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CIMTx: An R Package for Causal
Inference with Multiple Treatments using
Observational Data
by Lianyuan Hu and Jiayi Ji

Abstract CIMTx provides efficient and unified functions to implement modern methods for causal
inferences with multiple treatments using observational data with a focus on binary outcomes. The
methods include regression adjustment, inverse probability of treatment weighting, Bayesian additive
regression trees, regression adjustment with multivariate spline of the generalized propensity score,
vector matching and targeted maximum likelihood estimation. In addition, CIMTx illustrates ways
in which users can simulate data adhering to the complex data structures in the multiple treatment
setting. Furthermore, the CIMTx package offers a unique set of features to address the key causal as-
sumptions: positivity and ignorability. For the positivity assumption, CIMTx demonstrates techniques
to identify the common support region for retaining inferential units using inverse probability of treat-
ment weighting, Bayesian additive regression trees and vector matching. To handle the ignorability
assumption, CIMTx provides a flexible Monte Carlo sensitivity analysis approach to evaluate how
causal conclusions would be altered in response to different magnitude of departure from ignorable
treatment assignment.

1 Introduction

Modern comparative effectiveness research (CER) questions often require comparing the effectiveness
of multiple treatments on a binary outcome (Hu et al., 2020a). To answer these CER questions,
specialized causal inference methods are needed. Methods appropriate for drawing causal inferences
about multiple treatments include regression adjustment (RA) (Rubin, 1973; Linden et al., 2016), inverse
probability of treatment weighting (IPTW) (Feng et al., 2012; McCaffrey et al., 2013), Bayesian Additive
Regression Trees (BART) (Hill, 2011; Hu et al., 2021b, 2020a), regression adjustment with multivariate
spline of the generalized propensity score (RAMS) (Hu and Gu, 2021), vector matching (VM) (Lopez
and Gutman, 2017) and targeted maximum likelihood estimation (TMLE) (Rose and Normand, 2019).
Drawing causal inferences using observational data, however, inevitably requires assumptions. A
key causal identification assumption is the positivity or sufficient overlap assumption, which implies
that there are no values of pre-treatment covariates that could occur only among units receiving one
of the treatments (Hu et al., 2020a). Another key assumption requires appropriately conditioning
on all pre-treatment variables that predict both treatment and outcome. The pre-treatment variables
are known as confounders and this requirement is referred to as the ignorability assumption (also
as no unmeasured confounding) (Hu et al., 2022b). An important strategy to handle the positivity
assumption is to identify a common support region for retaining inferential units. The ignorability
assumption can be violated in observational studies, and as a result can lead to biased treatment effect
estimates. One widely recognized way to address such concerns is sensitivity analysis (Erik von Elm
et al., 2007; Hu et al., 2022b).

The CIMTx package provides a suite of functions to easily implement the causal estimation meth-
ods, many of which were recently developed (Lopez and Gutman, 2017; Hu et al., 2020a; Hu and
Gu, 2021). In addition, CIMTx provides strategies to define a common support region to address the
positivity assumption using IPTW, BART, VM and implements a flexible Monte Carlo sensitivity anal-
ysis approach (Hu et al., 2022b) for unmeasured confounding to address the ignorability assumption.
Finally, CIMTx offers detailed examples of how to simulate data adhering to the complex structures
in the multiple treatment setting. The simulated data can then be used by an analyst to compare the
performance of different causal estimation methods. Table 1 summarizes key functionalities of CIMTx
in comparison to recent R packages designed for causal inference with multiple treatments using
observational data. CIMTx provides a comprehensive set of functionalities: from simulating data to
estimating the causal effects to addressing causal assumptions and elucidating their ramifications.
To assist applied researchers and practitioners who work with observational data and wish to draw
inferences about the effects of multiple treatments, this article provides a comprehensive illustration
of the CIMTx package.
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Table 1: Comparisons of R packages for causal inference.

R packages
Continuous

Outcome
Binary

Outcome
Sensitivity
Analysis

Identification of
Common Support

Design
factors

Estimation
procedure

CIMTx ✕ ✔ ✔ ✔∗ ✔

RA, IPTW-SL
IPTW-Multinomial

IPTW-GBM
VM, BART

RAMS, TMLE

PSweight ✔ ✔ ✕ ✔ ✕

OW, IPTW-SL
IPTW-Multinomial

IPTW-GBM
twang ✔ ✕ ✔ ✕ ✕ IPTW-GBM

WeightIt ✔ ✕ ✕ ✔ ✕

CBPS, IPTW-SL
IPTW-Multinomial
IPTW-GBM,EBCW

IPTW-TSBW
CBPS ✔ ✔ ✕ ✕ ✕ CBPS
optweight ✔ ✕ ✕ ✕ ✕ IPTW-TSBW

✔: the feature is offered in the method; ✕ indicates otherwise; RA: Regression adjustment; IPTW: Inverse
probability of treatment weighting; BART: Bayesian additive regression trees; RAMS: Regression adjustment
with multivariate spline of generalized propensity score; VM: Vector matching; TMLE: Targeted maximum
likelihood estimation; CBPS: Covariate balancing propensity score; OW: Overlap weights; IPTW-Multinomial:
Inverse probability of treatment weighting with weight estimated by multinomial logistic regression; IPTW-
GBM: Inverse probability of treatment weighting with weight estimated by generalized boosted model;
IPTW-SL: Inverse probability of treatment weighting with weight estimated by super learner; IPTW-TSBW:
Inverse probability of treatment weighting with targeted stable balancing weights; EBCW: Empirical balancing
calibration weights.
∗: Identification of Common Support is only for VM, BART and IPTW related methods
References: PSweight (Version 1.1.4): Zhou et al. (2020);twang (Version 1.6) Ridgeway et al. (2020);WeightIt
(Version 0.10.2) Greifer (2020);CBPS (Version 0.22): Fong et al. (2021); optweight (Version 0.2.5): Greifer (2019);

2 Design factors for data simulation

CIMTx provides specific functions to simulate data possessing complex data characteristics of the
multiple treatment setting. Seven design factors are considered: (1) sample size, (2) ratio of units
across treatment groups, (3) whether the treatment assignment model and the outcome generating
model are linear or nonlinear, (4) whether the covariates that best predict the treatment also predict
the outcome well, (5) whether the response surfaces are parallel across treatment groups, (6) outcome
prevalence, and (7) degree of covariate overlap.

Design factors (1)–(5)

For the data generating process of treatment assignment, consider a multinomial logistic regression
model,

ln
P(W = 1)
P(W = T)

= δ1 + XξL
1 + QξNL

1

...

ln
P(W = T − 1)

P(W = T)
= δ(T−1) + XξL

(T−1) + QξNL
(T−1),

(1)

where Q denotes the nonlinear transformations and higher-order terms of the predictors X. ξL
1 , . . . , ξL

(T−1)

are vectors of coefficients for the untransformed versions of the predictors X and ξNL
1 , . . . , ξNL

(T−1) for
the transformed versions of the predictors captured in Q. The intercepts δ1, . . . , δ(T−1) can be specified
to create the corresponding ratio of units across T treatment groups. The T sets of potential response
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surfaces can be generated as follows:

E[Y(1)|X] = logit−1{τ1 + XγL
1 + QγNL

1 }
...

E[Y(T)|X] = logit−1{τT + XγL
T + QγNL

T },

(2)

where the coefficient setting γL
1 = . . . = γL

T , γNL
1 = . . . = γNL

T and τ1 ̸= . . . ̸= τT corresponds to the
parallel response surfaces, and by assigning different values to γL

w and γNL
w and setting τ1 = . . . =

τT = 0, nonparallel response surfaces are generated, which imply treatment effect heterogeneity. Note
that the predictors X and the transformed versions of the predictors Q in the treatment assignment
model (1) can be different than those in the outcome generating model (2) to create various degrees of
alignment. The observed outcomes are related to the potential outcomes through Yi = ∑wi∈W Yi(w).
Covariates X can be generated from user-specified data distributions.

Outcome prevalence

Values for parameters τ1, . . . , τT in model (2) can be chosen to create various outcome prevalence rates.
The outcomes are considered rare if the prevalence rate is < 5%.

Covariate overlap

With observational data, it is important to investigate how the sparsity of covariate overlap impacts
the estimation of causal effects. We can modify the formulation of the treatment assignment model (1)
to adjust the sparsity of overlap by including a multiplier parameter ψ (Hu et al., 2021a) as follows:

ln
P(W = 1)
P(W = T)

= δ1 + XψξL
1 + QψξNL

1

...

ln
P(W = T − 1)

P(W = T)
= δ(T−1) + XψξNL

(T−1) + QψξNL
(T−1),

(3)

where larger values of ψ correspond to increased sparsity degrees of overlap.

Implementation in CIMTx

We will first demonstrate the functionality of data_sim() in CIMTx to simulate data in the multiple
treatment setting using the above 7 design factors. We first use the data_sim() function to simulate a
dataset with the following characteristics: (1) sample size = 500, (2) ratio of units = 1:1:1 across three
treatment groups, (3) nonlinear treatment assignment and outcome generating models, (4) different
predictors for the treatment assignment and outcome generating mechanisms, (5) parallel response
surfaces, (6) outcome prevalence = (0.16, 0.51, 0.75) in three treatment groups with an overall rate
around 0.5 and (7) moderate covariate overlap. Note that for the design factor (6), we can adjust tau to
generate rare outcome events.

The outputs of the simulated data object are: (1) data$covariates for X, (2) data$w for treatment
indicators, (3) data$y for observed binary outcomes, (4) data$y_prev for the outcome prevalence rates,
(5) data$ratio_of_units for the proportions of units in each treatment group, (6) data$overlap_fig
for the visualization of covariate overlap via boxplots of the distributions of true generalized propensity
score (GPS).

library(CIMTx)
set.seed(1)
data <- data_sim(
sample_size = 500, n_trt = 3,
x = c("rnorm(0, 0.5)", # x1

"rbeta(2, .4)", # x2
"runif(0, 0.5)", # x3
"rweibull(1, 2)", # x4
"rbinom(1, .4)"), # x5

# linear terms in parallel response surfaces
lp_y = rep(".2*x1 + .3*x2 - .1*x3 - .1*x4 - .2*x5", 3),
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# nonlinear terms in parallel response surfaces
nlp_y = rep(".7*x1*x1 - .1*x2*x3", 3),
align = F,# different predictors used in treatment and outcome models
# linear terms in treatment assignment model
lp_w = c(".4*x1 + .1*x2 - .1*x4 + .1*x5", # w = 1

".2*x1 + .2*x2 - .2*x4 - .3*x5"), # w = 2
# nonlinear terms in treatment assignment model
nlp_w = c("-.5*x1*x4 - .1*x2*x5", # w = 1

"-.3*x1*x4 + .2*x2*x5"), # w = 2
tau = c(-1.5, 0, 1.5), delta = c(0.5, 0.5), psi = 1)

In this simulated dataset, the ratio of units (data$ratio_of_units) and outcome prevalences
(data$y_prev) are:

#> w
#> 1 2 3
#> 0.35 0.35 0.30

#> w y_prev
#> 1 1 0.16
#> 2 2 0.51
#> 3 3 0.75
#> 4 Overall 0.46

Figure 1: Moderate overlap with psi = 1. Each panel presents boxplots by treatment group of the true
generalized propensity score for one of the treatments, P(Wi = w |X = x) for every unit in the sample.
The left-hand panel presents treatment 1 (W = 1), the middle panel presents treatment 2 (W = 2), and
the right-hand panel presents treatment 3 (W = 3).

Figure 1 (data$overlap_fig) shows the distributions of true GPS for each treatment group, sug-
gesting moderate covariate overlap. We can change structures of the simulated data by modifying
arguments of the data_sim() function. For example, setting delta = c(1.5,0.5) yields unequal
sample sizes across treatment groups with the ratio of unit .6 : .2 : .2. Assigning smaller values to psi
can increase overlap: psi = 0.1 corresponds to a strong covariate overlap as shown in Figure 2.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 217

Figure 2: Strong overlap with psi = 0.1. Each panel presents boxplots by treatment group of the true
generalized propensity score for one of the treatments for every unit in the sample.

3 Methodology and implementation in CIMTx

Estimation of causal effects

Consider an observational study with N individuals, indexed by i = 1, . . . , N, drawn randomly
from a target population. Each individual was exposed to one and only one treatment, indexed by
W. The goal of this study is to estimate the causal effect of treatment W on a binary outcome Y.
There are a total of T possible treatments, and Wi = w if individual i is observed under treatment w,
where w ∈ W = {1, 2, . . . , T}. Pre-treatment measured confounders are indexed by Xi. Under the
potential outcomes framework, (Rubin, 1974; Holland, 1986), individual i has T potential outcomes
{Yi(1), . . . , Yi(T)} under each treatment of W . For each individual, at most one of the potential
outcomes is observed – the one corresponding to the treatment to which the individual is exposed. All
other potential outcomes are missing, which is known as the fundamental problem of causal inference
(Holland, 1986). In general, three standard causal identification assumptions (Rubin, 1980; Hu et al.,
2020a) need to be maintained in order to estimate the causal effects from observational data:

(A1) The stable unit treatment value assumption: there is no interference between units and there are
no different versions of a treatment.

(A2) Positivity: the GPS for treatment assignment e(Xi) = P(Wi = 1 | Xi) is bounded away from 0
and 1.

(A3) Ignorability: pre-treatment covariates Xi are sufficiently predictive of both treatment assignment
and outcome, p(Wi | Yi(1), . . . , Yi(T), Xi) = p(Wi | Xi).

The CIMTx package addresses assumption (A2) in the section of “Identification of a common support
region” and (A3) in the section of “Sensitivity analysis for unmeasured confounding”.

Causal effects can be estimated by summarizing functionals of individual-level potential outcomes.
For dichotomous outcomes, causal estimands can be the risk difference (RD), odds ratio (OR) or
relative risk (RR). For purposes of illustration, we define causal effects based on the RD. Let s1 and s2
be two subgroups of treatments such that s1, s2 ⊂ W and s1 ∩ s2 = ∅, and define |s1| as the cardinality
of s1 and |s2| of s2. Two commonly used causal estimands are the average treatment effect (ATE),
ATEs1,s2 , and the average treatment effect on the treated (ATT), for example, among those receiving s1,
ATTs1|s1,s2

. They are defined as:

ATEs1,s2 = E
[

∑w∈s1
Yi(w)

|s1|
− ∑w′∈s2

Yi(w′)
|s2|

]
,

ATTs1|s1,s2
= E

[
∑w∈s1

Yi(w)

|s1|
− ∑w′∈s2

Yi(w′)
|s2|

∣∣∣∣Wi ∈ s1

]
.

(4)

We now introduce six methods implemented in CIMTx for estimating the causal effects of multiple
treatments: RA, IPTW, BART, RAMS, VM and TMLE.

Regression adjustment Regression adjustment (Rubin, 1973; Linden et al., 2016), also known as
model-based imputation (Imbens and Rubin, 2015), uses a regression model to impute missing
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potential outcomes: what would have happened to a specific individual had this individual received a
treatment to which he or she not exposed. RA regresses the outcomes on treatment and confounders,

f (w, Xi) = E[Yi |Wi = w, Xi] = logit−1
{

β0 + β1w + β⊤2 Xi

}
, (5)

where β0 is the intercept, β1 is the coefficient for treatment and β2 is a vector of coefficients for
covariates Xi. From the fitted regression model (5), the missing potential outcomes for each individual
are imputed using the observed data. The causal effects can be estimated by contrasting the imputed
potential outcomes between treatment groups. CIMTx implements RA with the Bayesian logistic
regression model via the bayesglm() function of the arm package. For the ATE effects, we first average
the L predictive posterior draws { f l(w, Xi), l = 1, . . . , L} over the empirical distribution of {Xi}N

i=1,
and for the ATT effects using s1 as the reference group, over the empirical distribution of {Xi}i:Wi∈s1 .
We then take the difference of the averaged values between two treatment groups w ∈ s1 and w′ ∈ s2.
Inferences about treatment effect can be obtained based on the L posterior average treatment effects.
The 95% credible interval is calculated using the 2.5th percentile and the 97.5th percentile of the
posterior draws (Kruschke, 2014).

In our package CIMTx, we can specify method = "RA" and estimand = "ATE" in the ce_estimate()
function to get the ATE effects via RA:

ra_ate_res <- ce_estimate(y = data$y, x = data$covariates, w = data$w,
method = "RA", estimand = "ATE", ndpost = 100)

The estimates, standard errors and 95% confidence intervals for the causal estimands would be
printed using the summary() generic function:

summary(ra_ate_res)

#> $ATE12
#> EST SE LOWER UPPER
#> RD -0.28 0.04 -0.35 -0.21
#> RR 0.39 0.07 0.27 0.54
#> OR 0.26 0.06 0.17 0.40

#> $ATE13
#> EST SE LOWER UPPER
#> RD -0.60 0.06 -0.69 -0.47
#> RR 0.23 0.05 0.15 0.34
#> OR 0.07 0.02 0.03 0.13

#> $ATE23
#> EST SE LOWER UPPER
#> RD -0.31 0.04 -0.39 -0.25
#> RR 0.60 0.04 0.52 0.67
#> OR 0.25 0.05 0.17 0.34

Specifying estimand = "ATT" and setting reference_trt will get us the ATT effects:

ra_att_res <- ce_estimate(y = data$y, x = data$covariates,w = data$w, method = "RA",
estimand = "ATT", ndpost = 100, reference_trt = 1)

summary(ra_att_res)

#> $ATT12
#> EST SE LOWER UPPER
#> RD -0.28 0.05 -0.37 -0.18
#> RR 0.40 0.09 0.25 0.57
#> OR 0.27 0.08 0.16 0.44

#> $ATT13
#> EST SE LOWER UPPER
#> RD -0.59 0.06 -0.67 -0.46
#> RR 0.24 0.06 0.14 0.38
#> OR 0.07 0.03 0.03 0.13

Inverse probability of treatment weighting The idea of IPTW was originally introduced by Horvitz
and Thompson (1952) in survey research to adjust for imbalances in sampling pools. Weighting
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methods have been extended to estimate the causal effect of a binary treatment in observational
studies, and more recently reformulated to accommodate multiple treatments (Imbens, 2000; Feng
et al., 2012; McCaffrey et al., 2013). When interest is in estimating the pairwise ATE for treatment
groups s1 and s2, a consistent estimator of ATEs1,s2 is given by the weighted mean,

ÂTEs1,s2 =
∑N

i=1 Yi I(Wi ∈ s1)/|s1|
∑N

i=1 I(Wi ∈ s1)r(Wi, Xi)
− ∑N

i=1 Yi I(Wi ∈ s2)/|s2|
∑N

i=1 I(Wi ∈ s2)r(Wi, Xi)
, (6)

where r(w, Xi) is the weights satisfying r(w, Xi) = 1/P(Wi = w | Xi), and I(·) is the indicator
function. The CIMTx package provides three ways in which the weights can be estimated: (i)
multinomial logistic regression (Feng et al., 2012), (ii) generalized boosted model (GBM) (McCaffrey
et al., 2013), and (iii) super learner (Van der Laan et al., 2007). A challenge with IPTW is low GPS can
result in extreme weights, which may yield erratic causal estimates with large sample variances (Little,
1988; Kang et al., 2007). This issue is increasingly likely as the number of treatments increases. Weight
trimming or truncation can alleviate the issue of extreme weights (Cole and Hernán, 2008; Lee et al.,
2011)). CIMTx provides an argument for users to choose the percentile at which the weights should
be truncated. We briefly describe the three weight estimators.

(i) The multinomial logistic regression model for treatment assignment is as follows:

P(Wi = w|Xi) =
eα′

w Xi

1 + eα′
1Xi + . . . + eα′

T−1Xi
,

where α′w is a vector of coefficients for Xi corresponding to treatment w, and can be estimated
by using an iterative procedure such as generalized iterative scaling or iteratively reweighted
least squares.

(ii) GBM uses machine learning to flexibly model the relationships between treatment assignment
and covariates. It does this by growing a series of boosted classification trees to minimize
an exponential loss function. This process is effective for fitting nonlinear treatment models
characterized by curves and interactions. The procedure of estimating the GPS can be tuned to
find the GPS model producing the best covariate balance between treatment groups.

(iii) Super learner is an algorithm that creates the optimally weighted average of several machine
learning models. The machine learning models can be specified via the SL.library argument of
the SuperLearner package. This approach has been proven to be asymptotically as accurate as
the best possible prediction algorithm that is included in the library (Van der Laan et al., 2007).

IPTW can be implemented in CIMTx by setting a specific method and estimand. For IPTW
estimators, variance can be estimated via a robust sandwich-type variance estimator or a bootstrap
variance estimator. In practice, a bootstrap variance estimator is often recommended. (Austin, 2016).
The following shows the code to estimate ATE using IPTW with weights estimated by multinomial
logistic regression.

iptw_multi_res <- ce_estimate(y = data$y, x = data$covariates , w = data$w,
method = "IPTW-Multinomial", estimand = "ATE")

We can estimate the ATE effects with weights estimated by super learner and GBM by changing
the argument of method to "IPTW-SL","IPTW-GBM" respectively. We can then estimate the causal effects
and bootstrap confidence intervals by setting boot = TRUE.

iptw_sl_trim_ate_res <- ce_estimate(y = data$y, x = data$covariates , w = data$w,
method = "IPTW-SL", estimand = "ATE",
sl_library = c("SL.glm", "SL.glmnet", "SL.rpart"),
trim_perc = c(0.05,0.95), boot = TRUE,
nboots = 100, verbose_boot = F)

summary(iptw_sl_trim_ate_res)
#> $ATE12
#> EST SE LOWER UPPER
#> RD -0.34 0.05 -0.42 -0.24
#> RR 0.33 0.07 0.19 0.48
#> OR 0.20 0.06 0.10 0.33

#> $ATE13
#> EST SE LOWER UPPER
#> RD -0.59 0.05 -0.67 -0.46
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#> RR 0.22 0.05 0.13 0.34
#> OR 0.07 0.02 0.04 0.13

#> $ATE23
#> EST SE LOWER UPPER
#> RD -0.25 0.05 -0.34 -0.15
#> RR 0.67 0.06 0.57 0.79
#> OR 0.34 0.09 0.21 0.54

Bayesian additive regression trees BART (Chipman et al., 2010) is a likelihood-based machine
learning model and has been adapted into causal inference settings in recent years (Hill, 2011; Hu et al.,
2020a; Hu and Gu, 2021; Hu et al., 2021a,c). For a binary outcome, BART uses the probit regression

f (w, Xi) = E[Yi|Wi = w, Xi] = Φ
{ J

∑
j=1

gj(w, Xi; Tj, Mj)

}
, (7)

where Φ is the the standard normal cumulative distribution function, (Tj, Mj) indexes a single subtree
model in which Tj denotes the regression tree and Mj is a set of parameter values associated with
the terminal nodes of the jth regression tree, gj(w, Xi; Tj, Mj) represents the mean assigned to the
node in the jth regression tree associated with covariate value Xi and treatment level w, and the
number of regression trees J is considered to be fixed and known. BART uses regularizing priors for
(Tj, Mj) to keep the impact of each tree small. Although the prior distributions can be specified via the
ce_estimate() function of CIMTx, the default priors tend to work well and require little modification
in many situations (Hill, 2011; Hu et al., 2020a,b). The details of prior specification and Bayesian
backfitting algorithm for posterior sampling can be found in Chipman et al. (2010). The posterior
inferences about the treatment effects can be drawn in a similar way as described in the Regression
adjustment section.

Setting method = "BART" and specifiying the estimand = "ATE" or estimand = "ATT" of the
ce_estimate() function implements the BART method.

bart_res <- ce_estimate(y = data$y, x = data$covariates, w = data$w, method = "BART",
estimand = "ATT", ndpost=100, reference_trt = 1)

summary(bart_res)

#> $ATT12
#> EST SE LOWER UPPER
#> RD -0.38 0.07 -0.51 -0.25
#> RR 0.47 0.08 0.31 0.61
#> OR 0.21 0.07 0.10 0.35

#> $ATT13
#> EST SE LOWER UPPER
#> RD -0.56 0.07 -0.69 -0.43
#> RR 0.38 0.07 0.24 0.50
#> OR 0.06 0.03 0.02 0.13

Regression adjustment with multivariate spline of GPS For a binary outcome, the number of
outcome events can be small. The estimation of causal effects is challenging with rare outcomes
because the great majority of units contribute no information to explaining the variability attributable
to the differential treatment regimens in the health outcomes (Hu and Gu, 2021). Franklin et al. (2017)
found that regression adjustment on propensity score using one nonlinear spline performed best
with respect to bias and root-mean-squared-error in estimating treatment effects. Hu and Gu (2021)
proposed RAMS, which accommodates multiple treatments by using a nonlinear spline model for the
outcome that is additive in the treatment and multivariate spline function of the GPS as the following:

f (Wi, Xi) = E[Yi|Wi, Xi] = logit−1
{

βWi + h(R(Xi), ϕ)

}
, (8)

where h(·) is a spline function of the GPS indexed by ϕ and β = [β1, . . . , βT ]
⊤ are regression coeffi-

cients associated with the treatment Wi. The dimension of the spline function h(·) depends on the
number of treatments T. Confidence intervals of treatment effect estimates can be obtained using
nonparametric bootstrap for RAMS (Hu and Gu, 2021).
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In CIMTx, RAMS is implemented using the gam() function with tensor product smoother te()
between treatments from the mgcv package. Treatment effects can then be estimated by averaging
and contrasting the predicted f̂ (w, Xi) between treatment groups. The RAMS can be called by setting
method = "RAMS-Multinomial" and specifying the estimand estimand = "ATE" or estimand = "ATT".

rams_multi_res <- ce_estimate(y = data$y, x = data$covariates, w = data$w,
method = "RAMS-Multinomial", estimand = "ATE",
boot = TRUE, nboots = 100, verbose_boot = F)

Vector matching Lopez and Gutman (2017) proposed the VM algorithm, which matches individuals
with similar vector of the GPS. VM obtains matched sets using a combination of k-means clustering
and one-to-one matching with replacement within each cluster strata. Currently, VM is only designed
to estimate the ATT effects. In CIMTx , VM is implemented via method = "VM". The CIMTx does
not provide confidence intervals for treatment effect estimates because the authors of this method,
Lopez and Gutman (2017), did not provide an approach to estimate the sampling variance of the VM
estimator.

To implement VM in CIMTx, we set the reference group reference_trt = 1, the number of
clusters to form using k-means clustering n_cluster = 3.

vm_res <- ce_estimate(y = data$y, x = data$covariates, w = data$w, method = "VM",
estimand = "ATT", reference_trt = 1, n_cluster = 3)

The number of matched individuals is also stored in the output list:

vm_res$number_matched

#> 158

Targeted maximum likelihood estimation TMLE is a doubly robust approach that combines out-
come estimation, IPTW estimation, and a targeting step to optimize the parameter of interest with
respect to bias and variance. Rose and Normand (2019) implemented TMLE to estimate the ATE
effects of multiple treatments. CIMTx calls the R package tmle to implement TMLE for the ATE effects.
As suggested by Rose and Normand (2019), nonparametric bootstrap is used in CIMTx to obtain the
confidence interval of the treatment effect estimate.

Calling method = "TMLE" implements TMLE in CIMTx. We use nonparametric bootstrap to
estimate the 95% confidence intervals by setting boot = TRUE and nboots = 100.

tmle_res_boot <- ce_estimate(y = data$y, x = data$covariates, w = data$w, nboots = 100,
method = "TMLE", estimand = "ATE", boot = TRUE,
sl_library = c("SL.glm", "SL.glmnet", "SL.rpart"))

summary(tmle_res)

#> $ATE12
#> EST SE LOWER UPPER
#> RD -0.36 0.04 -0.45 -0.29
#> RR 0.30 0.05 0.21 0.39
#> OR 0.17 0.04 0.11 0.24

#> $ATE13
#> EST SE LOWER UPPER
#> RD -0.60 0.04 -0.67 -0.51
#> RR 0.20 0.03 0.15 0.28
#> OR 0.06 0.02 0.04 0.10

#> $ATE23
#> EST SE LOWER UPPER
#> RD -0.24 0.05 -0.34 -0.14
#> RR 0.68 0.06 0.57 0.79
#> OR 0.34 0.09 0.21 0.55
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Identification of a common support region

Turning to causal identification assumptions. If the positivity assumption (A2) is violated, problems
can arise when extrapolating over the areas of the covariate space where common support does not
exist. It is important to define a common support region to which the causal conclusions can be
generalized. In CIMTx, the identification of a common support region is offered in three methods:
IPTW, VM and BART.

For IPTW, one strategy is weight truncation, by which extreme weights that fall outside a specified
range limit of the weight distribution are set to the range limit. This functionality is offered in CIMTx
via the trim_perc argument. trim_perc, which can take two values – one for the lower- and one for
the upper-percentile of the weight distribution for trimming. Figure 3 shows the distributions of the
weights estimated by the three methods before and after weight trimming at the 5% and 95% of the
weight distribution.

plot(iptw_multi_res, iptw_sl_res, iptw_gbm_res, iptw_multi_trim_res,
iptw_sl_trim_res, iptw_gbm_trim_res)

Figure 3: Distributions of the inverse probability of treatment weights estimated by multinomial
logistic regression, super learner and generalized boosted models. Panel (a) shows results before
weight trimming. Panel (b) displays results after trimming the weights at 5% and 95% of the distribu-
tion. Super learner and the generalized boosted models produced less extreme weights compared to
multinomial logistic regression.

For VM, Lopez and Gutman (2017) proposed a rectangular support region defined by the max-
imum value of the smallest GPS and the minimum value of the largest GPS among the treatment
groups. Individuals that fall outside the region are discarded from the causal analysis. This feature is
automatically implemented with "VM" in CIMTx.

For BART, Hu et al. (2020a) supplied BART with a strategy to identify a common support region
for retaining inferential units, which is to discard individuals with a large variability in their predicted
potential outcomes. Specifically, for the ATT effects, any individual i with Wi = w will be discarded if

s fw′
i > maxj{s

fw
j }, ∀j : Wj = w, w′ ̸= w ∈ W , (9)

where s fw
j and s fw′

i respectively denote the standard deviation of the posterior distribution of the
potential outcomes under treatment W = w and W = w′, for a given sample j. For the ATE ef-
fects, the discarding rule in equation (9) is applied to each treatment group. Users can implement
the discarding rule by setting the discard argument in CIMTx. Using ATT1|1,2 as an example, 5
(bart_dis_res$n_discard) individuals in the reference group w = 1 were discarded from the simu-
lated data.

bart_dis_res <- ce_estimate(y = data$y, x = data$covariates, w = data$w,
method = "BART", estimand = "ATT", discard = TRUE,
ndpost = 100, reference_trt = 1)
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Sensitivity analysis for unmeasured confounding

The violation of the ignorability assumption (A3) can lead to biased treatment effect estimates. Sen-
sitivity analysis is useful in gauging how much the causal conclusions will be altered in response
to different magnitude of departure from the ignorability assumption. CIMTx implements a new
flexible sensitivity analysis approach developed by Hu et al. (2022b). This approach first defines a
confounding function for any pair of treatments (w, w′) as

c(w, w′, x) = E [Y(w) |W = w, X = x]− E
[
Y(w) |W = w′, X = x

]
. (10)

The confounding function, also viewed as the sensitivity parameter in a sensitivity analysis,
directly represents the difference in the mean potential outcomes Y(w) between those treated with
W = w and those treated with W = w′, who have the same level of x. If the ignorability assumption
holds, the confounding function will be zero for all w ∈ W . When treatment assignment is not
ignorable, the unmeasured confounding is present and the causal effect estimates using measured X
will be biased. Hu et al. (2022b) derived the form of the resultant bias as:

Bias(w, w′) =− pwc(w′, w, x) + pw′ c(w, w′, x)

− ∑
l:l∈W \{w,w′}

pl
{

c(w′, l, x)− c(w, l, x)
}

, (11)

where pw = P(W = w |X = x), w ̸= w′ ∈ W = {1, . . . , T}.
Table 2 demonstrates the plausible assumptions about the confounding functions and their in-

terpretations. There are three ways in which we can specify the prior for the confounding functions:
(i) point mass prior; (ii) re-analysis over a range of point mass priors (tipping point); (iii) full prior
with uncertainty specified. Since the new sensitivity analysis approach was developed within the
Bayesian framework, strategy (iii) offers an advantage of incorporating the statistical uncertainty due
to sampling and the uncertainty about the values of the sensitivity parameters. In strategy (i), a fixed
value is assumed for the sensitivity parameter. Strategy (ii) expands on strategy (i) and examines how
the causal conclusion would change when a range of values are assumed for the sensitivity parameter.
We will demonstrate all three cases of prior specifications with sa() function in CIMTx package.
Hu et al. (2022b) further discussed (a) strategies to specify the confounding functions that represent
our prior beliefs about the degrees of unmeasured confounding via the remaining variability in the
outcomes unexplained by measured X (Hogan et al., 2014); and (b) ways in which the causal effects
can be estimated adjusting for the presumed degree of unmeasured confounding.

Table 2: Interpretation of assumed priors on c(w, w′, x) and c(w′, w, x) for causal estimands based on
the risk difference, assuming the outcome is an adverse event.

Prior assumption Interpretation and implications of the assumptions
c(w, w′, x) c(w′, w, x)

> 0 < 0 Unhealthier individuals are treated with w.
< 0 > 0 Contrary to the above interpretation, unhealthier individuals are

treated with w′.
< 0 < 0 The observed treatment allocation between w′ and w is beneficial

relative to the alternative which reverses treatment assignment for
everyone.

> 0 > 0 Contrary to the above interpretation, the observed treatment allo-
cation between w′ and w is undesirable relative to the alternative
which reverses treatment assignment for everyone.

The proposed sensitivity analysis algorithm proceeds with the following steps (Hu et al., 2022b):

1. Fit a multinomial probit BART model (Kindo et al., 2016) f MBART(A |X) to estimate the GPS,
pl ≡ P(W = l |X = x) ∀l ∈ W , for each individual.

2. for w← 1 to T do
Draw M1 GPS p̃l1, . . . , p̃lM1

, ∀l ̸= w ∧ l ∈ W from the posterior predictive distribution of
f MBART(W |X) for each individual.

for m← 1 to M1 do
Draw M2 values η∗lm1, . . . , η∗lmM2

from the prior distribution of each of the confounding
functions c(w, l, x), for each l ̸= j ∧ l ∈ W .

end for
end for
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3. Compute the adjusted outcomes, YCF
i ≡ Yi − ∑T

l ̸=w P(Wi = l |Xi = x)c(w, l, x), for each
treatment w, for each of M1 M2 draws of { p̃l1, η∗l11, . . . , η∗l1M2

, . . . , p̃lM1
, η∗lM11, . . . , η∗lM1 M2

; l ̸=
w ∧ l ∈ W }.

4. Fit a BART model to each of M1 ×M2 sets of observed data with the adjusted outcomes YCF.

5. Estimate the combined adjusted causal effects and uncertainty intervals by pooling posterior
samples across model fits arising from the M1 ×M2 data sets.

We now demonstrate the Monte Carlo sensitivity analysis approach for unmeasured confounding
(Hu et al., 2022b). We first simulate a small dataset in a simple causal inference setting. There are two
binary confounders: X1 is measured and X2 is unmeasured.

set.seed(111)
data_SA <- data_sim(
sample_size = 100, n_trt = 3,
x = c("rbinom(1, .5)", # x1: measured confounder

"rbinom(1, .4)"), # x2: unmeasured confounder
lp_y = rep(".2*x1+2.3*x2", 3),# parallel response surfaces
nlp_y = NULL,
align = F, # w model is not the same as the y model
lp_w = c("0.2 * x1 + 2.4 * x2", # w = 1

"-0.3 * x1 - 2.8 * x2"),# w = 2
nlp_w = NULL,
tau = c(-2, 0, 2), delta = c(0, 0), psi = 1)

Next we implement the sensitivity analysis algorithm step-by-step.

1. Estimate the GPS for each individual. Specifically, we fit a multinomial probit BART model
regressing treatment assignment on covariates, using mbart2() function from BART package.
We set the number of posterior draws for the GPS (m1) to 50.

m1 <- 50; sample_gap <- 10
w_model <- BART::mbart2(x.train = data_SA$covariates, y.train = data_SA$w,

ndpost = m1 * sample_gap)

2. Then we draw the GPS for each individual from the fitted multinomial probit BART model.

gps <- array(w_model$prob.train[seq(1, m1 * sample_gap, sample_gap),],
dim = c(m1, # 1st dimension is M1

length(unique(data_SA$w)), # 2nd dimension is w
dim(data_SA$covariates)[1])) # 3rd dimension is sample size

dim(gps)

#> 50 3 100

The output of the posterior GPS is a three-dimensional array. The first dimension is the number
of posterior draws for the GPS (M1). The second dimension is the number of treatment W, and
the third dimension is the total sample size.

3. Specify the prior distributions and the number of draws (M2) for the confounding functions
c(w, w′, x). In this illustrative simulation example, we use the true values of the confounding
functions within each stratum of x1. This represents the strategy (i) point mass prior.

x1 <- data_SA$covariates[, 1, drop = F]
x2 <- data_SA$covariates[, 2, drop = F] # x2 as the unmeasured confounder
w <- data_SA$w
x1w_data <- cbind(x1, w)
Y1 <- data_SA$y_true[, 1]
Y2 <- data_SA$y_true[, 2]
Y3 <- data_SA$y_true[, 3]
y <- data_SA$y
# Calculate the true confounding functions within x1 = 1 stratum
c_1_x1_1 <- mean(Y1[w == 1 & x1 == 1]) - mean(Y1[w == 2 & x1 == 1]) # c(1,2)
c_2_x1_1 <- mean(Y2[w == 2 & x1 == 1]) - mean(Y2[w == 1 & x1 == 1]) # c(2,1)
c_3_x1_1 <- mean(Y2[w == 2 & x1 == 1]) - mean(Y2[w == 3 & x1 == 1]) # c(2,3)
c_4_x1_1 <- mean(Y1[w == 1 & x1 == 1]) - mean(Y1[w == 3 & x1 == 1]) # c(1,3)
c_5_x1_1 <- mean(Y3[w == 3 & x1 == 1]) - mean(Y3[w == 1 & x1 == 1]) # c(3,1)
c_6_x1_1 <- mean(Y3[w == 3 & x1 == 1]) - mean(Y3[w == 2 & x1 == 1]) # c(3,2)
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c_x1_1 <- cbind(c_1_x1_1, c_2_x1_1, c_3_x1_1, c_4_x1_1, c_5_x1_1,
c_6_x1_1)# True confounding functions among x1 = 1

The true values of the confounding functions within the stratum x1 = 0 can be calculated in a
similar way.

c_1_x1_0 <- mean(Y1[w == 1 & x1 == 0]) - mean(Y1[w == 2 & x1 == 0])# c(1,2)
c_2_x1_0 <- mean(Y2[w == 2 & x1 == 0]) - mean(Y2[w == 1 & x1 == 0])# c(2,1)
c_3_x1_0 <- mean(Y2[w == 2 & x1 == 0]) - mean(Y2[w == 3 & x1 == 0])# c(2,3)
c_4_x1_0 <- mean(Y1[w == 1 & x1 == 0]) - mean(Y1[w == 3 & x1 == 0])# c(1,3)
c_5_x1_0 <- mean(Y3[w == 3 & x1 == 0]) - mean(Y3[w == 1 & x1 == 0])# c(3,1)
c_6_x1_0 <- mean(Y3[w == 3 & x1 == 0]) - mean(Y3[w == 2 & x1 == 0])# c(3,2)
c_x1_0 <- cbind(c_1_x1_0, c_2_x1_0, c_3_x1_0, c_4_x1_0, c_5_x1_0, c_6_x1_0)

The true values of the confounding functions within the stratum of x1 can be calculated using
the helper function true_c_fun_cal() in our package.

true_c_fun <- true_c_fun_cal(x = x1, w = w)

4. Calculate the confounding function adjusted outcomes with the drawn values of GPS and
confounding functions.

i <- 1; j <- 1
ycf <- ifelse(
x1w_data[, "w"] == 1 & x1 == 1,
# w = 1, x1 = 1
y - (c_x1_1[i, 1] * gps[j, 2, ] + c_x1_1[i, 4] * gps[j, 3, ]),
ifelse(
x1w_data[, "w"] == 1 & x1 == 0,
# w = 1, x1 = 0
y - (c_x1_0[i, 1] * gps[j, 2, ] + c_x1_0[i, 4] * gps[j, 3, ]),
ifelse(
x1w_data[, "w"] == 2 & x1 == 1,
# w = 2, x1 = 1
y - (c_x1_1[i, 2] * gps[j, 1, ] + c_x1_1[i, 3] * gps[j, 3, ]),
ifelse(
x1w_data[, "w"] == 2 & x1 == 0,
# w = 2, x1 = 0
y - (c_x1_0[i, 2] * gps[j, 1, ] + c_x1_0[i, 3] * gps[j, 3, ]),
ifelse(
x1w_data[, "w"] == 3 & x1 == 1,
# w = 3, x1 = 1
y - (c_x1_1[i, 5] * gps[j, 1, ] + c_x1_1[i, 6] * gps[j, 2, ]),
# w = 3, x1 = 0
y - (c_x1_0[i, 5] * gps[j, 1, ] + c_x1_0[i, 6] * gps[j, 2, ])

)
)

)
)

)

5. Use the adjusted outcomes to estimate the causal effects.

bart_mod_sa <- BART::wbart(x.train = x1w_data, y.train = ycf, ndpost = 1000)
predict_1_ate_sa <- BART::pwbart(cbind(x1, w = 1), bart_mod_sa$treedraws)
predict_2_ate_sa <- BART::pwbart(cbind(x1, w = 2), bart_mod_sa$treedraws)
predict_3_ate_sa <- BART::pwbart(cbind(x1, w = 3), bart_mod_sa$treedraws)
RD_ate_12_sa <- rowMeans(predict_1_ate_sa - predict_2_ate_sa)
RD_ate_23_sa <- rowMeans(predict_2_ate_sa - predict_3_ate_sa)
RD_ate_13_sa <- rowMeans(predict_1_ate_sa - predict_3_ate_sa)
predict_1_att_sa <- BART::pwbart(cbind(x1[w == 1,], w = 1), bart_mod_sa$treedraws)
predict_2_att_sa <- BART::pwbart(cbind(x1[w == 1,], w = 2), bart_mod_sa$treedraws)
RD_att_12_sa <- rowMeans(predict_1_att_sa - predict_2_att_sa) # w=1 is the reference

Repeat steps 3 and 4 M1 × M2 times to form M1 × M2 datasets with adjusted outcomes. The
uncertainty intervals are estimated by pooling the posteriors across the M1 ×M2 model fits.
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The sa() function implements the sensitivity analysis approach while fitting the M1 ×M2 models
using parallel computation.

sa_res <- sa(m1 = 50, m2 = 1, x = x1, y = data_SA$y, w = data_SA$w, ndpost = 100,
estimand = "ATE", prior_c_function = true_c_fun, nCores = 3)

summary(sa_res)

#> EST SE LOWER UPPER
#> ATE_RD12 -0.44 0.10 -0.64 -0.23
#> ATE_RD13 -0.58 0.11 -0.80 -0.36
#> ATE_RD23 -0.14 0.12 -0.38 0.10

We compare the sensitivity analysis results to the naive estimators where we ignore the unmeasured
confounder X2, and to the results where we had access to X2.

bart_with_x2_res <- ce_estimate(y = data_SA$y, x = cbind(x1, x2), w = data_SA$w,
method = "BART", estimand = "ATE", ndpost = 100)

bart_without_x2_res <- ce_estimate(y = data_SA$y, x = x1, w = data_SA$w,
method = "BART", estimand = "ATE", ndpost = 100)

Figure 4 compares the estimates of ATE1,2, ATE2,3 and ATE1,3 from the three analyses. The
sensitivity analysis estimators are similar to the results that could be achieved had the unmeasured
confounder X2 been made available.

Figure 4: Estimates and 95% credible intervals for ATE1,2, ATE2,3 and ATE1,3

We can also conduct the sensitivity analysis for the ATT effects by setting estimand = "ATT".

sa_att_res <- sa(m1 = 50, m2 = 1, x = x1, y = data_SA$y, w = data_SA$w, ndpost = 100,
estimand = "ATT", prior_c_function = true_c_fun, nCores = 1,
reference_trt = 1)

summary(sa_att_res)

#> EST SE LOWER UPPER
#> ATT_RD12 -0.42 0.10 -0.63 -0.22
#> ATT_RD13 -0.57 0.11 -0.79 -0.35

Finally, we demonstrate the sa() function in a more complex data setting with 3 measured
confounders and 2 unmeasured confounders.

set.seed(1)
data_SA_2 <- data_sim(
sample_size = 100, n_trt = 3,
x = c( "rnorm(0, 0.5)", # x1

"rbeta(2, .4)", # x2
"runif(0, 0.5)", # x3
"rweibull(1, 2)", # x4 as one of the unmeasured confounders
"rbinom(1, .4)" ), # x5 as one of the unmeasured confounders

lp_y = rep(".2*x1 + .3*x2 - .1*x3 - 1.1*x4 - 1.2*x5", 3),
nlp_y = rep(".7*x1*x1 - .1*x2*x3", 3), # parallel response surfaces
align = FALSE,
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lp_w = c(".4*x1 + .1*x2 - 1.1*x4 + 1.1*x5", # w = 1
".2*x1 + .2*x2 - 1.2*x4 - 1.3*x5"), # w = 2,

nlp_w = c("-.5*x1*x4 - .1*x2*x5", # w = 1
"-.3*x1*x4 + .2*x2*x5"), # w = 2,

tau = c(0.5,-0.5,0.5), delta = c(0.5,0.5), psi = 2)

We have demonstrated the strategy (i) point mass prior, and now show how strategy (ii) re-analysis
over a range of point mass priors and (iii) full prior with uncertainty specified can be used. For strategy
(ii), we can specify the grid of the specific confounding function using seq() function. In the following
example, we will set c(1, 3) as a grid of 5 negative numbers from -0.6 to 0 with an increment of
0.15, and set c(3, 1) as a grid of 5 positive numbers from 0 to 0.6 with an increment of 0.15. This
specification encodes our belief that unhealthier (suppose the outcome is death) individuals are treated
with treatment option 3 (see Table 2) because those receiving w = 1 would have lower probability of
death to either treatment. The other confounding functions are drawn from a uniform distribution
(strategy (iii)).

c_grid <- c("runif(-.6, 0)", "runif(0,.6)", "runif(-.6,0)", # c(1,2), c(2,1), c(2,3)
"seq(-.6, 0,.15)", "seq(0,.6,.15)", "runif(0,.6)") # c(1,3), c(3,1), c(3,2)

SA_grid_res <- sa(y = data_SA_2$y, w = data_SA_2$w, x = data_SA_2$covariates[,-c(4,5)],
prior_c_function = c_grid, m1 = 1, nCores = 3, estimand = "ATE")

The sensitivity analysis results can be visualized via a contour plot. Figure 5 shows how the
estimate of ATE1,3 would change under different values of the two confounding functions c(1, 3, x)
and c(3, 1, x). Under the assumption that unhealthier patients are treated with w = 3, when the effect
of unmeasured confounding increases (moving up along the −45◦ line), the beneficial treatment effect
associated with w = 3 becomes more pronounced evidenced by larger estimates of ATE1,3.

plot(SA_grid_res, ATE = "1,3")

Figure 5: Contour plot of the confounding function adjusted ATE1,3. The blue lines report the
adjusted causal effect estimates corresponding to pairs of values for c(1, 3) and c(3, 1) spaced on
a grid (−0.6, 0)× (0, 0.6) incremented by 0.15, and under the prior distributions: c(1, 2), c(2, 3) ∼
U(−0.6, 0); c(2, 1), c(2, 3) ∼ U(0, 0.6).

4 Discussion

We contribute a comprehensive R package CIMTx suitable for causal analysis of observational data
with multiple treatments and a binary outcome. In this package, we introduce six methods for the
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estimation of causal effects, including both the classical approaches and machine learning based
methods. Drawing causal inference from non-experimental data inevitably involves structural causal
assumptions. CIMTx offers a unique set of features to address two key assumptions: positivity and
ignorability, using appropriate estimation procedures. Additionally, the CIMTx package provides
guidance to readers on how to simulate data possessing the data characteristics in the multiple
treatment setting. Detailed step-by-step examples are provided to demonstrate all methods. The
current version of the CIMTx package focuses on binary outcomes. For future research, developing
methods and R packages for causal inferences with more complex outcomes such as censored survival
outcomes (Hu et al., 2022a) could be a worthwhile contribution.
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