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Will the Real Hopkins Statistic Please
Stand Up?
by Kevin Wright

Abstract Hopkins statistic (Hopkins and Skellam 1954) can be used to test for spatial randomness of
data and for detecting clusters in data. Although the method is nearly 70 years old, there is persistent
confusion regarding the definition and calculation of the statistic. We investigate the confusion and its
possible origin. Using the most general definition of Hopkins statistic, we perform a small simulation
to verify its distributional properties, provide a visualization of how the statistic is calculated, and
provide a fast R function to correctly calculate the statistic. Finally, we propose a protocol of five
questions to guide the use of Hopkins statistic.

1 Introduction

Hopkins and Skellam (1954) introduced a statistic to test for spatial randomness of data. If the null
hypothesis of spatial randomness is rejected, then one possible interpretation is that the data may be
clustered into distinct groups. Since one of the problems with clustering methods is that they will
always identify clusters, (even if there are no meaningful clusters in the data), Hopkins statistic can be
used to determine if there are clusters in the data before applying clustering methods. In the description
below on how to calculate Hopkins statistic, we follow the terminology of earlier authors and refer to
an “event” as one of the existing data values in a matrix X, and a “point” as a new, randomly chosen
location. For clarity in the discussions below we make a distinction between D, the dimension of the
data, and d, the exponent in the formula for Hopkins statistic.

Let X be a matrix of n events (in rows) and D variables (in columns). Let U be the space defined
by X.

Hopkins statistic is calculated with the following algorithm:

1. Sample at random one of the existing events from the data X. Let wi be the Euclidean distance
from this event to the nearest-neighbor event in X.

2. Generate one new point uniformly distributed in U. Let ui be the Euclidean distance from this
point to the nearest-neighbor event in X.

3. Repeat steps (1) and (2) m times, where m is a small fraction of n, such as 10%.
4. Calculate H = ∑m

i=1 ud
i
/

∑m
i=1(u

d
i + wd

i ), where d = D.

Because of sampling variability, it is common to calculate H multiple times and take the average.
Under the null hypothesis of spatial randomness, this statistic has a Beta(m,m) distribution and will
always lie between 0 and 1. The interpretation of H follows these guidelines:

• Low values of H indicate repulsion of the events in X away from each other.
• Values of H near 0.5 indicate spatial randomness of the events in X.
• High values of H indicate possible clustering of the events in X. Values of H > 0.75 indicate a

clustering tendency at the 90% confidence level (Lawson and Jurs 1990).

2 A short history of Hopkins statistic

There exists considerable confusion about the definition of Hopkins statistic in scientific publications.
In particular, when calculating Hopkins statistic, there are 3 different values of the exponent d (in step
4 above) that have been used in statistical literature: d = 1, d = 2, and the generalized d = D. Here is
a brief timeline of how this exponent has been presented.

• 1954: Hopkins and Skellam (1954) introduced Hopkins statistic in a two-dimensional setting.
The formula they present is in a slightly different form, but is equivalent to ∑ u2

i
/

∑(u2
i + w2

i ).
The exponent here is d = 2.

• 1976: Diggle, Besag, and Gleaves (1976) presented a formula for Hopkins statistic in a two-
dimensional setting as ∑ ui

/
∑(ui + wi). This formula has no exponents and therefore at first

glance appears to use the exponent d = 1 in the equation for Hopkins statistic. However, a
careful reading of their text shows that their ui and wi values were actually squared Euclidean
distances. If their ui and wi had represented ordinary (non-squared) Euclidean distances, then
their formula would have been ∑ u2

i
/

∑(u2
i + w2

i ). We suspect this paper is the likely source of
confusion by later authors.
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Figure 1: Results of a simulation study of the distribution of Hopkins statistic. The red and blue lines
are the empirical density curves of 1000 Hopkins statistics calculated with exponents d = 1 (red) and
d = 3 (blue). The black line is the theoretical distribution of the Hopkins statistic. The red line is
very far away from the black line and shows that calculating Hopkins statistic with exponent d = 1 is
incorrect.

• 1982: Cross and Jain (1982) generalized Hopkins statistic for X of any dimension d = D as
∑ ud

i
/

∑(ud
i + wd

i ). This formula was also used by Zeng and Dubes (1985a), Dubes and Zeng
(1987), and Banerjee and Dave (2004).

• 1990: Lawson and Jurs (1990) and Jurs and Lawson (1990) give the formula for Hopkins statistic
as ∑ ui

/
∑(ui + wi), but used ordinary distances instead of squared distances. Perhaps this was

a result of misunderstanding the formula in Diggle, Besag, and Gleaves (1976).

• 2015: The R function hopkins() in the clustertend package (YiLan and RuTong 2015 version
1.4) cited Lawson and Jurs (1990) and used also used the exponent d = 1.

• 2022: The new function hopkins() in the hopkins package (Wright 2022 version 1.0) uses the
general exponent d = D as found in Cross and Jain (1982).

3 Simulation study for the distribution of Hopkins statistic

Having identified the confusion in the statistical literature, we now ask the question, “Does it matter
what value of d is used in the exponent?” In a word, “yes”.

According to Cross and Jain (1982), under the null hypotheses of no structure in the data, the
distribution of the Hopkins statistic is Beta(m,m) where m is the number of rows sampled in X. This
distribution can be verified in a simple simulation study:

1. Generate a matrix X with 100 rows (events) and D = 3 columns, filled with random uniform
numbers. (This is the assumption of no spatial structure in a 3D hypercube.)

2. Sample m = 10 events and also generate 10 new uniform points.
3. Calculate Hopkins statistic with exponents d = 1 (incorrect value).
4. Calculate Hopkins statistic with exponents d = 3 (correct value).
5. Repeat 1000 times.
6. Compare the empirical density curves of the two different methods to the Beta(m,m) distribution.

In Figure 1:

• The black curve is the density of Beta(10,10).
• The red curve is the density of Hopkins statistic when d = 1 is used in the calculation (incorrect).
• The blue curve is the density of Hopkins statistic when d = 3 (the number of columns in X) is

used (correct).
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Figure 2: An example of how Hopkins statistic is calculated with systematically-spaced data. The black
circles are the events of the ‘cells‘ data. Each blue ‘W‘ represents a randomly-chosen event. Each blue
arrow points from a ‘W‘ to the nearest-neighboring event. Each red ‘U‘ is a new, randomly-generated
point. Each red arrow points from a ‘U‘ to the nearest-neighboring event. The numbers are the length
of the arrows. In systematically-spaced data, red arrows tend to be shorter than blue arrows.

The empirical density of the blue curve is similar to the theoretical distribution shown by the black
line. The empirical density of the red curve is clearly dissimilar. The distribution of Hopkins statistic
with d = 1 is clearly incorrect (except in trivial cases where X has only 1 column). One more thing to
note about the graph is that the blue curve is slightly flatter than the theoretical distribution shown in
black. This is not accidental, but is caused by edge effects of the sampling region and will be discussed
in a later section.

4 Examples

The first three examples in this section are adapted from Gastner (2005). The datasets are available in
the spatstat.data package (Baddeley, Turner, and Rubak 2021). A modified version of the hopkins()
function was written for this paper to show how the Hopkins statistic is calculated (inspired by Figure
1 of Lawson and Jurs (1990)). In order to minimize the amount of over-plotting, only m = 3 sampling
points are used for these examples. In each figure, 3 of the existing events in X are chosen at random
and a light-blue arrow is drawn to the nearest neighbor in X. In addition, 3 points are drawn uniformly
in the plotting region and a light-red arrow is drawn to the nearest neighbor in X. The colored numbers
are the lengths of the arrows.

Example 1: Systematically-spaced data

The cells data represent the centers of mass of 42 cells from insect tissue. The scatterplot of the data in
Figure 2 shows that events are systematically spaced as nearly far apart as possible. Because the data
is two-dimensional, Hopkins statistics is calculated as the sum of the squared distances u2

i divided by
the sum of the squared distances u2

i + w2
i :

(.046^2 + .081^2 + .021^2) /
( (.046^2 + .081^2 + .021^2) + (.152^2 + .14^2 + .139^2) )

#> [1] 0.1281644

The hopkins() function returns the same value:
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Figure 3: An example of how Hopkins statistic is calculated with randomly-spaced data. The black
circles are the events of the ‘japanesepines‘ data. Each blue ‘W‘ represents a randomly-chosen event.
Each blue arrow points from a ‘W‘ to the nearest-neighboring event. Each red ‘U‘ is a new, randomly-
generated point. Each red arrow points from a ‘U‘ to the nearest-neighboring event. The numbers
are the length of the arrows. In randomly-spaced data, red arrows tend to be similar in length to blue
arrows.

set.seed(17)
hopkins(cells, m=3)

#> [1] 0.1285197

The value of the Hopkins statistic in this calculation is based on only m = 3 events and will
have sizable sampling error. To reduce the sampling error, a larger sample size can be used up to
approximately 10% of the number of events. To reduce sampling error further while maintaining
the independence assumption of the sampling in calculating Hopkins statistic, repeated samples can
be drawn. Here we use the idea of Gastner (2005) to calculate Hopkins statistic 100 times and then
calculate the mean and standard deviation for the 100 values of Hopkins statistic, which in this case
are 0.21 and 0.06. This value of the statistic is quite a bit lower than 0.5 and indicates the events are
spaced more evenly than purely-random events (p-value 0.05).

Example 2: Randomly-spaced data

The japanesepines data contains the locations of 65 Japanese black pine saplings in a square 5.7 meters
on a side. The plot of the data in Figure 3 is an example of data in which the events are randomly
spaced.

The value of Hopkins statistic using 3 events and points is:

(.023^2+.076^2+.07^2) /
((.023^2+.076^2+.07^2) + (.104^2+.1^2+.058^2))

#> [1] 0.3166596

The mean and standard deviation of the 100 Hopkins statistics are 0.48 and 0.12. The value of the
statistic is close to 0.5 and indicates no evidence against a random distribution of data (p-value 0.9).

Example 3: Clustered data

The redwood data are the coordinates of 62 redwood seedlings in a square 23 meters on a side. The
plot in Figure 4 shows events that exhibit clustering. The value of Hopkins statistic for the plot is:
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Figure 4: An example of how Hopkins statistic is calculated with clustered data. The black circles are
the events of the ‘redwood‘ data. Each blue ‘W‘ represents a randomly-chosen event. Each blue arrow
points from a ‘W‘ to the nearest-neighboring event. Each red ‘U‘ is a new, randomly-generated point.
Each red arrow points from a ‘U‘ to the nearest-neighboring event. The numbers are the length of the
arrows. In clustered data, red arrows tend to be longer in length than blue arrows.

(.085^2+.078^2+.158^2) /
((.085^2+.078^2+.158^2) + (.028^2+.028^2+.12^2))

#> [1] 0.7056101

The mean and standard deviation of the 100 Hopkins statistics are 0.79 and 0.13. The value of the
statistic is much higher than 0.5, which indicates that the data are somewhat clustered (p-value 0.03).

Example 4

Adolfsson, Ackerman, and Brownstein (2017) provide a review of various methods of detecting
clusterability. One of the methods they considered was Hopkins statistic, which they calculated using
10% sampling. They evaluated the clusterability of nine R datasets by calculating Hopkins statistic 100
times and then reporting the proportion of time that Hopkins statistic exceeded the appropriate beta
quantile. We can repeat their analysis and calculate Hopkins statistic for both d = 1 dimension and
d = D dimensions, where D is the number of columns for each dataset.

In Table 1:

• Column 1 is the name of the R dataset.
• Column 2 is the number of observations n.
• Column 3 is the number of dimensions D.
• Column 4 is the proportion of 100 times that Hopkins statistic is significant as reported by

Adolfsson, Ackerman, and Brownstein (2017).
• Columns 5 and 6 use the hopkins package. Column 5 is the proportion of 100 times that

Hopkins statistic with exponent d = 1 and column 6 is the proportion of 100 times that Hopkins
statistic with exponent d = D is significant.

Since the Adolfsson and Hopkins1 columns are similar (within sampling variability), it appears
that Adolfsson, Ackerman, and Brownstein (2017) used Hopkins statistic with d = 1 as the exponent.
This would be expected if they had used the clustertend package (YiLan and RuTong 2015 version 1.4)
to calculate Hopkins statistic.

For a few of the datasets, there is substantial disagreement between the last two columns. For
example, the swiss data is significantly clusterable 41% of the time according to Adolfsson, Ackerman,
and Brownstein (2017), but 94% of the time when using Hopkins statistic with exponent d = D. A
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Table 1: In this table, ‘dataset‘ is the R dataset name, ‘n‘ is the number of rows in the data, ‘D‘ is the
number of columns in the data, ‘Adolfsson‘ is the the proportion of 100 times that Hopkins statistic
was significant as appearing in the paper by Adolfsson et al. (2017), ‘Hopkins1‘ is the proportion of
100 times that Hopkins statistic was significant when calculated with the exponent d = 1 (similar to
the ‘clustertend‘ package), and ‘HopkinsD‘ is the proportion of 100 times that Hopkins statistic was
significant when calculated with the exponent d = D. Since the ‘Adolfsson‘ and ‘Hopkins1‘ columns
are similar (within samling variation), it appears that Adolfsson et al. (2017) used the ‘clustertend‘
package to calculate Hopkins statistic.

dataset n D Adolfsson Hopkins1 HopkinsD
faithful 272 2 1.00 1.00 1.00
iris 150 5 1.00 1.00 1.00
rivers 141 1 0.92 0.89 0.90
swiss 47 6 0.41 0.25 0.94
attitude 30 7 0.00 0.00 0.59
cars 50 2 0.19 0.23 0.68
trees 31 3 0.18 0.22 0.71
USJudgeRatings 43 12 0.69 0.53 1.00
USArrests 50 4 0.01 0.00 0.56

scatterplot of the swiss data in Figure 5 shows that the data are strongly non-random, which agrees
with the 94%.

Similarly, the trees data is significantly clusterable 18% of the time according to the Adolfsson
column, but 71% of the time according to HopkinsD. The scatterplot in Figure 6 shows strong non-
random patterns, which agrees with the 71%

Scatterplot matrices of the swiss, attitude, cars, trees, and USArrests datasets can be found in
Brownstein, Adolfsson, and Ackerman (2019). Each scatterplot matrix shows at least one pair of the
variables with notable correlation and therefore the data are not randomly-distributed, but rather are
clustered. For each of these datasets, the proportion of times Hopkins1 is significant is less than 0.5, but
the proportion of times HopkinsD is significant is greater than 0.5. The HopkinsD statistic is accurately
detecting the presence of clusters in these datasets.

5 Correcting for edge effects

In the cells, japanesepines and redwood examples above, it is possible or even probable that there
are additional events outside of the sampling frame that contains the data. The sampling frame thus
has the effect of cutting off potential nearest neighbors from consideration. If the distribution of the
data can be assumed to extend beyond the sampling frame and if the shape of the sampling frame can
be viewed as a hypercube, then edge effects due to the sampling frame can be corrected by using a
torus geometry that wraps edges of the sampling frame around to the opposite side (Li and Zhang
2007). To see an illustration of this, look again at the plot of the japanesepines data in Figure 3. The
randomly-generated event U in the upper left corner is a distance of 0.076 away from the nearest event.
However, if the left edge of the plot is wrapped around an imaginary cylinder and connected to the
right edge of the plot, then the nearest neighbor is the event in the upper-right corner at coordinates
(0.97, 0.86).

To see what effect the torus geometry has on the distribution of the Hopkins statistic, consider the
following simulation. We generate n = 100 events uniformly in a D = 5 dimension unit cube and
sample m = 10 events to calculate the value of Hopkins statistic using both a simple geometry and a
torus geometry. Repeat these steps B = 1000 times. The calculation of the nearest neighbor using a
torus geometry is computationally more demanding than using a simple geometry, especially as the
number of dimensions D increases, so the use of parallel computing can reduce the computing time
linearly according to the number of processors used. As a point of reference, this small simulation study
was performed in less than 1 minute on a reasonably-powerful laptop with 8 cores using the doParallel
package (Microsoft Corporation and Weston 2020). We found that B = 1000 provided results that were
stable, regardless of the seed value for the random number generation in the simulations.

In Figure 7:

• The black curve is the density of Beta(10,10).
• The blue curve is the empirical density of the 1000 values of Hopkins statistic calculated using a

simple geometry.
• The green curve is the empirical density of the 1000 values of Hopkins statistic calculated using

a torus geometry.
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Figure 5: Pairwise scatterplots of the R dataset ‘swiss‘. The meaning of the variables is not important
here. Because some panels show a lack of spatial randomness of the data, we would expect Hopkins
statistic to be significant.
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Figure 6: Pairwise scatterplots of the R dataset ‘trees‘. The data are ‘Girth‘, ‘Height‘, and ‘Volume‘ of
31 black cherry trees. Because all panels show a lack of spatial randomness of the data, we would
expect Hopkins statistic to be significant.
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Figure 7: Results of a simulation study considering how the spatial geometry affects Hopkins statistic.
The thin black line is the theoretical distribution of Hopkins statistic. The blue and green lines are the
empirical density curves of 1000 Hopkins statistics calculated with simple geometry (blue) and torus
geometry (green). Calculating Hopkins statistic with a torus geometry aligns closely to the theoretical
distribution.
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Figure 8: The left figure shows 250 points simulated randomly in a unit square. As expected, the value
of Hopkins statistic is close to 0.5. The right figure shows the same points, but only those inside a
unit-diameter circle. The value of Hopkins statistic H is much larger than 0.5. Although both figures
depict spatially-uniform points, the square shape of the sampling frame affects the value of Hopkins
statistic.

When using a torus geometry to correct for edge effects in this example, the empirical distribution
of Hopkins statistic is remarkably close to its theoretical distribution. In contrast, when a simple
geometry is used, the empirical distribution of Hopkins statistic is somewhat flattened with heavier
tails. The practical result is that when no edge correction is used, the Hopkins statistic is more likely
to deviate from 0.5 and therefore more likely to suggest the data is not uniformly distributed. This
erroneous interpretation is a greater risk as the number of dimensions D increases and edge effects
become more pronounced

6 Sampling frame effects

Another practical problem affecting the correct use and interpretation of Hopkins statistic has to do
with the shape of the sampling frame. Consider the example data in Figure 8. On the left side, there
were 250 random events simulated in a 2-dimensional unit square. On the right side, the same data
are used, but have been subset to keep only the events inside a unit-diameter circle. For both figures,
Hopkins statistic was calculated 100 times with 10 events sampled each time.

On the left side, both the bounding box and the actual sampling frame are the unit square. The
median of 100 Hopkins statistics is 0.51, providing no evidence against random distribution. On the
right side, the actual sampling frame of the data is a unit-circle, but the Hopkins statistic still uses
the unit square (for generating new points in U) and the median Hopkins statistic is 0.75, indicating
clustering of the data within the sampling frame, even though the distribution of the data was generated
uniformly. A few more examples of problems related to the sampling frame can be found in Smith
and Jain (1984).

To consider the problem with the sampling frame on real data, refer again to the trees data in
Figure 6. Because trees usually grow both in height and girth at the same time, it would be unexpected
to find tall trees with narrow girth or short trees with large girth. Also, since the volume is a function
of the girth and height, it is correlated with those two variables. In the scatterplot of girth versus
volume, it would be nearly impossible to find points in the upper left or lower right corner of the
square. From a biological point of view, the sampling frame cannot be shaped like a square and the
null hypothesis of uniform distribution of data is violated a priori, which means the distribution of
Hopkins statistic does not follow a Beta(m,m) distribution.
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7 A protocol for using Hopkins statistic

Because Hopkins statistic is not hard to calculate and is easy to interpret, yet can be misused (as shown
in the previous sections), we propose a protocol for using Hopkins statistic. The protocol simply asks
the practitioner to consider the following five questions before calculating Hopkins statistic.

1. Is the number of events n > 100 and the number of randomly-sampled events at most 10%
of n? This is recommended by Cross and Jain (1982).

2. Is spatial randomness of the events even possible? If the events are known or suspected to be
correlated, this violates the null hypothesis of spatial uniformity, and may also mean that the
sampling frame is not shaped like a hypercube.

3. Could nearest-neighbor events have occurred outside the boundary of the sampling frame?
If yes, it may be appropriate to calculate nearest-neighbor distances using a torus geometry.

4. Is the sampling frame non-rectangular? If yes, then be extremely careful with the use of
Hopkins statistic in how points are samples from U.

5. Is the dimension of the data much greater than 2? Edge effects are more common in higher
dimensions.

The important point of this protocol is to raise awareness of potential problems. We leave it to the
practitioner to decide what do with the answers to these questions.

8 Conclusion

The statistical literature regarding Hopkins statistic is filled with confusion about how to calculate the
statistic. Some publications have erroneously used the exponent d = 1 in the formula for Hopkins
statistic and this error has propagated into much statistical software and led to incorrect conclusions.
To remedy this situation, the R package hopkins (Wright 2022) provides a function hopkins() that
calculates Hopkins statistic using the general exponent d = D for D-dimensional data. The function
can use simple geometry for fast calculations or torus geometry to correct for edge effects. Using
this function, we show that the distribution of Hopkins statistic calculated with the general exponent
d = D aligns closely with the theoretical distribution of the statistic. Because inference with Hopkins
statistic can be trickier than expected, we introduce a protocol of five questions to consider when using
Hopkins statistic.

Alternative versions of Hopkins statistic have been examined by Zeng and Dubes (1985b), Rotondi
(1993), Li and Zhang (2007). Other methods of examining multivariate uniformity of data have been
considered by Smith and Jain (1984), Yang and Modarres (2017), and Petrie and Willemain (2013).
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