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Multivariate Subgaussian Stable
Distributions in R
by Bruce J. Swihart, John P. Nolan

Abstract We introduce and showcase mvpd (an acronym for multivariate product distributions), a
package that uses a product distribution approach to calculating multivariate subgaussian stable
distribution functions. The family of multivariate subgaussian stable distributions are elliptically
contoured multivariate stable distributions that contain the multivariate Cauchy and the multivariate
normal distribution. These distributions can be useful in modeling data and phenomena that have
heavier tails than the normal distribution (more frequent occurrence of extreme values). Application
areas include log returns for stocks, signal processing for radar and sonar data, astronomy, and hunting
patterns of sharks.

1 Introduction

Multivariate subgaussian stable distributions are the elliptically contoured subclass of general multi-
variate stable distributions. To begin a brief introduction to multivariate subgaussian stable distribu-
tions, we start with univariate stable distributions which may be more readily familiar and accessible.
Univariate stable distributions are a flexible family and have four parameters, α, β, γ, and δ, and at
least eleven parameterizations (!) which has led to much confusion (Nolan, 2020). Here we focus on the
1-parameterization of the Nolan style. Location is controlled by δ, scale by γ ∈ (0, ∞), while α ∈ (0, 2]
and β ∈ [−1, 1] can be considered shape parameters. Being a location-scale family, a “standard" stable
distribution will be when γ = 1 and δ = 0. A solid introduction to univariate stable distributions can
be found in the recent textbook Univariate Stable Distributions (Nolan, 2020) and its freely available
Chapter 1 online (https://edspace.american.edu/jpnolan/stable/).

Univariate symmetric stable distributions are achieved by setting the skew parameter β = 0, which
gives symmetric distributions that are bell-shaped like the normal distribution. A way to remember
that these are called subgaussian is to see that as α ∈ (0, 2] increases from 0 it looks more and more
normal until it is normal for α = 2 (Figure 1). The sub in subgaussian refers to the tail behavior in
that the rate of decrease in the tails is less than that of a gaussian – note how the tails are above the
gaussian for α < 2 in Figure 1. Equivalently, as α decreases, the tails get heavier. A notable value of α
for subgaussian distributions is α = 1 which is the Cauchy distribution. The Cauchy and Gaussian
distribution are most well-known perhaps because they have closed-form densities, which all other
univariate symmetric stable distributions lack.

Therefore, numerically computing the densities is especially important for application. For uni-
variate stable distributions, there is open-source software to compute modes, densities, distributions,
quantiles and random variates, including a number of R packages (stabledist, stable, libstableR, for
example – see CRAN Task View: Probability Distributions for more).

As generalizations of the univariate stable distribution, multivariate stable distributions are a
very broad family encompassing many complicated distributions (e.g. support in a cone, star shaped
level curves, etc.). A subclass of this family is the multivariate subgaussian stable distributions.
Multivariate subgaussian stable distributions are symmetric and elliptically contoured. Similar to the
aforementioned univariate symmetric stable distributions, the value α = 2 is the multivariate gaussian
and α = 1 is the multivariate Cauchy. Being that they are elliptically contoured and symmetric makes
them applicable to finance where joint returns have an (approximately) elliptical joint distribution
(Nolan, 2020). Signal processing, such as with radar and sonar data, tasks itself with filtering impulsive
noise from a signal of interest and linear filters in the presence of extreme values tend to underperform,
whereas using multivariate stable distributions have been fruitful (Tsakalides and Nikias, 1998; Nolan,
2013). The (multivariate) Holtsmark distribution is a multivariate subgaussian stable distribution
(α = 1.5) that has applications in astronomy, astrophysics, and plasma physics. Lévy flights, which are
random walks with steps having a specific type of multivariate subgaussian stable distribution, are
used to model interstellar turbulence as well as hunting patterns of sharks (Boldyrev and Gwinn, 2003;
Sims et al., 2008).

For multivariate subgaussian stable distributions, the parameter α is a scalar as in the univariate
family, while δ (location) becomes a d-dimensional vector and the analogue for the scale parameter is a
d× d shape matrix Q. The shape matrix Q needs to be semi-positive definite and is neither a covariance
matrix nor covariation matrix. An introduction to multivariate subgaussian stable distributions can be
found in Nolan (2013).

Including mvpd, the focus of this paper, if one wanted R functions to interact with multivariate
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Figure 1: The lower the value of alpha, the heavier the tails. The superimposed standard univariate
subgaussian densities for selected values of alpha are displayed. Commonly known distributions
include the Cauchy (alpha=1) and normal (alpha=2).

Functionality alphastable stable mvpd
random variates ✓ ✓ ✓
parameter estimation ✓ ✓ ✓
density ✓ ✓ ✓
cumulative distribution (monte carlo) x ✓ ✓
cumulative distribution (integrated) x x ✓
multivariate subgaussian stable ✓ ✓ ✓
multivariate independent stable x ✓ x
multivariate isotropic stable x ✓ x
multivariate discrete-spectral-measure stable x ✓ x

Table 1: Summary of functionality among R packages. Note: The stable package referenced is not
the one on CRAN – it is proprietary software produced by the company Robust Analysis.

subgaussian stable distributions they have three R package options. These packages are compared in
Table 1 and detailed below:

• alphastable provides random univariate and multivariate generation, density calculation, and
parameter fitting (albeit for modest sample sizes) via an EM algorithm method (Teimouri et al.,
2018, 2019).

• stable provides support for all stable univariate distributions and multivariate subgaussian
stable distributions. Other cases are handled, to varying degrees, such as isotropic, independent,
and spectral measure. For the purposes of this paper, we will note that the stable package
provides random variate generation, density calculation, parameter fitting, distribution calcula-
tions via Monte Carlo methods for multivariate subgaussian stable distributions 2 ≤ d ≤ 100.
The stable package is developed by Robust Analysis and is available for purchase or through
a software grant at http://www.robustanalysis.com/. It is distinct from the univariate stable
package on CRAN authored by Jim Lindsey.

• mvpd provides random variate generation, density calculation, parameter fitting, distribution
function calculations via Monte Carlo methods, as well as an integrated method for distribution
calculations that allows tolerance specification.

While the lack of a tractable density and distribution function impedes directly calculating mul-
tivariate subgaussian stable distributions, it is possible to represent them in terms of a product
distribution for which each of the two distributions in the product has known numerical methods
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developed and deployed (in R packages on CRAN). This paper utilizes this approach. The next section
covers some product distribution theory.

2 Product distribution theory

This section reviews some known results of product distributions and describes our notation. Allow
univariate positive random variable A with density fA(x) and d-dimensional random variable G to
have density fG(x) and distribution function FG(v, w) = P(v < x ≤ w). Consider the d−dimensional
product H = A1/2G. From standard product distribution theory we know the density fH is represented
by 1-dimensional integral:

fH(x) =
∫ ∞

0
fB(u) fG(x/u)

1
|u|d

du , (1)

where B = A1/2 so that fB(x) := 2x fA(x2). Consequently the distribution function FH (with lower
bound v and upper bound w) of the r.v. H is represented by

FH(v, w) =
∫ ∞

0
fB(u)

∫ w1

v1

· · ·
∫ wd

vd

fG(t/u)
1

|u|d
dt1 . . . dtddu , (2)

=
∫ ∞

0
fB(u)

∫ w1/u

v1/u
· · ·

∫ wd/u

vd/u
fG(t)dt1 . . . dtddu ,

=
∫ ∞

0
fB(u)FG(v/u, w/u)du. (3)

Take note of the representation in (1) and (3). From a practical standpoint, if we have a (numerical)
way of calculating fA, fG, and FG we can calculate fH and FH . Different choices can be made for fA,
fG, and FG in this general setup. The choices required for multivariate subgaussian stable distributions
are covered in the following Implementation section.

Multivariate elliptically contoured stable distributions

From Nolan (2013), H is a d-dimensional subgaussian stable distribution if A is a positive univariate
stable distribution

A ∼ S

(
α

2
, 1, 2 cos

(πα

4

)( 2
α ) , 0; 1

)
and G is a d-dimensional multivariate normal G ∼ MVN(0, Q), where the shape matrix Q is positive
semi-definite. This corresponds to Example 17 in Hamdan (2000).

3 Implementation

Using the aforementioned theory of product distributions, we can arrive at functions for a mul-
tivariate subgaussian stable density and distribution function thanks to established functions for
univariate stable and multivariate normal distributions. A key package in the implementation of
multivariate subgaussians in R is mvtnorm (Genz et al., 2020; Genz and Bretz, 2009). In the basic
product-distribution approach of mvpd, fG and FG are mvtnorm::dmvnorm and mvtnorm::pmvnorm
respectively. Allow the density of A, fA (to be numerically calculated in R) using stable::dstable or
libstableR::stable_pdf (del Val et al., 2017). Presented as pseudo-code:

• fA(x, α) := libstableR::stable_pdf(x, pars =
(

α
2 , 1, 2 cos{πα

4 }(
2
α ), 0

)
; pm = 1)

• fB(x, α) := 2x fA(x2, α)

• fH(x, α, Q) =
∫ ∞

0 fB(u; α)× mvtnorm::dmvnorm(x/u, sigma = Q) 1
|u|d du

• FH(v, w, α, Q) =
∫ ∞

0 fB(u; α)× mvtnorm::pmvnorm(lower = v/u, upper = w/u, sigma = Q)du

The (outermost) univariate integral is numerically evaluated with stats::integrate.
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Figure 2: A lattice of scatterplots of 5,000 draws from a 5-dimensional subgaussian stable distribution,
showing the pairwise relations. The outliers from the cloud in each plot demonstrate the heavy tails.

4 Quick start

We present an outline of the [dpr]mvss (multivariate subgaussian stable) functions, and walk through
the code in the subsequent sections. As an overview, we generate 5000 5-dimensional subgaussian
variates with α = 1.7 and an “exchangeable” shape matrix using rmvss. We then recover the param-
eters with an illustrative call to fit_mvss. We can calculate the density (dmvss) at the center of the
distribution and get a quick estimate of the distribution between -2 and 2 for each member of the
5-dimensional variate using pmvss_mc. We investigate a refinement of that quick distribution estimate
using pmvss.

5 Random variates generation with rmvss

We’ll generate 5000 5-dimensional subgaussian random variates with a specified α and shape matrix.
They are pictured in Figure 2. In the next section we will fit a distribution to these.

R> library(mvpd)
## reproducible research sets the seed
R> set.seed(10)
## specify a known 5x5 shape matrix
R> shape_matrix <- structure(c(1, 0.9, 0.9, 0.9, 0.9,

0.9, 1, 0.9, 0.9, 0.9,
0.9, 0.9, 1, 0.9, 0.9,
0.9, 0.9, 0.9, 1, 0.9,
0.9, 0.9, 0.9, 0.9, 1),
.Dim = c(5L, 5L))

## generate 5000 5-dimensional random variables
## with alpha = 1.7 and shape_matrix
R> X <- mvpd::rmvss(n = 5000, alpha = 1.7, Q = shape_matrix)
## plot all pairwise scatterplots (Figure 2)
R> copula::pairs2(X)

The ability to simulate from a distribution is useful for running simulations to test different
scenarios about the phenomena being modeled by the distribution, as well as in this case, to generate
a dataset with a known shape matrix and alpha to show our fitting software (next section) can recover
these parameters. Our quick start code begins with generating a dataset from a known alpha and
shape matrix. However, often a practitioner might start with a dataset from which parameters are
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estimated and then random samples can be generated from the distribution specified with those
parameters to learn more about the data generating distribution and the behavior of the phenomena.

6 Fitting a multivariate subgaussian distribution with fit_mvss

If you have data in a n × d matrix X and want to fit a d-dimensional multivariate subgaussian
distribution to those data, then fit_mvss will return estimates of the parameters using the method
outlined in Nolan (2013). The method involves fitting univariate stable distributions for each column
and assessing the resulting α, β and δ parameters. The column-wise α estimates should be similar
and the column-wise β estimates close to 0. This column-wise univariate fitting is carried out by
libstableR::stable_fit_mle2d(W,parametrization = 1L) and the off diagonal elements can be
found due to the properties of univariate stable distributions (see Nolan (2013)). For your convenience,
the univariate column-wise estimates of α, β, γ and δ are returned in addition to the raw estimate
of the shape matrix and the nearest positive definite shape matrix (as computed by Matrix::nearPD
applied to the raw estimate).

## take X from previous section and estimate
## parameters for the data generating distribution
R> fitmv <- mvpd::fit_mvss(X)
R> fitmv
$univ_alphas
[1] 1.698617 1.708810 1.701662 1.696447 1.699372

$univ_betas
[1] -0.02864287 -0.04217262 -0.08444540 -0.06569907 -0.03228573

$univ_gammas
[1] 1.016724 1.000151 1.008055 1.012017 1.002993

$univ_deltas
[1] -0.03150732 -0.06525291 -0.06528644 -0.07730645 -0.04539796

$mult_alpha
[1] 1.700981

$mult_Q_raw
[,1] [,2] [,3] [,4] [,5]

[1,] 1.0337276 0.9034599 0.8909654 0.8937814 0.8647089
[2,] 0.9034599 1.0003026 0.9394846 0.9072368 0.8535091
[3,] 0.8909654 0.9394846 1.0161748 0.8929937 0.9037467
[4,] 0.8937814 0.9072368 0.8929937 1.0241777 0.9281714
[5,] 0.8647089 0.8535091 0.9037467 0.9281714 1.0059955

$mult_Q_posdef
[,1] [,2] [,3] [,4] [,5]

[1,] 1.0337276 0.9034599 0.8909654 0.8937814 0.8647089
[2,] 0.9034599 1.0003026 0.9394846 0.9072368 0.8535091
[3,] 0.8909654 0.9394846 1.0161748 0.8929937 0.9037467
[4,] 0.8937814 0.9072368 0.8929937 1.0241777 0.9281714
[5,] 0.8647089 0.8535091 0.9037467 0.9281714 1.0059955

An alternative for fitting this distribution is alphastable::mfitstab.elliptical(X,1.70,shape_matrix,rep(0,5))
and takes 8 minutes (and requires initial values for alpha, the shape matrix, and delta). This analysis
with fit_mvss(X) took under 2 seconds. For a run of n=1e6,d=20, fit_mvss scales well, taking 60
minutes.

Once the distribution has been fitted, fitmv$mult_alpha, fitmv$mult_Q_posdef, and fitmv$univ_deltas,
can be used as the alpha, Q, and delta arguments, respectively, in calls to dmvss to calculate densities
and pmvss_mc or pmvss to calculate probabilities. They could also be passed to rmvss to generate
random variates for simulations.
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7 Density calculations with dmvss

We can calculate the density at the center of the distribution.

## density calculation
R> mvpd::dmvss(x = fitmv$univ_deltas,
+ alpha = fitmv$mult_alpha,
+ Q = fitmv$mult_Q_posdef,
+ delta = fitmv$univ_deltas)[1]
$value
[1] 0.1278952

8 Distribution calculation by Monte Carlo with pmvss_mc

The method of calculating the distribution by Monte Carlo relies on the ability to produce random
variates quickly and then calculate what proportion of them fall within the specified bounds. To
generate multivariate subgaussian stable variates, a scalar A is drawn from

libstableR::stable_rnd(n, pars =
(α

2
, 1, 2 cos{πα

4
}(

2
α ), 0

)
; pm = 1)

and then the square-root of A multiplied by a draw G from

mvtnorm::rmvnorm(n, sigma = Q).

This allows for quick calculations but to increase precision requires generating larger number of
random variates. For instance, if we wanted the distribution between -2 and 2 for each dimension, we
could generate 10,000 random variates and then see how many of them fall between the bounds. It
looks like 6,820 variates were within the bounds:

## first-run of pmvss_mc
R> mvpd::pmvss_mc(lower = rep(-2,5),
+ upper = rep( 2,5),
+ alpha = fitmv$mult_alpha,
+ Q = fitmv$mult_Q_posdef,
+ delta = fitmv$univ_deltas,
+ n = 10000)
[1] 0.6820

We run it again and the answer changes:

## second-run of pmvss_mc
R> mvpd::pmvss_mc(lower = rep(-2,5),
+ upper = rep( 2,5),
+ alpha = fitmv$mult_alpha,
+ Q = fitmv$mult_Q_posdef,
+ delta = fitmv$univ_deltas,
+ n = 10000)
[1] 0.6742

With the Monte Carlo method, precision is not specified and no error is calculated. The next
section introduces how to use the integrated distribution function FH from product theory and specify
precision.

9 Distribution function calculation via integration with pmvss

There are three inexact entities involved in the distribution calculation FH as found in pmvss: the
numerically calculated FG, the numerically calculated fA, and the outer numerical integration.

The outer integral by integrate assumes the integrand is calculated without error, but this is not
the case. See the supplementary materials section “Thoughts on error propagation in pmvss” for justifi-
cation and guidance for specifying the values of abs.tol.si, abseps.pmvnorm, and maxpts.pmvnorm.
The first of these three arguments is passed to the abs.tol argument of stats::integrate and
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controls the absolute tolerance of the numerically evaluated outer 1-dimensional integral. The re-
maining two are passed to maxpts and abseps of mvtnorm::GenzBretz and control the accuracy of
mvtnorm::pmvnorm.

Briefly, our experience suggests that to be able to treat abs.tol.si as the error of the result,
abseps.pmvnorm should be 1e-2 times smaller than the specified abs.tol.si which may require a
multiple of the default 25000 default of maxpts.pmvnorm – which will lead to more computational
intensity and longer computation times as demonstrated below (as conducted on Macbook Intel Core
i7 chip with 2.2 GHz):

## abs.tol.si abseps.pmnvorm maxpts Time
## 1e-01 1e-03 25000
## 1e-02 1e-04 25000*10 3 sec
## 1e-03 1e-05 25000*100 22 sec
## 1e-04 1e-06 25000*1000 4 min
## 1e-05 1e-07 25000*10000 26 min
## 1e-06 1e-08 25000*85000 258 min

With this in mind, the output from the Quick Start code is:

## precision specified pmvss
R> mvpd::pmvss(lower = rep(-2,5),
+ upper = rep( 2,5),
+ alpha = fitmv$mult_alpha,
+ Q = fitmv$mult_Q_posdef,
+ delta = fitmv$univ_deltas,
+ abseps.pmvnorm = 1e-4,
+ maxpts.pmvnorm = 25000*10,
+ abs.tol.si = 1e-2)[1]
$value
[1] 0.6768467

Both pmvss and pmvss_mc take infinite limits. Since pmvss_mc calculates how many random variates
Hi, i ∈ {1, . . . , n} are within the bounds, pmvss might be preferred to pmvss_mc when calculating the
tails of the distribution, unless n is made massively large.

10 Speed and accuracy trials

We provide a sense of accuracy and computational time trade-offs with a modest simulation experiment
(Figure 3, see supplementary materials for code). Estimating these distributions is inherently difficult –
difficult in the sense that expecting accuracy farther out than the 5th decimal place for distribution
functions is unreasonable. Therefore, we will define our “gold standard" targets for accuracy evaluation
as the numerical density produced by Robust Analysis’ dstable integrated by cubature::hcubature()
with tolerance tol=1e-5.

We will time three functions using bench::mark() in different scenarios. The first function is Robust
Analysis’ pmvstable.MC() (abbreviated as RAMC, below) and the other two are mvpd::pmvss_mc()
(abbreviated as PDMC, below) and mvpd::pmvss() (abbreviated as PD, below). Fixing α = 1.7 and
dimension d = 4, the different test scenarios will involve a low level of pairwise association vs. a high
level in a shape matrix of the form:

• Qexch =


1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1

 for ρ = 0.1 and ρ = 0.9.

We calculate the distributions in the hypercube bounded by (-2,2) in all four dimensions. The
gold standard for the ρ = 0.1 case was 0.5148227 and 0.7075104 for the ρ = 0.9 case. The numerical
integration of the former took 3 minutes whereas the latter took 1 hour – which portends that higher
associations involve more computational difficulty. We back-calculated the number of samples needed
to give the methods involving Monte Carlo (RAMC and PDMC) a 95% CI width that would fall within
0.001 and 0.0001 of the gold standard, and display the scatter plots of estimate and computational time
in (Figure 3).

From Figure 3, some high-level conclusions can be drawn: higher pairwise associations require
more computational resources and time, increasing the precision requires more computational re-
sources and time, and sometimes the Monte Carlo methods are faster than PD, sometimes not. PD
seems to be quite precise and possibly underestimating the gold standard.
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Of course, we cannot test every possible instance of alpha and shape matrices for all d dimensions,
integration limits, and specified precision. In our experience, the computational intensity is an
interplay between alpha, the integration limits, the shape matrix structure, delta, and the requested
precision. We provide the code that we used for our simulation study and encourage the readers who
need to explore these issues for their particular integral to edit the code accordingly.

Figure 3: Speed and accuracy of distribution calculations. Consider a multivariate subgaussian stable
distribution of d = 4, α = 1.7, with limits of integration being (-2,2) for each dimension. In panels A)
and B) we have an exchangeable shape matrix with ρ = 0.1, and specified precision of 1e-3 and 1e-4
for pmvss (PD), respectively. Analogously, panels C) and D) display results for an exchangeable shape
matrix with ρ = 0.9. Concurrently in each panel, are the results for Robust Analysis’ pmvstable.MC
(RAMC) and pmvss_mc (PDMC) with enough simulated variates to produce a 95 CI width that matches
the precision. Each point is an independent call and the calculated distribution is on the Y-axis vs the
median benchmark time on the X-axis. There are 20 calls per function per scenario. The dotted line is
the 1e-3 boundary of the gold standard and the dashed line is the 1e-4 boundary.

11 Bonus: faster distribution calculations via a modified QRSVN algorithm

Insight: multivariate student’s t distributions are a product distribution

The derivation of the univariate student’s t distribution is commonly motivated with a ratio of two
quantities each involving random variables: a standard normal Z in the numerator and a V ∼ χ2(ν)
in the denominator:

Tν =
Z√
V/ν

= Z
√

ν

V
,

but what often is left out of the instruction is that Aν = ν
V ∼ IG

(
ν
2 , ν

2
)

has an inverse-gamma
distribution, where X ∼ IG (r, s) with rate r, shape s, and density f (x; r, s) = rs

Γ(s) x(−s−1)e−r/x. This

implies we equivalently have a product distribution of the type Tν = A1/2
ν Z. This notion holds for

the multivariate case as well, where for G ∼ MVN(0, Q) as before and Aν is an inverse-gamma
with r = s = ν/2 then Hν = A1/2

ν G is a d-dimensional student’s t distribution with ν degrees of
freedom and covariance matrix Q. This corresponds to Example 16 in in Hamdan (2000), and is
equivalent to the ‘chi-normal’ (χ-Φ) formulation in Genz and Bretz (2002) (earning the namesake
‘χ‘ due to the fact that V ∼ χ2(ν) =⇒

√
V ∼ χ(ν)). For d ≥ 4, the QRSVN algorithm (https:

//www.math.wsu.edu/faculty/genz/software/fort77/mvtdstpack.f) is used in mvtnorm::pmvt. The
reordering and rotational methodology that makes pmvtnorm::pmvt so fast is independent of the part
that generates

√
1/Av random variates. This means that if one replaced

√
1/Av with

√
1/A variates,

mvtnorm::pmvt would produce not multivariate student’s t distributions but multivariate subgaussian
stable distributions. We implement a modified QRSVN algorithm for multivariate subgaussian stable
distributions in a separate package, mvgb in honor of Genz and Bretz.
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Implementation of mvgb::pmvss

Generating random variates of A requires two independent uniform random variates, and only one of
which is Quasi-Random in our implementation. Regardless, this modified QRSVN approach enables
the potential advantage of the rotation of the distribution and the reordering of integration limits. The
takeaway is, that for similar precision, mvgb::pmvss may be much faster than mvpd::pmvss, such as 10
seconds vs 500 seconds for 4 digits of precision in the following example:

R> set.seed(321)
R> library(mvgb)
R> tictoc::tic()
## probability calculated by mvgb takes about 10 seconds
R> gb_4digits <-
+ mvgb::pmvss(lower = rep(-2,5),
+ upper = rep( 2,5),
+ alpha = fitmv$mult_alpha,
+ Q = fitmv$mult_Q_posdef,
+ delta = fitmv$univ_deltas,
+ abseps = 1e-4,
+ maxpts = 25000*350)
R> tictoc::toc()
9.508 sec elapsed
> gb_4digits
[1] 0.6768
## now calculate same probability with similar precision
## in mvpd
R> tictoc::tic()
## probability calculated by mvpd takes about 10 MINUTES
R> pd_4digits <-
+ mvpd::pmvss(lower = rep(-2,5),
+ upper = rep( 2,5),
+ alpha = fitmv$mult_alpha,
+ Q = fitmv$mult_Q_posdef,
+ delta = fitmv$univ_deltas,
+ abseps.pmvnorm = 1e-6,
+ maxpts.pmvnorm = 25000*1000,
+ abs.tol.si = 1e-4)
R> tictoc::toc()
518.84 sec elapsed
R> pd_4digits[1]
[1] 0.6768

Although currently on CRAN, we include mvgb::pmvss here as a proof-of-concept and as an area
of future work. More research is needed into its computational features and accuracy, and this is
encouraged by promising preliminary results. Additionally, more research may be warranted for other
R package methodologies that use a multivariate Gaussian, Cauchy, or Holtsmark distribution to
generalize to a multivariate subgaussian stable distribution (a helpful reviewer suggested generalizing
the multivariate distributions as used in fHMM (Oelschläger and Adam, 2021) and generalizing
the normally mixed probit model in RprobitB). For more about elliptically contoured multivariate
distributions in general, consult Fang and Anderson (1990); Fang et al. (2018).
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