region, usually the center. Regions
are either given a priori or by using subgrids chosen using the Bayesian information criterion.

Applications of local partition modeling approaches include Kim et al. (2005), who describe a
method to deal with sudden changes in spatial covariance structure that occur between layers of rock
strata. The spatial domain is partitioned into independent regions using Voronoi Tessellations (Green
and Sibson, 1978), with each region fit using an independent Gaussian model. The resulting global
model has sharp changes at the borders of each region, which was desirable given the context of
the problem. Konomi et al. (2014) illustrate a decision tree based method for partitioning the spatial
domain when modeling global Ozone levels. Heaton et al. (2017) use a hierarchical clustering method
to partition the spatial domain for temperature data in Houston, TX. The hierarchical clustering
method has the benefit of creating a partition that more naturally follows changes in the covariance
structure rather than partitioning the space into symmetrical blocks or spheres.

Gosoniu et al. (2006, 2009) provide an additional application of local partitioning models mapping
malaria risk using a priori partitions of West Africa. The 2006 study uses three large rectangular regions
and the 2009 study uses agro-ecological regions to partition the spatial domain. In these studies, spatial
random effects are modeled as a weighted sum of regional stationary effects based on the distance
to region centroids. The authors note problems with sudden changes at region borders as a result of
using region centroids for the weighted sum of effects.

Most of the methods discussed so far create a global covariance structure from local covariance
structures of Gaussian process models (Fuentes, 2001; Fuentes and Smith, 2001; Kim et al., 2005;
Konomi et al., 2014; Heaton et al., 2017). Each method has a different way of smoothing regional
transitions that are specifically tied to their methodology. Many of the methods use a Bayesian
framework that requires computationally expensive Markov chain Monte Carlo simulations (Kim
et al., 2005; Konomi et al., 2014; Heaton et al., 2017; Gosoniu et al., 2006, 2009). Many of the techniques
are only applied to purely spatial data rather than multivariate data (Kim et al., 2005; Konomi et al.,
2014; Heaton et al., 2017). There is a lack of methodology that allow for smooth transitions between
partitions and works for multiple modeling techniques.

The regional border smoothing method described in this article can be thought of as stitching
together images to form a larger image with no sharp changes. The approach is similar to those used
to combine black and white images from microscopes into a larger image (Thévenaz and Unser, 2007).
Individual microscope images are aligned and the overlapping regions are smoothed by taking a
weighted average of the overlapping pixel brightness. The weights are based on the distance from the
pixel to the outer edge of each image with more weight being applied to pixels closer to the center of
an image.

The process described in this article provides a simple way of combining regional model predictions
to form a continuous global prediction surface. The method can be applied to problems that are not
strictly spatial. For example, Osborne and Suárez-Seoane (2002) show that building models for
partitioned space can improve the accuracy of large scale species distribution models. The regional
border smoothing method works for any model that produces continuous predictions.

Computer code availability and competing interests

The remap package is available on the Comprehensive R Archive Network (see https://cran.r-
project.org/web/packages/remap/index.html) with the most current version available at https:
//github.com/jadonwagstaff/remap. The code and data used to generate the results in this article are
available as supplementary materials.

The figures and tables in this article are made using the R programming language. Figures are
created with the tidyverse (Wickham et al., 2019), gridExtra (Auguie, 2017), cowplot (Wilke, 2020),
and maps (Becker et al., 2021) packages. The sf (Pebesma, 2018), nngeo (Dorman, 2022), and raster
(Hijmans, 2022) packages are used to manipulate spatial data. Kriging models are built with automap
(Hiemstra et al., 2009) and gstat (Pebesma, 2004; Gräler et al., 2016) and generalized additive models
are built with mgcv (Wood, 2011). A docker container with these packages installed and all code is
available at https://hub.docker.com/r/jadonwagstaff/remap_manuscript_code.

This research was funded by the American Society of Civil Engineers and the Structural Engineer-
ing Institute (award number 202827). The authors have no affiliation with any organization with a
direct or indirect financial interest in the subject matter discussed in the manuscript. This article is
based on the first author’s master’s thesis (Wagstaff, 2021).
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2 The regional border smoothing approach

Regional border smoothing is the process of using regional models to make predictions that are
globally continuous. Regional border smoothing may be used on any spatially referenced data (XXX)
in conjunction with a modeling approach and a finite set of regions Rp where each Rpi ∈ Rp,
i = 1 . . . m, is a closed set of points contained in the region of interest R. The intention is that Rp is a

set of non-overlapping polygons with shared borders and
m⋃

i=1
Rpi = R, but these are not necessary

conditions. While Rp does not meet the strict definition of a partition, Rp will be referred to as a
partition throughout this article.

The border smoothing approach described in this article was originally designed for regression-
based models, but can be used with any modeling approach that produces a continuous response.
This technically includes classification techniques that make continuous probability predictions prior
to classifying based on probability threshold, such as logistic regression. Presumably, the predictions
from a chosen modeling approach will result in continuous predictions as a function of location.

Modeling regions are defined by the borders of Rp. The data contained by a modeling region
Rpi are used to inform a distinct regression model ( fpi (XXX)) for that region. In some cases it may
be desirable to include observations near each Rpi when building regional regression models. In
these cases, data within Rpi and within a buffer zone around each modeling region are used to build
each fpi (XXX) (Figure 2). Using points within a buffer zone that extends beyond the region boundaries
avoids edge extrapolation when using a regional model for interpolation in the smoothing zones of
neighboring regions.

Figure 2: Example showing how observations are selected within a region’s buffer zone. Seven
arbitrary regions represented as polygons contain 169 observations represented as points. During the
regional modeling process, a model is built for each of the seven regions. For this example, all points
within 50km of a region are used to build each model. For the highlighted region, all observations
within a 50km buffer zone (dashed line) are used to build that region’s model. Highlighted points are
observations used to build the highlighted region’s model.

Simply making predictions within each Rpi using each corresponding fpi (XXX) results in noncontin-
uous predictions at region boundaries. Regional border smoothing results in continuous predictions
for the entire space by taking a weighted average of the predictions provided by each fpi (XXX). The
smoothed global prediction surface is continuous, but not necessarily differentiable.
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Smoothing at borders

Let ŷ1, ŷ2, ..., ŷm represent predictions from regional models fp1 (xxx
∗), fp2 (xxx

∗), ..., fpm (xxx
∗) for location

of interest xxx∗ where xxx∗ represents both spatial and non-spatial information. A final prediction ŷ′ is
calculated by the weighted average of each ŷ, i.e.,

ŷ′ =
∑m

i=1 w(di|S)ŷi

∑m
i=1 w(di|S)

. (1)

The weights are calculated based on the smallest great-circle distances (d1, d2, ..., dm) between the
location of xxx∗ and the boundaries of Rp1 ,Rp2 , ...,Rpm . If xxx∗ is located within a region, the distance
between xxx∗ and that region is 0. The weight w(di|S) given to ŷi is non-zero when di is within some
threshold S, i.e.,

w(di|S) =


(

S−di
S

)2
di ≤ S

0 di > S.
(2)

Consider now the special case when a prediction is made in region j and di ̸=j > S, then w(di ̸=j|S) =
0 and Equation 1 reduces to ŷ′ = ŷj. As prediction location in region j approach Rpk , then the weight

of ŷk increases gradually and ŷ′ = ŷj+((S−dk)/S)2 ŷk

1+((S−dk)/s)2 . At the border of regions j and k, ŷ =
(

ŷj + ŷk

)
/2.

Finally, as prediction locations progress into Rpk , weights for yij decrease gradually to zero and

ŷ′ = ((S−dj)/S)
2
ŷj+ŷk

((S−dj)/S)
2
+1

. All locations within S of a region are referred to as the smoothing zone for that

region.

Standard error approximations

The smoothing approach described in this paper represents a spatially weighted ensemble of model
predictions along region boundaries, with each model (possibly) estimating prediction standard error
(SE) or variance. There is no consensus in the literature on how SE should be calculated for ensemble
model predictions. The methods for SE calculation that do exist tend to be specific to model type (e.g.
Wager et al. (2014)) or averaging approach (e.g. Hoeting et al. (1999)). For this reason, the method
for estimating SE in remap relies on the general properties of variance for the summation of random
variables.

Suppose that each ŷi is an unbiased estimate from of fpi (xxx
∗) with the SE of ŷi represented as σ̂i.

Then the combined model SE for ŷ′ can be represented as

σ̂′ =

√√√√∑m
i=1 w(di|S)2σ̂2

i + ∑m
i=1 ∑j<i 2w(di|S)w(dj|S)ρijσ̂iσ̂j

(∑i w(di|S))2 , (3)

where ρij represents the correlation between predictions for model i and j. One primary difficulty with
estimating σ̂′ in the smoothing zones is a lack of information regarding ρij. It is highly likely that SE
estimates are correlated for models in adjacent regions. In the absence of a computationally efficient
and theoretically robust estimate for ρij the Cauchy–Schwarz inequality can be used to provide an
upper bound on σ̂′ given as

σ̂′ ≤

√√√√∑m
i=1 w(di|S)2σ̂2

i + ∑m
i=1 ∑j<i 2w(di|S)w(dj|S)σ̂iσ̂j

(∑i w(di|S))2 , (4)

where ρij has been replaced with a constant value of one.

The remap package provides a method for estimating the upper bound of the prediction SE using
the inequality specified in (4). It is important to note that it may not always be appropriate to combine
model SE estimates in this way. This is particularly true for models that ignore spatial autocorrelation.
It is also important to remember that the primary focus of remap is to provide a practical approach for
smoothing model predictions, and not to preserve the theoretical integrity of the SE estimates. It is
up to the end user to determine that the SE calculations are valid and appropriate for their modeling
purposes.
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A note on smoothing

The “smoothing” described throughout this article refers to smoothing in the colloquial sense. A
continuous prediction surface is created with a steady transition between regions. The prediction
surface is not always differentiable. If a region is not convex, the rate of change in the distance to a
region can shift suddenly at locations that are equidistant to different parts of the region. Figure 3
shows an example of a prediction surface near a non-convex region where the prediction surface is not
differentiably smooth.

Figure 3: Example of where predictions are not differentiable near non-convex regions. The bottom
region predicts a constant value of one and the top region predicts a constant value of two with a
smoothing zone of 40 km (≈ 0.36°). The gray line shows predicted values along the 0.5°N transect.
This example illustrates that the smoothing approach always produces continuous predictions, but
differentiability is dependent on the shape of the polygon partition.

Since each region is a closed set of points, di is continuous. It therefore follows that the weight
function w(di|S) described in Equation 2 is continuous as limx→0+ w(x|S) = w(0|S) = 1 and
limx→S− w(x|S) = w(S|S) = 0 for x ∈ [0, ∞) and S > 0. Since the right side of Equation 1 is
the multiplication and addition of continuous functions, it is guaranteed to have max (w(di|S)) > 0
as long as xxx∗s is within S units of any Rp and it follows that Equation ŷ′ is also continuous. Given
continuous predictions as a function of location for each region, the regional border smoothing method
is guaranteed to be continuous for any location within the smoothing zone of at least one region.
Once all di > S, then the denominator of y′ is equal to zero, which means y′ is no longer well-defined.
As long as all of the data XXX are located within Rp, any prediction location outside of Rp is spatial
extrapolation that is generally discouraged.

3 remap

The R package remap is an implementation of the regional border smoothing approach to spatial
modeling. The function remap creates a set of regionalized models given:

• A set of observations as spatially projected or geographic points.

• A set of regions as spatially projected or geographic polygons.

• A desired buffer zone distance.

• A modeling function to apply to observations in each region.

Predictions can be made on new observations given a regionalized model and the smoothing parameter
smooth used for weighted averages in smoothing zones (variable S in Equation 2). Detailed descrip-
tions of function parameters can be found in the package documentation. Some working examples
using the remap package are provided via the vignette which accompanies the package. The develop-
ment version of the code for remap can be found at https://github.com/jadonwagstaff/remap.

Calculating distances

The weights for regional predictions require the distances from all observations to the boundary of each
region. The modeling process of the remap function also requires the distances from all observations to
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each region to assign the correct observations to each regional model. The process of fine-tuning a
model can result in recalculating these distances many times. To avoid recalculating distances, the
function redist is included in the remap package to pre-compute the distances from a given set of
observations to a given set of regions. These pre-computed distances can be supplied as a parameter
to the remap function to reduce computational time while fine-tuning models.

Calculating distances in the remap package takes advantage of tools already available for spatial
analysis in the R package sf (Pebesma, 2018). The function sf::st_distance is used to find either
Euclidean or great-circle distances depending on the spatial projection of the locations and regions. The
sf::st_distance function uses the S2 geometry library (Google, 2022) when calculating great-circle
distances. The S2 geometry library is designed specifically to efficiently compute distances between
nearby objects given large sets of geographic data. Regardless, calculating distances can still take a lot
of computational time if the regions are complex and/or there are a lot of observations.

The naïve approach to regional border smoothing is to find all distances between each location
and each region. This approach may be necessary during the modeling process if any region does not
contain a required minimum number of observations (detailed in the implementation considerations
section). If predictions are being made using new observations, then distances do not need to be
calculated between every observation and every region.

Because the weight for predictions in different regions is zero when the distance to those regions is
greater than the smoothing parameter (Equation 2), distances do not need to be calculated between
every region and every prediction location. To determine which observations require distance calcula-
tions, an approximate polygon is constructed that encompasses the original region plus the smoothing
zone around the region. The function sf::st_within is used to determine which observations are
within the new polygon and equivalently, which observations are within the smoothing zone of the
original region. Observations in the approximate polygon become candidates for precise distance
calculations.

An approximate polygon that contains a region and the region’s smoothing zone is created using
the sf::st_buffer function. For geographic coordinates, sf::st_buffer requires a buffer value in
degrees. Since the great-circle distance between a unit degree of longitude changes with latitude,
Equation 5 is used to find c: the shortest distance (measured in kilometers) required to move one
degree longitude at the observation in the data set that is nearest to a geographical pole. The set λλλ is
the set of Latitude values of the observations and 6380 km is the radius of the earth at a pole (rounded
down). A sufficient buffer value in degrees for sf::st_buffer is calculated by dividing the smoothing
zone length in km by c. The resulting buffered polygon contains all of the observations within the
smoothing zone of the original polygon,

c =
π ∗ 6350

180
∗ cos

(
π ∗ max (|λλλ|)

180

)
. (5)

Assuming each region contains a sufficient number of observations to fit each regional model, the
same process used for reducing the number of distance calculations for model predictions can be used
to reduce the number of distance calculations required for model training. The function redist is able
to restrict distance calculations to only observations within a certain buffer zone or smoothing zone of
each region using the max_dist parameter. This eliminates the need to calculate distances to points
with a known weight of zero when smoothing.

Practical implementation considerations

Reliable regression results depend upon sufficient sample sizes, which differ based on the variability
of the response and dimensionality of the inputs. A strict (and obvious) minimum sample size for
the remap function is one observation per region, though this threshold will rarely, if ever, ensure
reasonable results. An additional parameter min_n is included in the remap function to specify a
minimum number of observations be used to build each model. If a region and the buffer around that
region do not contain the minimum number of observations specified, the min_n observations closest
to the boundaries of the region are used to train that region’s model.

The remap package has the ability to make predictions outside of all modeling regions. If the
prediction location is within the smoothing zone of a region, then Equation 1 applies and the nearest
region will have the most weight. If the prediction location is outside the smoothing zone of all regions,
then the model from the closest region is used to make a prediction. This may result in non-continuous
transitions in predictions when the closest region changes across geographic space, but this is only
possible at locations outside of the smoothing zone of all regions. As a general rule, extrapolation of
predictions to a location beyond those represented in the input data is not recommended. See Figure 4
for a visual depiction of how predictions behave outside of all modeling regions.
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Figure 4: Example of what happens when predictions are made outside of any modeling region. The
gray line shows predicted values along the 0.6°N transect. The dashed gray line shows predicted
values along the 0.95°N transect. The left region predicts a constant 0, the bottom region predicts a
constant 2, and the right region predicts a constant 4. Smoothing zone is 35 km (≈ 0.32°).

The ability to predict outside of all regions means that the remap package can make smooth
predictions across small gaps at polygon borders, provided the gaps are no larger than two times the
smoothing zone distance. This encourages the use of rgeos::gSimplify (Bivand and Rundel, 2021) or
sf::st_simplify (Pebesma, 2018) to simplify complex polygons and ease the computational burden
associated with distance calculations, even if those simplifications slightly compromise the topology
of the original geometry.

4 Applications

Design snow loads

Snow loads are obtained from weather stations throughout the United States in the National Oceanic
and Atmospheric Administration’s (NOAA) Global Historical Climatology Network (Menne et al.,
2012). Snow loads are either measured directly, or estimated from measured snow depth using a depth
to load conversion model. Engineers have historically used estimates of 50-year ground snow loads
when designing structures. The 50-year snow load is traditionally obtained by fitting a probability
distribution to yearly maximum snow load measurements and extracting the 98th percentile. A recent
effort by the American Society of Civil Engineers has resulted in a new set of 50-year ground snow
loads at 7964 measurement locations (Bean et al., 2021).

Building a geospatial snow load model with remap

Building design requirements call for continuous maps that estimate design loads between measure-
ment locations. This has historically been accomplished using various mapping techniques (Tobiasson
et al., 2002; Liel et al., 2017; Bean et al., 2019). The problem is that the relationship between predictor
variables and snow load can change drastically on a continental scale. For example, the typical loads
at 1500 meter elevation in the Rocky Mountains of Montana are much lower than loads at 1500 meters
in the Cascade Mountains of Washington State (Figure 5). Commonly used geospatial models for
mapping are not well suited for the nonstationary nature of this problem.

Snow loads are typically assumed to share a log-linear relationship with elevation. This relationship
can be modeled directly using ordinary least squares (OLS), which ignores any potential spatial
dependencies among the observations. A generalized additive model (GAM) built with the mgcv R
package (Wood, 2011) characterizes the log of 50-year loads as a function of elevation and a spatial
smoother called splines on the sphere (Wood, 2003). Universal kriging interpolates values using
a Gaussian process model after accounting for the log-linear trend in elevation. Variograms are
individually fit within each region using the automap R package (Hiemstra et al., 2009).

Geographic regions defined by the US Environmental Protection Agency (EPA) define regions with
similar ecology and climate called eco-regions (Commission for Environmental Cooperation, 1997).
The eco-regions provide a natural partition of the conterminous United States and give no regard to
political boundaries. Snow load can be modeled using observations within each eco-region where
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Figure 5: 50-year events for measurement locations within Washington and Montana. Trend lines are
fit with cubic regression splines. In both regions, loads eventually increase as elevation increases, but
the inflection points are about 1000 m apart and the rate of change is different. This demonstrates
the need for an approach which adapts to the changing relationship between predictor variables and
response in different regions.

the relationship between predictor variables and the response are more consistent on a local level.
The remap package facilitates modeling in separate eco-regions and creates a smooth model on the
national scale. There are 86 eco-regions that fall within the conterminous United States, so 86 separate
models are built using the remap function with a buffer zone of 50 km and a min_n of 150 observations.
The regional models are smoothed to a single continuous model using a smooth parameter of 25 km.

The following code demonstrates how remap is used to build these models. The script and data for
the following examples are provided as supplementary materials with this article. The example data
include three "sf" objects: a spatial points data frame with 50-year snow loads at locations within
the US and Canada (loads), a spatial polygons data frame of eco-regions (eco3), a spatial polygon of
the conterminous United States (cont_us), and a "raster" object with elevations comprising a 0.8 km
grid over the conterminous United States (grd).

library(tidyverse)
library(sf)
library(raster)
library(mgcv)
library(automap)
library(gstat)
library(remap)
load("wagstaff-bean.RData")

The eco-regions have more complex borders than is necessary for this problem, so they can be
simplified to the same extent as shown in Figure 6.

eco3_simp <- eco3 %>%
sf::st_simplify(dTolerance = 10000) %>%
dplyr::filter(!sf::st_is_empty(.)) %>%
sf::st_cast("MULTIPOLYGON")

Since multiple models are built with the same set of measurement locations, pre-calculating the
distances from measurement location to region boundaries can save some computational time.

eco3_dist <- redist(loads, regions = eco3_simp, region_id = ECO3)
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Figure 6: Results of simplification of eco-regions. The highlighted region is an area with some of the
most severe gaps between polygons. Notice that the width of the gaps are still much smaller than two
times the smoothing parameter (2 × 25 km).

Linear models and GAMs are easiest to build with remap. The remap function accepts additional
arguments for a selected model function but passes the spatial data to the function as an unnamed
parameter. Since the data parameter is the second parameter of the stats::lm function, we need
to formally specify the first argument of the function (i.e. the formula parameter) to pass along
to stats::lm, rather than relying on the stats::lm function defaults. Otherwise the data for each
sub-region will be sent as the wrong parameter.

lmod <- remap(loads, regions = eco3_simp, region_id = ECO3,
buffer = 50, min_n = 150,
distances = eco3_dist,
model_function = stats::lm,
formula = log(EVENT50) ~ ELEVATION)

lmod
#> remap model with 86 regional models

The lmod object has class "remap" and contains a models object and a regions object. The models
object is a list of gam models where the model names correspond to each modeling region ID. The
regions object is an "sf" multipolygon object with one row per region and the first column is the
region IDs.

head(names(lmod$models), 3)
#> [1] "10.1.2" "10.1.3" "10.1.4"

class(lmod$models[[1]])
#> [1] "lm"

head(lmod$regions, 3)
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#> Simple feature collection with 3 features and 1 field
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: -121.3721 ymin: 40.15434 xmax: -105.4847 ymax: 49.39082
#> Geodetic CRS: WGS 84
#> ECO3 geom
#> 1 10.1.2 MULTIPOLYGON (((-115.8435 4...
#> 2 10.1.3 MULTIPOLYGON (((-120.5262 4...
#> 3 10.1.4 MULTIPOLYGON (((-108.8632 4...

Similar to the stats::lm function, the mgcv::gam function needs a formula parameter and a family
parameter passed to the remap function since data is the third parameter of mgcv::gam. In this example
a wrapper function for mgcv::gam is written to allow a custom predict function which either return
predicted values (se.fit = FALSE) or standard errors (se.fit = TRUE).

gam_wrap <- function(data, ...) {
model <- mgcv::gam(data, ...)
class(model) <- "gam_wrap"
return(model)

}

predict.gam_wrap <- function(object, data, se.fit = FALSE) {
class(object) <- "gam"
if (se.fit) { # return standard errors
return(predict(object, data, se.fit = TRUE)$se.fit)

} else { # return predictions
return(predict(object, data))

}
}

gm <- remap(loads,
regions = eco3_simp, region_id = ECO3,
buffer = 50, min_n = 150,
distances = eco3_dist,
model_function = gam_wrap,
formula = log(EVENT50) ~ s(ELEVATION, k = 15) +
s(LATITUDE, LONGITUDE, bs = 'sos', k = 75),

family = stats::gaussian)

predict(gm, loads[1:3, ], smooth = 25)
#> [1] -0.003297382 0.132882034 -0.170530457

predict(gm, loads[1:3, ], smooth = 25, se = TRUE, se.fit = TRUE)
#> Upper bound for standard error calculated at each location.
#> Reminder: make sure that the predict function outputs a vector of standard
#> error values for each regional model in your remap object.
#> [1] 0.3177003 0.3383906 0.2142151

The kriging example requires a bit more work to implement in remap since the automap::autoKrige
and gstat::krige functions do not accept data as an "sf" object. A custom modeling function can be
written to pass to remap and a custom predict function can be written for remap to use for predictions.

projection <- sf::st_crs("+proj=laea +x_0=0 +y_0=0 +lon_0=-100 +lat_0=45")

krig <- function(data, formula) {
data <- data %>%
sf::st_transform(projection) %>%
sf::as_Spatial()

out <- list(data = data, formula = formula)
class(out) <- "krig"

return(out)
}
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predict.krig <- function(object, data) {
if (nrow(data) == 0) return(NULL)
data <- data %>%
sf::st_transform(projection) %>%
sf::as_Spatial()

variogram_object <- automap::autofitVariogram(
formula = object$formula,
input_data = object$data,
model = "Sph")

k <- gstat::krige(formula = object$formula,
locations = object$data,
newdata = data,
model = variogram_object$var_model,
debug.level = 0)

return(k$var1.pred)
}

kg <- remap(loads,
regions = eco3_simp, region_id = ECO3,
buffer = 50, min_n = 150,
distances = eco3_dist,
model_function = krig,
formula = log(EVENT50) ~ ELEVATION)

Since the buffer distance is greater than the smoothing distance, the resulting "remap" object can
be used to interpolate the same way that a global kriging model interpolates between points.

loads_us <- sf::st_filter(loads, cont_us)

kg_preds <- exp(predict(kg, loads_us, smooth = 25))

all(dplyr::near(kg_preds, loads_us$EVENT50))
#> [1] TRUE

Snow load modeling methods are compared in Table 1 using national scale models and models built
with the remap package on EPA Level III Eco-Regions (Commission for Environmental Cooperation,
1997). Table 1 shows that the remap package framework improves the cross validated accuracy of
every spatial modeling method. This demonstrates that the remap package has the ability to generally
improve modeling results, as improvements are not isolated to a single spatial modeling case. Even
though the regional models are made up of 86 different regional models, the estimated 50-year loads
are smooth across the prediction surface.

Model MSE ×102
ImprovementNational Regional

GAM 8.1 5.5 32%
Kriging 7.2 5.9 18%
OLS 89.3 17.8 80%

Table 1: Ten fold cross-validation results from modeling the log of 50-year snow loads. Mean squared
error (MSE) is multiplied by 102 for readability. Improvement is (national - regional) / national.

Computational challenges

National snow load maps require a sufficiently fine resolution to be feasibly used to design buildings
in topographically complex areas. To accomplish this, snow load maps are created that match the
resolution of PRISM climate output (PRISM Climate Group, 2020), which maps at a 0.8 km resolution
for the conterminous United States. This means that predicted snow loads are calculated at 12,113,556
locations using a model created by the remap package with 86 different regions. Elevation values
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for the grid are obtained from the United States Geological Survey (United States Geological Survey,
2020a).

Since the remap package uses the distances between prediction locations and regions to make a
smooth model, calculating these distances is a potential bottleneck in the prediction process. Also,
since the prediction area is so large, geographic coordinates rather than projected coordinates must
be used to find distances. Prior to sf version 1.0.0 (Pebesma, 2018), the S2 geometry library (Google,
2022) had not been implemented. Without the S2 geometry library, simply calculating all geographic
distances would have taken nearly half a year to run on a typical personal computer, as illustrated
in Table 2. The test computer used for Table 2 has 16 GB of RAM and an Intel Core I7-7820HQ CPU
which runs at 2.9 GHz. Maps for the national design snow loads were developed before S2 had been
integrated into sf, so the steps described later in this section had previously been necessary to use
remap to build these maps.

Remedial steps Run time in hours
Geographic Geographic (S2) Projected

None 4200∗ 8.1∗ 100.0∗

Simplify polygons 14∗ 2.3∗ 1.0
+ set max_dist to 25 km 1.1 0.3 0.8
+ run in parallel on 4 cores 0.8 0.3 0.8

Table 2: Run times for redist to calculate geographic and projected distances from 0.8 km grid points
to 86 different eco-regions (polygons) in the conterminous US. Remedial steps are additive, i.e., each
row in the table includes all previous remedial steps. ∗ Approximate run time based on random
sample of 10,000 grid points.

The first step to reduce the run time for distance calculations is to simplify the polygons as
discussed in the implementation considerations. Using a tolerance of 10000 with the function
sf::st_simplify, the size of the polygons are reduced from 21 MB to 0.2 MB. The results of polygon
simplification are visualized in Figure 6. When making predictions, the smooth parameter is set to
25 km; therefore, the max_dist parameter of redist can be set to 25 km to further reduce run time.
The distances may also be calculated in parallel; however, on the test computer the improvements are
marginal. The relevant distances may be calculated for all points using great circle distance in as fast
as 20 minutes (Table 2). This tremendous computational speed-up is made possible by the ability of
the remap package to smoothly fill in the gaps that occur in aggressively simplified polygons.

Here is an example of the code used to find distances from grid points to eco-regions. Due to
space and time constraints, the 0.8 km prediction grid is aggregated to a 7.2 km grid (grd) over the
conterminous United States. The grid is also converted to an "sf" spatial points data frame for use
with remap.

ag_grd <- grd %>%
raster::aggregate(9) %>%
raster::rasterToPoints() %>%
as.data.frame() %>%
mutate(LONGITUDE = x, LATITUDE = y) %>%
sf::st_as_sf(coords = c("x", "y"), crs = 4326) %>%
filter(sf::st_intersects(., cont_us, sparse = FALSE)[,1])

grd_dist <- redist(ag_grd, regions = eco3_simp, region_id = ECO3, max_dist = 25)

Smoothed regional predictions are made automatically by using the generic predict function on
a "remap" object and setting the smooth parameter to value greater than zero. Below is an example
of predicting values on the grid points using the 50-year load regionalized GAM model. Since we
already calculated distances from grd to eco3_simp, the grd_dist object can be passed to the distances
parameter of the predict function. The distance matrix is optional and remap will calculate distances
internally if not provided with a distance matrix. Predictions are smoothed to 25 km on either side of
each border. Note that predictions from gm are on the log scale.

gm_preds <- predict(gm, ag_grd, smooth = 25, distances = grd_dist)
gm_preds <- exp(gm_preds)

Here, the predictions from the regionalized GAM reveal some extrapolation issues when making
predictions at elevations outside of the range of available data within each sub-region. To get a better
visualization of the predictions, the predicted values can be truncated to the range observed in the
input data.
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range(gm_preds)
#> [1] 0.04273189 444.34484622
range(loads$EVENT50)
#> [1] 0.1 40.2

gm_preds[gm_preds > 40.2] <- 40.2
gm_preds[gm_preds < 0.1] <- 0.1

The smooth predictions from the gm model are visualized in Figure 7 with the following code.

ggplot(cont_us) +
geom_tile(data = ag_grd %>% dplyr::mutate(EVENT50 = gm_preds),

aes(x = LONGITUDE, y = LATITUDE, fill = EVENT50)) +
geom_sf(fill = NA, color = NA) +
scale_fill_viridis_c(option = "inferno",

trans = "log10",
breaks = c(0.1, 1, 7, 40),
labels = c("0.1 kPa", "1 kPa", "7 kPa", "40 kPa"),
name = "50-year event") +

theme_void()

Figure 7: Prediction map for 50-year loads from the regional GAM model built with the remap package
using 7,936 observations wthin 86 eco-regions. GAM models are built using a buffer zone of 50 m and
predictions are smoothed using a smoothing zone of 25 m. Values are restricted to be within the range
of values observed in the load data. This figure illustrates how remap functions can be used to create
continuous predictions of snow loads for all of the Conterminous United States.

Utah snowpack

The state of Utah assesses snow water content or snowpack every April 1st to plan for yearly water
resource availability. These measurements are much more variable than the 50-year snow loads since
the values are based on a single measurement at each location instead of the 98th percentile of a
distribution fit to annual maximum values at each location. This example uses direct measurements
of the water content made via Snowpack Telemetry (SNOTEL) stations included in NOAA’s Global
Historical Climatology Network (Menne et al., 2012). In addition to SNOTEL station data, Snow
Course data collected by the National Water and Climate Center are also included in the data set
(Natural Resources Conservation Service, 2017). SNOTEL and Snow Course data measure the water
equivalent of snow depth (WESD) and are located in the mountainous areas of Utah above 1777 m
elevation. This negates the need to estimate water content from snow depth, which is typically the
case when measuring snow at non-mountainous locations in the state.
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SNOTEL stations and Snow Course data within 100 km of the border of Utah are included in the
data set. There are 3511 April 1st WESD observations available for modeling which range from 0 to
1746 mm of water. The observations have 178 unique locations and span 30 years (1986-2015). Each
year is modeled separately with no regard for any temporal correlations and each year has at least 97
observations.

Models for GAM, kriging, and OLS are created using the same model structure as the national
snow load example, but a different response variable. Since there are 142 zero values for WESD
within the data, the log of (WESD + 1) is used as the response variable for the April 1st snowpack.
Predictions are also constrained to be between [1, max(WESD)] to avoid excessive extrapolation. The
regions used for regional modeling are watershed boundaries defined by the USGS (United States
Geological Survey, 2020b). Watersheds are defined by a hierarchy of hydrologic unit codes (HUC)
with a two-digit designation for continental scale watersheds (HUC2) and a four-digit designation
that partitions each HUC2 region (HUC4). There are four HUC2 regions and 12 HUC4 regions within
the boundaries of the state of Utah (see Figure 8). A buffer zone of 20 km, a smoothing parameter of
10 km, and a min_n of 30 observations are used when modeling over both HUC2 and HUC4 regions
with the remap function.

Figure 8: HUC4 regions (lines) and HUC2 regions (shades) in Utah.

The following code shows how remap models are built for the 2011 snowpack values using HUC2
watershed regions. Included in the supplied example data are an sf points data frame with snowpack
Utah snowpack values (utapr1, and an sf polygons data frame of HUC2 and HUC4 watersheds
within Utah (utws). Note that the maximum number of knots (k) in the GAM formula are reduced to
accommodate a smaller min_n in the remap function.

utsp2011 <- utapr1 %>%
dplyr::filter(YEAR == 2011) %>%
dplyr::mutate(WESD = WESD + 1)

utlmod <- remap(utsp2011,
regions = utws, region_id = HUC2,
buffer = 20, min_n = 30,
model_function = stats::lm,
formula = log(WESD) ~ ELEVATION)

utgm <- remap(utsp2011,
regions = utws, region_id = HUC2,
buffer = 20, min_n = 30,
model_function = mgcv::gam,
formula = log(WESD) ~ s(ELEVATION, k = 5) +
s(LATITUDE, LONGITUDE, bs = 'sos', k = 20),

family = gaussian)

utkg <- remap(utsp2011,
regions = utws, region_id = HUC2,
buffer = 20, min_n = 30,

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 175

model_function = krig,
formula = log(WESD) ~ ELEVATION)

Table 3 shows that the gains in accuracy are more modest in this application than in the national
example shown previously. This is expected as the partitions are on the state level instead of the
national level. Nevertheless, the consistent improvement in accuracy at various scales using different
polygons and different input data highlight the general ability of the remap package to improve
predictive accuracy without sacrificing continuity.

Model MSE ×102

State HUC2 HUC4

GAM 88 75(15%) 78(11%)
Kriging 90 87 (3%) 83 (8%)
OLS 140 111(21%) 89(36%)

Table 3: Ten fold cross-validation mean squared error from modeling log(WESD + 1) for Utah
snowpack. Mean squared error (MSE) is multiplied by 102 for readability. Improvement in parentheses
is calculated with (state - HUC) / state.

5 Conclusions

Partitioning a space for geospatial modeling is a practical approach for handling nonstationary data;
however, smooth transitions in mapped values are a desirable constraint of many projects, such as the
design snow load requirements set forth by the American Society of Engineers. The remap R package
provides a ready-to-use framework for regional models with smooth transitions at region borders that
overcomes the computational difficulties of naïve implementations.

The remap package creates continuous prediction surfaces by weighting regional predictions
based on the proximity to region borders. Smoothing at region borders makes the package particularly
equipped to handle irregularly shaped regions not well represented by their geographic centers.
Because the remap package has the ability to smooth over small gaps formed when simplifying
polygons, computation times can be drastically reduced without sacrificing the continuity of the
predictions. Methods that automatically subset the number of required distance calculations further
reduce computational times. This article has demonstrated accuracy improvements using the remap
package on two separate data sets with two sets of polygon inputs. These examples highlight the
feasibility of applying the remap framework to large spatial regression modeling problems.
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