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eat: An R Package for fitting Efficiency
Analysis Trees
by Miriam Esteve, Victor España, Juan Aparicio, and Xavier Barber

Abstract eat is a new package for R that includes functions to estimate production frontiers and techni-
cal efficiency measures through non-parametric techniques based upon regression trees. The package
specifically implements the main algorithms associated with a recently introduced methodology for
estimating the efficiency of a set of decision-making units in Economics and Engineering through Ma-
chine Learning techniques, called Efficiency Analysis Trees (Esteve et al. 2020). The package includes
code for estimating input- and output-oriented radial measures, input- and output-oriented Russell
measures, the directional distance function and the weighted additive model, plotting graphical repre-
sentations of the production frontier by tree structures, and determining rankings of importance of
input variables in the analysis. Additionally, it includes the code to perform an adaptation of Random
Forest in estimating technical efficiency. This paper describes the methodology and implementation of
the functions, and reports numerical results using a real data base application.

1 Introduction

Efficiency analysis refers to the discipline of estimating production frontiers while measuring the
efficiency of a set of observations, named Decision Making Units (DMUs), which use several inputs to
produce several outputs. In the literature of Economics, Engineering and Operations Research, the
estimation of production frontiers is a current topic of interest (see, for example, Arnaboldi, Azzone,
and Giorgino 2014; Aparicio et al. 2017; O’Donnell et al. 2018). In this line, many models for estimating
production frontiers have been developed, resorting to parametric and non-parametric approaches. In
the non-parametric approach, a functional form does not need to be specified (e.g. a Cobb-Douglas
production function) through the specification of a set of parameters to be estimated, since they
are usually data-driven. Additionally, non-parametric models innately cope with multiple-output
scenarios. In contrast, the parametric approach aggregates the outputs into a single production index
or attempts to model the technology using a dual cost function (Orea and Zof ’io 2019). These are
some of the advantages that makes the non-parametric approaches for measuring technical efficiency
more appealing than their parametric counterparts.

Contextualizing the non-parametric measurement of efficiency analysis requires outlining the
following works. Farrel (1957) was a renowned opponent of estimating efficiency by determining
average performance and, indeed, he was the first author in the literature to introduce a method for
constructing production frontiers as the maximum producible output from an input bundle. Inspired
by Koopmans (1951) and Debreu (1951), Farrell introduced a piece-wise linear upper enveloping
surface of the data cloud as the specification of the production frontier, satisfying some microeconomics
postulates: free disposability, convexity and minimal extrapolation. A DMU is considered technically
inefficient if it is located below the frontier. Furthermore, Farrell’s measure of efficiency, inspired
by Shephard (1953), is based on radial movements (equiproportional changes) from technically
inefficient observations to their benchmarks located at the estimated production frontier. In the
same context as Farrell, Afriat (1972) determined a production frontier under non-decreasing and
concavity mathematical assumptions and, at the same time, as close as possible to the sample of
observations. Finally, in the same line of research, Charnes, Cooper, and Rhodes (1978) and Banker,
Charnes, and Cooper (1984) proposed Data Envelopment Analysis (DEA), rooted in mathematical
programming to provide a relative efficiency assessment of a set of DMUs by the construction of
a piece-wise linear frontier. Along with DEA, Free Disposal Hull (FDH) is another of the most
recognized non-parametric models for estimating production frontiers. FDH is a deterministic model
introduced by Deprins and Simar (1984), which is only based on the free disposability and minimal
extrapolation principles, as opposed to DEA, which also assumes convexity. In fact, FDH can be
considered the skeleton of DEA, since the convex hull of the former coincides with DEA’s frontier
(see Daraio and Simar 2005). In addition, other recent alternative non-parametric techniques for
estimating production frontiers are: Banker and Maindiratta (1992) and Banker (1993), who showed
that DEA can be interpreted as a Maximum Likelihood estimator; Simar and Wilson (1998, 2000;
2000), who introduced how to determine confidence intervals for the efficiency score of each DMU
through adapting the bootstrapping methodology by Efron (1979) to the context of FDH and DEA;
or Kuosmanen and Johnson (2010; 2017), who have recently shown that DEA may be interpreted as
non-parametric least-squares regression, subject to shape constraints on the production frontier and
sign constraints on residuals; to name a few.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=eat


CONTRIBUTED RESEARCH ARTICLE 250

However, few of the above methodologies are based upon Machine Learning techniques, despite
being a rising research field (see, for example, the recent papers by Khezrimotlagh et al. 2019; and Zhu
et al. 2019; or the book by Charles, Aparicio, and Zhu 2020). Recently, a bridge has been built between
these literatures, Machine Learning and production theory, through a new technique proposed in
Esteve et al. (2020), called Efficiency Analysis Trees. This new method shares some similarities with
the standard FDH technique. In contrast to FDH, Efficiency Analysis Trees overcomes the well-known
problem of overfitting linked to FDH and DEA, by using cross-validation to prune back the deep tree
obtained in a first stage. Esteve et al. (2020) also showed that the performance of Efficiency Analysis
Trees, checked through Monte Carlo simulations, clearly outperforms the FDH technique with respect
to bias and mean squared error.

Many of the standard models for estimating technical efficiency are nowadays available as R
packages such as: Benchmarking (Bogetoft and Otto 2010), for estimating technologies and measuring
efficiencies using Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA); nonpara-
eff (Oh and Suh 2013), for measuring efficiency and productivity using DEA and its variations; npbr
(Daouia, Laurent, and Noh 2017), which covers data envelopment techniques based on piece-wise
polynomials, splines, local linear fitting, extreme values and kernel smoothing; snfa (McKenzie 2018),
which fits both a smooth analogue of DEA and a non-parametric analogue of SFA; or semsfa (Ferrara
and Vidoli 2018), which, in a first stage, estimates Stochastic Frontier Models by semiparametric or
non-parametric regression techniques to relax parametric restrictions and, in a second stage, applies a
technique based on pseudolikelihood or the method of moments for estimating variance parameters.
Additionally, there are other packages on efficiency measurement developed for alternative platforms.
In MATLAB (The MathWorks Inc. 2021), we can find the Data Envelopment Analysis Toolbox
(Álvarez, Barbero, and Zofio 2020), which implements the main DEA models and solves measures
like the directional distance function (with desirable and undesirable outputs), the weighted additive
model, and the Malmquist-Luenberger index; or the Total Factor Productivity Toolbox (Balk, Barbero,
and Zof ’Io 2018), which includes functions to calculate the main Total Factor Productivity indices and
their decomposition by DEA models. In Stata (StataCorp 2021), it is possible to find a similar package
in Ji and Lee (2010).

In this paper, we introduce a new package in R, called eat, for fitting regression trees to estimate
production frontiers in microeconomics and engineering, by implementing the main features of
Efficiency Analysis Trees (Esteve et al. 2020). In particular, eat includes a complete set of baseline
functions, covering a wide range of efficiency models fitted by Efficiency Analysis Trees (Esteve et al.
2020) and Random Forest (Esteve et al. 2021), and reporting numerical and graphical results. eat is
available as free software, under the GNU General Public License version 3, and can be downloaded
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=eat,
including supplementary material as datasets or vignettes to replicate all the results presented in
this paper. In addition, eat is hosted on an open source repository on GitHub at https://github.
com/MiriamEsteve/EAT. The main objective of this package is the estimation of a production frontier
through regression trees satisfying the microeconomic principles of free disposability, convexity and
deterministic data. Free disposability states that if a certain input and output bundle is producible,
then any input and output bundle that presents a greater value for inputs and a lower value for
outputs is also producible. In some sense, it means that doing it worse is always feasible. Convexity
means that if two input-output bundles are assumed producible, then any convex combination of
them are also feasible. Finally, the deterministic quality means that the observations that belong to the
data sample have been observed without noise. In other words, the technology always contains all
these observations and, graphically, the production frontier envelops all the data cloud from above.

The efficiency measurement field has witnessed the introduction of many different technical
efficiency measures throughout the last decades. Regarding the technical efficiency measures imple-
mented in the new eat package, it is worth mentioning that numerical scores and barplots are provided
for the output-oriented and input-oriented BCC radial models (Banker, Charnes, and Cooper 1984), the
directional distance function (Chambers, Chung, and Färe 1998), the weighted additive model (Lovell
and Pastor 1995; and W. W. Cooper, Park, and Pastor 1999) and the output-oriented and input-oriented
Russell measures (Färe and Lovell 1978). Additionally, the adaptation of Random Forest (Breiman
2001) for dealing with ensembles of Efficiency Analysis Trees, recently introduced in Esteve et al. (2021)
and denoted as RF+EAT, has been also incorporated into the new eat package. The frontier estimator
based on Random Forest, which is associated with more robust results, also allows to determine
out-of-sample efficiency evaluation for the assessed DMUs. Another remarkable aspect of Efficiency
Analysis Trees is the inherited ability to calculate feature importance as performed by other tree-based
models of Machine Learning. Specifically, this fact allows the researchers to know which are the most
relevant variables for obtaining efficiency and thus getting an explanation of the level of technical
efficiency identified for each assessed unit. This ranking of importance variable has been implemented
in the eat package. Finally, and from a data visualization point of view, the obtained frontier from
Efficiency Analysis Trees can be represented by means of a tree structure, ideal for high-dimensional
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scenarios where the patterns between the inputs and the efficient levels of outputs are very complex.
In addition, FDH and DEA standard models have been included in the new package in order to
facilitate comparison with the efficiency scores determined by the Efficiency Analysis Trees technique.
Also, the convexification of the estimation of the technology provided by Efficiency Analysis Trees,
named Convexified Efficiency Analysis Trees (CEAT) by Aparicio et al. (2021), is implemented in the
eat package, with the objective of determining estimations under the axiom of convexity.

The functions included in the eat package are summarized in Table 1. This table comprises two
columns divided into four subsections for Efficiency Analysis Trees, Random Forest for Efficiency
Analysis Trees, Convexified Efficiency Analysis Trees and functions for data simulation. The first
column is the name of the main functions and the second one is the description of the functions
and the reference of the paper in which we can find the most detailed theoretical explanation of the
corresponding function.

The paper is organized as follows. The following section summarises the two methodologies
implemented in the eat package in R: Efficiency Analysis Trees and Random Forest for Efficiency
Analysis Trees. Section Data Structure describes the data structures that characterize the production
possibility sets, the structure of the functions, the results, etc., and briefly explains which data are
used to illustrate the package. Section Basic functions of the library presents the basic methods. The
next Section Basic EAT and RFEAT models deals with the measurement of economic efficiency of
FDH, DEA, Efficiency Analysis Trees, Random Forest for Efficiency Analysis Trees and Convexified
Efficiency Analysis Trees models. Advanced options, including displaying and exporting results can
be found in Section Advanced options and displaying and exporting results. Section Conclusions
concludes.

Table 1: eat package functions.

Function Description
Subsection 1: Efficiency Analysis Trees

EAT It generates a pruned Efficiency Analysis Trees model and returns an EAT
object.

bestEAT It computes the root mean squared error (RMSE) for a set of Efficiency
Analysis Trees models made up of a set of user-entered hyperparameters.
These models are fitted with a training sample and evaluated with a test
sample.

efficiencyEAT It computes the efficiency scores of a set of DMUs through an Efficiency
Analysis Trees model and returns a data.frame. The FDH scores can also be
computed. Alternative mathematical programming models for calculating
the efficiency scores are:

• "BCC.OUT": The output-oriented BCC radial model.

• "BCC.INP": The input-oriented BCC radial model.

• "DDF": The directional distance function.

• "RSL.OUT": The output-oriented Russell model.

• "RSL.INP": The input-oriented Russell model.

• "WAM.MIP": The weighted additive model with Measure of Inefficiency
Proportion.

• "WAM.RAM": The weighted additive model with Range Adjusted Mea-
sure of Inefficiency.

efficiencyJitter It returns a jitter plot (from ggplot2) that represents the dispersion of the
efficiency scores of the set of DMUs in the leaf nodes of an Efficiency Analysis
Trees model. Mean and standard deviation of scores are shown.

efficiencyDensity It returns a density plot (from ggplot2) to compare the distribution of effi-
ciency scores between two given models ("EAT", "FDH", "CEAT", "DEA" and
"RFEAT" are available).

Continued on next page
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Table 1 – continued from previous page
Function Description

plotEAT It returns a plot of the tree-structure (from ggparty and partykit) of an
Efficiency Analysis Trees model.

frontier It returns a plot (from ggplot2) of the estimated production function obtained
by an Efficiency Analysis Trees model in a two-dimensional scenario (1 input
and 1 output). Optionally, the FDH frontier can be plotted.

predict Generic function to predict the expected output by an EAT object. The result
is a data.frame with the predicted values.

rankingEAT It returns a data.frame with the scores of variable importance obtained by
an Efficiency Analysis Trees model and optionally a barplot representing the
variable importance.

Subsection 2: Random Forest for Efficiency Analysis Trees

RFEAT It generates a Random Forest for Efficiency Analysis Trees model and returns
an RFEAT object.

bestRFEAT It computes the root mean squared error (RMSE) for a set of Random Forest
for Efficiency Analysis Trees models made up of a set of user-entered hyper-
parameters. These models are fitted with a training sample and evaluated
with a test sample.

efficiencyRFEAT It computes the efficiency scores of a set of DMUs through a Random Forest
for Efficiency Analysis Trees model and returns a data.frame. The FDH
scores can also be computed. Only the output-oriented BCC radial model is
available.

plotRFEAT It returns a line plot (from ggplot2) with the Out-of-Bag (OOB) error for a
random forest consisting of k trees.

predict Generic function to predict the expected output by an RFEAT object. The
result is a data.frame with the predicted values.

rankingRFEAT It returns a data.frame with the scores of variable importance obtained by a
Random Forest for Efficiency Analysis Trees model and optionally a barplot
representing the variable importance.

Subsection 3: Convexified Efficiency Analysis Trees

efficiencyCEAT It computes the efficiency scores of a set of DMUs through a Convexified
Efficiency Analysis Trees model and returns a data.frame. The DEA scores
can also be computed. Alternative mathematical programming models for
calculating the efficiency scores are:

• "BCC.OUT": The output-oriented BCC radial model.

• "BCC.INP": The input-oriented BCC radial model.

• "DDF": The directional distance function.

• "RSL.OUT": The output-oriented Russell model.

• "RSL.INP": The input-oriented Russell model.

• "WAM.MIP": The weighted additive model with Measure of Inefficiency
Proportion.

• "WAM.RAM": The weighted additive model with Range Adjusted Mea-
sure of Inefficiency.

Subsection 4: Functions for data simulation

Y1.sim It returns a data.frame with simulated data in a single output scenario (1, 3,
6, 9, 12 and 15 inputs can be generated).

Continued on next page
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Table 1 – continued from previous page
Function Description

X2Y2.sim It returns a data.frame with simulated data in a scenario with 2 inputs and
2 outputs.

2 Background

Efficiency Analysis Trees

In this section, we briefly introduce the main fundaments of Efficiency Analysis Trees. Nevertheless,
we first need to introduce some notation related to the standard Free Disposal Hull (FDH) and
Classification and Regression Trees (CART) techniques.

We consider the observation of n Decision Making Units (DMUs), which consumes xi = (x1i, ..., xmi)
∈ Rm

+ quantity of inputs for the production of yi = (y1i, ..., ysi) ∈ Rs
+ quantity of outputs1. The dataset

is denoted in a compact way as ℵ = {(x, y)}i=1,...,n. The so-called production possibility set or tech-
nology, which is the set of technically feasible combinations of (x, y), is defined, in general terms,
as:

ψ =
{
(x, y) ∈ Rm+s

+ : x can produce y
}

. (1)

On this set, certain assumptions are usually made (see, Färe and Primont 1995), such as: monotonic-
ity (free disposability) of inputs and outputs, which means that if (x, y) ∈ ψ, then (x’, y’) ∈ ψ, as long as
x’ ≥ x and y’ ≤ y; and convexity, i.e., if (x, y) ∈ ψ and (x’, y’) ∈ ψ, then λ (x, y) + (1 − λ) (x’, y’) ∈ ψ,
∀λ ∈ [0, 1]. In the case of the FDH estimator, only free disposability is assumed. Additionally, FDH
is assumed to be deterministic. In other words, the production possibility set determined by FDH
always contains all the observations that belong to the data sample and, graphically, the production
frontier envelops the data cloud from above. Also, FDH satisfies the minimal extrapolation postulate,
which is associated with the typical problem-solving principle of Occam’s razor. That is, additional
requirements are needed to select the right estimator because there are a lot of possible estimators that
can meet free disposability and the deterministic quality. In this sense, according to Occam’s razor, the
most conservative estimate of the production frontier would be that related to a surface that would
envelop the data from above, satisfy free disposability and, at the same time, be as close as possible to
the data cloud. In contrast, the DEA estimator requires stronger assumptions, such as convexity of the
set ψ.

With regard to the measurement of technical efficiency, a certain part of the set ψ is actually
of interest. It is the efficient frontier or production frontier of ψ, which is defined as ∂(ψ) :=
{(x, y) ∈ ψ : x̂ < x, ŷ > y ⇒ (x̂, ŷ) /∈ ψ}. Technical efficiency is understood as the distance from a
point belonging to ψ to the production frontier ∂(ψ). In particular, Deprins and Simar (1984) proposed
the FDH estimator of the set ψ from the dataset ℵ as:

ψ̂FDH =
{
(x, y) ∈ Rm+s

+ : ∃i = 1, ..., n such that y ≤ yi, x ≥ xi
}

. (2)

The FDH technique is very attractive because it is based on very few suppositions, but it suffers
from overfitting due to its construction. This problem is shared by other well-known data-based
approaches. For example, Classification and Regression Trees (CART), a technique that belongs to the
field of machine learning, suffer problems of overfitting when a deep tree is developed. However, this
problem can be fixed using a cross-validation process to prune the deep tree. The principle behind
CART is relatively simple: a certain criterion is chosen to recursively generate binary partitions of the
data until a meaningful division is no longer possible or a stopping rule is maintained. The graphic
result of this approach is a tree that starts at the root node, develops through the intermediate nodes
and ends at the terminal nodes, also known as leaves. The binary nature of CART is represented by
each parent node, except for the leaves, giving rise to two child nodes.

Next, we briefly introduce the recent technique named Efficiency Analysis Trees by Esteve et al.
(2020). This technique allows the estimation of production frontiers, fulfilling the common axioms of
microeconomics, through a data-based approach that is not founded on any particular distribution on
the data noise and, in addition, creates a step function as a estimator. It shares these characteristics with
the FDH technique, but the overfitting problem related to FDH can be solved through cross-validation
based on pruning.

We now introduce the main steps of the algorithm linked to the Efficiency Analysis Trees technique.

1We use bold for denoting vectors, and non-bold for scalars.
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Let us assume that we have a node t in the tree structure to be split. This node contents a subset of
the original sample ℵ. The algorithm has to select an input variable j, j = 1, ..., m, and a threshold
sj ∈ Sj, where Sj is the set of possible thresholds for variable j, such that the sum of the mean squared
error (MSE) calculated for the data that belong to the left child node tL and the MSE corresponding
to the data belonging to the right child node tR is minimized. The data of the left child node tL
satisfies the condition xj < sj, while the data of the right child node tR satisfies the condition xj ≥ sj.
Additionally, in the algorithm, the set Sj is defined from the observed values of the input j in the

data sample ℵ. Formally, the split consists in selecting the combination
(

xj, sj

)
which minimizes

R (tL) + R (tR) = 1
n ∑(xi ,yi)∈tL ∑s

r=1 (yri − yr (tL))
2 + 1

n ∑(xi ,yi)∈tR ∑s
r=1 (yri − yr (tR))

2, where yr (t)
denotes the estimation of the r-th output of the node t. One of the most important aspects in the
production context is how to define yr (t) in each node for fulfilling the free disposability property
during the growing process of the tree. In this sense, the notion of Pareto-dominance between nodes
introduced in Esteve et al. (2020) is really relevant.

As described above, each node t is defined by a series of conditions in the input space as{
xj < sj

}
or
{

xj ≥ sj

}
. In this sense, after executing the split, a region in the input space is cre-

ated. This region in the input space is called the “support” of node t and is defined as supp (t) ={
x ∈ Rm

+ : at
j ≤ xj < bt

j , j = 1, ..., m
}

. The parameters at
j and bt

j are originated from the several thresh-
olds selected during the splitting process. Giving the notion of support of a node, it is possible to estab-
lish the concept of Pareto-dominance. Let k = 1, ..., K be the total number of splits executed. Let Tk (ℵ)
be the tree built after the k-th split. Let T̃k (ℵ) be the set of leaves in the tree Tk (ℵ). More notation: let
t∗ ∈ T̃k (ℵ) be the node to be split in a certain step of the algorithm, then T (k|t∗ → tL, tR) denotes the
tree associated with this specific split. Let k = 1, ..., K and t ∈ T̃k (ℵ), then the set of Pareto-dominant
nodes of node t is defined as PTk(ℵ) (t) = {t′ ∈ T̃k (ℵ)− t : ∃x ∈ supp (t) , ∃x’ ∈ supp (t′) such that
x’ ≤ x}. PTk(ℵ) (t) contains all the nodes such that at least one input vector in its corresponding
support, non-necessarily observed, dominates at least one input vector belonging to the support of
node t (in the Pareto sense). To do so, in practice, it is only necessary to compare the components of at′

and bt. Specifically, at′ < bt if and only if t′ ∈ PTk(ℵ) (t).
Now, we return to how to estimate the outputs in each child node with the aim of guaranteeing

the satisfaction of free disposability. For any node t∗ ∈ T̃k (ℵ), the way to estimate the value of
the outputs for the right child node is through the estimation of the outputs of its parent node, i.e.,
yr (tR) = yr(t∗), r = 1, ..., s, while the estimation of outputs for the left child node is:

yr (tL) = max
{

max {yri : (xi, yi) ∈ tL} , yr

(
IT(k|t∗→tL ,tR) (tL)

)}
, r = 1, ..., s, (3)

where yr

(
IT(k|t∗→tL ,tR) (tL)

)
= max

{
yr (t′) : t′ ∈ IT(k|t∗→tL ,tR) (tL)

}
and yr (t′) is the estimation

of the output yr at node t′ ∈ T̃ (k|t∗ → tL, tR), r = 1, ..., s. This way of estimating the output values
guarantees free disposability.

Accordingly, the algorithm selects the best pair
(

xj∗ , sj∗
)

such that the sum of the MSE of the left

and right child nodes is minimized. Once the split of node t∗ is executed, the tree T
(
k|t∗ → t∗L, t∗R

)
is

obtained. This process continues until bipartition is not possible because all the data in a node have the
same input values or a certain stopping rule is satisfied. The usual stopping rule is n (t) ≤ nmin = 5,
where n(t) is the sample size of node t. The final tree built is denoted as Tmax (ℵ), which usually is a
deep tree.

Tmax (ℵ) suffers from the same problem as FDH, i.e., overfitting. Esteve et al. (2020) proposed to
prune the tree exploiting the same technique as Breiman et al. (1984). This pruning process resorts to
the notion of the error-complexity measure Rα (T (ℵ)), which is a combination between a measure of
the accuracy of the tree, defined as the sum of the MSE determined at each leaf node, and a measure
of the number of leaf nodes. Also, Rα (T (ℵ)) depends on a parameter α, which compensates the
values of the two components of the error: Rα (T (ℵ)) = R (T (ℵ)) + α

∣∣T̃ (ℵ)
∣∣. The idea behind the

pruning of Tmax (ℵ) is to minimize Rα (T (ℵ)). The pruning process is also based on cross-validation
(see Breiman et al. (1984) for more details). The tree resulting from the pruned process is T∗ (ℵ). This
tree doesn’t suffer from the overfitting problem. For this reason, the use of T∗ (ℵ) is recommended
rather than Tmax (ℵ), unless a descriptive analysis of the sample is required.

Finally, dT∗(ℵ) (x) will denote hereinafter the multi-dimensional estimator defined from T∗ (ℵ) and
the sample ℵ, i.e., drT∗(ℵ) (x) = ∑t∈T∗(ℵ) yr (t) I (x ∈ t), for all r = 1, ..., s, with I (·) being the indication
function. From this estimator, it is possible to define a production possibility set or technology
estimated from the Efficiency Analysis Trees technique as:

Ψ̂T∗(ℵ) =
{
(x, y) ∈ Rm+s

+ : y ≤ dT∗(ℵ) (x)
}

. (4)
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Ψ̂T∗(ℵ) satisfies free disposability and the deterministic quality.

By analogy with the existing relationship between FDH and DEA, it is possible to derive an
estimation of Ψ by the convexification of the set Ψ̂T∗ . In this sense, the convexification of the production
possibility set derived from EAT would be as follows:

conv
(
Ψ̂T∗

)
=

{
(x, y) ∈ Rm+s

+ : x ≥ ∑
t∈T̃∗

λtat, y ≤ ∑
t∈T̃∗

λtdT∗
(
at) , ∑

t∈T̃∗

λt= 1, λ ≥ 0|T̃∗|

}
. (5)

Under the convexity assumption, the EAT methodology is known as the Convexified Efficiency
Analysis Trees technique (hereinafter referred to as CEAT) (see Aparicio et al. 2021).

Random Forest for Efficiency Analysis Trees

In this section, we briefly describe the extension of the approach by Esteve et al. (2020) to the context
of using ensembles of trees to provide estimates of production frontiers (see Esteve et al. 2021).
Specifically, we briefly revise the way to adapt the standard Random Forest (Breiman 2001) for
estimating production frontiers satisfying fundamental postulates of microeconomics, such as free
disposability. The adaptation of Random Forest to the estimation of production frontiers by Esteve et
al. (2021) is the first one that focuses on the introduction of a methodology for measuring technical
efficiency that is robust to the resampling of data and, at the same time, to the specification of input
variables.

Data robustness and resampling methods for input modeling are both topics of interest in the
literature on technical efficiency measurement. Regarding robustness to data, Simar and Wilson (1998,
2000; 2000) were the first ones to adapt the bootstrapping methodology (Efron 1979) to the context
of DEA and FDH. As regards the importance of the robustness of input and output variables in
non-parametric efficiency analysis, since the beginning of DEA and FDH, researchers have always
been aware that the selection of input and output variables to be considered in efficiency analysis is one
of the crucial issues in the specification of the model. In practice, the researchers’ previous experience
may lead to the selection of some inputs and outputs considered essential to represent the underlying
technology. However, there may be other variables whose inclusion in the model the analyst is not
always sure of (Pastor, Ruiz, and Sirvent 2002). Some approaches focus on balancing the experience of
researchers with the information provided by observations (see, for example, Banker 1993, 1996; Pastor,
Ruiz, and Sirvent 2002). Another recent approach is based, in contrast, on determining efficiency
scores that are robust to variable selection by considering all the possible combinations of inputs and
outputs and their aggregation (Landete, Monge, and Ruiz 2017).

On the whole, Random Forest (Breiman 2001) is an ensemble learning method that works by
constructing a multitude of decision trees by CART (Breiman et al. 1984) at training time and
aggregating the information of the individual trees in a final prediction value. In particular, when
Random Forest is applied to regression problems, the final estimator corresponds to the mean of each
individual prediction (Breiman 2001). Random Forest modifies the growing process of an individual
tree as follows, by: (i) applying bootstrapping on the data training for each individual tree and (ii)
selecting a random subset of the predictors in each iteration. In this way, given a learning sample ℵ of
size n, Random Forest repeatedly selects random samples of size n with replacement of the set ℵ. Then,
the method fits the trees to these samples but, to do this, it uses a modified tree learning algorithm
that chooses, in each candidate division of the learning process, a random subset of predictors. The
reason for doing this is due to the instability of the model. It is known that individual decision trees,
such as CART, are very unstable (Berk 2016). This means that completely different tree structures are
given when the training data is modified slightly. In this way, the result of applying Random Forest is
an estimator that overcomes overfitting and instability problems in general, resulting in a substantial
reduction in variance.

The algorithm associated with the adaptation of the Random Forest technique to the world of
technical efficiency assessment, called RF+EAT, is introduced in Esteve et al. (2021). The steps that
must be carried out in Random Forest for Efficiency Analysis Trees are shown in Algorithm 1. This
algorithm is based on the typical algorithm of Random Forest that can be found in Kuhn, Johnson, et
al. (2013). In Algorithm 1, the first step consists of selecting the number of trees that will make up
the forest, that is, the hyperparameter p. Then, p (bootstrap) random samples from the original data
sample with replacement are generated. Next, the Efficiency Analysis Trees algorithm by Esteve et
al. (2020) is applied to each subsample applying the stopping rule n (t) ≤ nmin, but without pruning.
Also, in this algorithm, nmin is treated as an additional hyperparameter that could be tuned. During
the execution of the Efficiency Analysis Trees algorithm, a subset of input variables (mtry) from the
original set is randomly selected each time the splitting subroutine is applied. To do that, one of the
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following five thumb rules is used following the literature:

• Breiman’s Rule: mtry = m
3 ,

• Rule DEA1: mtry =
n(t)

2 − s (Golany and Roll 1989; Homburg 2001),

• Rule DEA2: mtry =
n(t)

3 − s (Nunamaker 1985; Banker et al. 1989; Friedman and Sinuany Stern
1998; Raab and Lichty 2002),

• Rule DEA3: mtry =
n(t)
2s (Dyson et al. 2001),

• Rule DEA4: mtry = min
{

n(t)
s , n(t)

3 − s
}

(W. Cooper et al. 2007).

Input: p, number of trees
ℵ, original data
Output: {T(ℵq) : q = 1, ..., p}
for q = 1 to p do

ℵq := Bootstrap sample of ℵ
T(ℵq) := Efficiency Analysis Tree trained on ℵq
foreach split do

Randomly in T(ℵq) selects mtry(≤ m) of the original inputs using a specific
rule;

Select the best input in T(ℵq) among the mtry inputs and split the data
end
T(ℵq) is completed when n(t) ≤ nmin, ∀t leaf node of T(ℵq)
(T(ℵq) is not pruned)

end
Algorithm 1: Random Forest for Efficiency Analysis Trees algorithm for estimating
production frontiers

Once Algorithm 1 has been applied, p fitted trees are determined with the aim of obtaining an
output estimation giving an input vector x ∈ Rm

+. In this regard, we have T (ℵ1) , ..., T
(
ℵp
)

tree
structures derived from the application of the Efficiency Analysis Trees algorithm on the p bootstrap
subsamples ℵ1, ...,ℵp. Given an input vector x ∈ Rm

+, an output estimator is determined by averaging
the individual estimator corresponding to each tree:

yRF+EAT(ℵ) (x) :=
1
p

p

∑
q=1

dT(ℵq) (x) . (6)

where dT(ℵq) (x) denotes the output estimator associated with each tree structure T
(
ℵq
)
, given an

input vector x ∈ Rm
+.

In addition, this estimator allows the technology or production possibility set to be defined as:

Ψ̂RF+EAT =
{
(x, y) ∈ Rm+s

+ : y ≤ yRF+EAT(ℵ) (x)
}

. (7)

As happens with the standard Random Forest, Random Forest for Efficiency Analysis Trees also
exploits the Out-Of-Bag (OOB) concept. The OOB estimate at observation (xi, yi) consists in evaluating
the prediction of the ensemble just using the individual models T

(
ℵq
)

whose corresponding bootstrap
samples ℵq are such that (xi, yi) /∈ ℵq. From this definition, the generalization error is defined as the
average of the OOB estimates calculated over all the observations in the learning sample ℵ:

errRF+EAT(ℵ) =
1
n ∑

(xi ,yi)∈ℵ

s

∑
r=1

(
yri − yRF+EAT(ℵ)

r (xi)
)2

. (8)

The generalization error is useful for determining a measure of variable importance, which can
be used for creating a sorted list of inputs x1, ..., xm. The way to calculate the input importance of
variable xj is: firstly, generate a new database, ℵj, identical to the original one ℵ, where specifically
the values of variable xj were randomly permuted; secondly, apply Algorithm 1 on the new ‘virtual’

learning sample ℵj; thirdly, determine the value of the generalization error, i.e., errRF+EAT(ℵj); and,
finally, calculate the percentage increase of the generalization error when variable xj is shuffled as:
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%IncRF+EAT
(

xj

)
= 100 ·

(
errRF+EAT(ℵj) − errRF+EAT(ℵ)

errRF+EAT(ℵ)

)
. (9)

3 Data structure

Data are managed as a regular R data.frame in the eat functions (matrix is often accepted but will be
converted to a data.frame in the functions pre-processing). The main functions of the eat package are
EAT() and RFEAT(), which return structured objects named EAT and RFEAT, respectively. These objects
contain fields with relevant information such as the estimation results or the arguments introduced by
the user in the function call.

The fields of the EAT object are the following:

• data: Contains the input and output variables.

– df: Data introduced by the user in a data.frame structure after being preprocessed.
– x: Input indexes in df.
– y: Output indexes in df.
– input_names: Name of the input variables in df.
– output_names: Name of the output variables in df.
– row_names: Name of the observations in df.

• control: Contains the hyperparameters selected by the user.

– fold: Number of folds in which is divided df to apply cross-validation.
– numStop: Minimum number of observations in a node.
– max.leaves: Maximum number of leaf nodes.
– max.depth: Maximum number of nodes between the root node (not included) and the

furthest leaf node.
– na.rm: A logical variable that indicates if NA rows should be ignored.

• tree: list containing the nodes of the fitted Efficiency Analysis Trees model. Each node is
made up of the following elements:

– id: Node index
– F: Father node index.
– SL: Left child node index.
– SR: Right child node index.
– index: Set of indexes corresponding to the observations in a node.
– R: Error at the node.
– xi: Index of the variable that produces the split in a node.
– s: Threshold of the variable xi.
– a: The components of the vector at.
– b: The components of the vector bt.

• nodes_df: Contains the following information related to the nodes of the fitted Efficiency
Analysis Trees model in a data.frame structure:

– id: Node index
– N: Number of observations in a node.
– Proportion: Proportion of observations in a node.
– y: Fitted values.
– R: Error at the node.
– index: Indexes of the observations in a node.

• model: Contains the following information related to the fitted Efficiency Analysis Trees model:

– nodes: Number of nodes in the tree.
– leaf_nodes: Number of leaf nodes in the tree.
– a: The components of the vector at.
– y: Output estimation for each leaf node.

Regarding the RFEAT object, it contains the following fields:

• data: same fields as the EAT object.

• control: Contains the hyperparameters selected by the user.
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– numStop: Minimum number of observations in a node.
– m: Number of trees that make up the random forest.
– s_mtry: Number of inputs that can be randomly selected in each split.
– na.rm: A logical variable that indicates if NA rows should be ignored.

• forest: A list containing the individual Efficiency Analysis Trees that make up the random
forest.

• Error: The Out-of-Bag error at the random forest.
• OOB: A list containing the observations used for training each Efficiency Analysis Tree that

makes up the random forest.

Dataset and statistical sources

# We load the library
library("eat")

# We load the data
data("PISAindex")

We illustrate all the models presented in this paper resorting to a single dataset (PISAindex)
available in the eat package. Our dataset consists of 72 countries with 3 outputs and 13 inputs. The
output data have been collected by the PISA (Programme for International Student Assessment) 2018
survey (OECD 2018) and refers to the average score in mathematics, reading and science domains for
schools in these countries. Regarding the input data, the variables have been collected from the Social
Progress Index (2018) and are related to the socioeconomic environment of these countries. These
inputs can be classified into four blocks as follows:

• Basic Human Needs:

– Nutrition and Basic Medical Care (NBMC)
– Water and Sanitation (WS)
– Shelter (S)
– Personal Safety (PS).

• Foundations of Wellbeing:

– Access to Basic Knowledge (ABK)
– Access to Information and Communications (AIC)
– Health and Wellness (HW)
– Environmental Quality (EQ).

• Opportunity:

– Personal Rights (PR)
– Personal Freedom and Choice (PFC)
– Inclusiveness (I)
– Access to Advanced Education (AAE).

• Economy:

– Gross Domestic Product based on Purchasing Power Parity (GDP_PPP).

Finally, in order to simplify the examples and reduce computation time, a subset of variables is
selected as follows:

# Inputs (5): PR, PFC, I, AAE, GDP_PPP
# Outputs (3): S_PISA, R_PISA, M_PISA
PISAindex <- PISAindex[, c(3, 4, 5, 14, 15, 16, 17, 18)]

head(PISAindex)

#> S_PISA R_PISA M_PISA PR PFC I AAE GDP_PPP
#> SGP 551 549 569 71.70 87.90 48.26 74.31 97.745
#> JPN 529 504 527 94.07 82.40 62.32 81.29 41.074
#> KOR 519 514 526 92.71 79.06 63.54 86.32 41.894
#> EST 530 523 523 95.67 84.10 55.58 73.16 35.308
#> NLD 503 485 519 96.34 89.04 75.82 82.99 56.455
#> POL 511 512 516 86.41 78.25 57.58 76.21 31.766

Table 2 reports the descriptive statistics for these variables (outputs and inputs).
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Table 2: Descriptive statistics (averages, standard deviations, minimum, median and maximum) of
input–output.

variable type mean sd min median max
S_PISA output 455.06 48.32 336.00 466.00 551.00
R_PISA output 450.89 50.52 340.00 466.00 549.00
M_PISA output 454.81 52.17 325.00 463.50 569.00
PR input 81.62 17.98 21.14 88.40 98.07
PFC input 75.42 11.03 47.25 78.19 91.65
I input 54.17 17.07 12.37 55.51 81.91
AAE input 69.87 10.75 48.37 71.65 90.43
GDP_PPP input 36.04 21.91 7.44 31.42 114.11

4 Basic functions of the library

In this section, we introduce the main functions of the library related to Efficiency Analysis Trees and
Random Forest for Efficiency Analysis Trees. To execute the following examples, the package eat must
be loaded and the seed 100 must be set for reproducibility.

# We set the seed
set.seed(100)

The EAT basic model

The basic model of Efficiency Analysis Trees that we explained in subsection Efficiency Analysis Trees
can be implemented in R using the function EAT():

EAT(
data, x, y,
numStop = 5,
fold = 5,
max.depth = NULL,
max.leaves = NULL,
na.rm = TRUE

)

The EAT() function is the cornerstone of the eat library. The minimum arguments of this function
are the data (data) containing the study variables, the indexes of the predictor variables or inputs (x)
and the indexes of the predicted variables or outputs (y). Additionally, the numStop, fold, max.depth
and max.leaves arguments are included for more experienced users in the fields of machine learning
and tree-based models. Modifying these four hyperparameters allows obtaining different frontier
estimates and therefore selecting the one that best suits the needs of the analysis. The description of
these parameters is as follows:

• numStop refers to the minimum number of observations in a node to be split and is directly
related to the size of the tree. The higher the value of numStop, the smaller the size of the tree.

• fold refers to the number of parts in which the data is divided to apply the cross-validation
technique. Variations in the fold argument are not directly related to the size of the tree.

• max.depth limits the number of nodes between the root node (not included) and the furthest leaf
node. When this argument is introduced, the typical process of growth-pruning is not carried
out. In this case, the tree is allowed to grow to the required depth.

• max.leaves determines the maximum number of leaf nodes. As in max.depth, the process of
growth-pruning is not performed. In this respect, the tree grows until the required number of
leaf nodes is reached, and then, the tree is returned.

Notice that including the arguments max.depth or max.leaves reduces the computation time by
eliminating the pruning procedure. However, the pruning process is preferred if the objective of the
study is inferential instead of simply descriptive. If both are included at the same time, a warning
message is displayed and only max.depth is used.

As an example, using data from subsection Dataset and statistical sources, we next create a multi
response tree using the suitable code as follows. Results are returned as an EAT object, as explained in
Section Data structure.

modelEAT <- EAT(data = PISAindex, x = 4:8, y = 1:3)
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The RFEAT basic model

The basic model of Random Forest for Efficiency Analysis Trees that we explained in subsection
Random Forest for Efficiency Analysis Trees can be implemented in R using the function RFEAT():

RFEAT(
data, x, y,
numStop = 5,
m = 50,
s_mtry = "BRM",
na.rm = TRUE

)

The RFEAT() function has also been developed with the aim of providing greater statistical robust-
ness to the results obtained by the EAT() function. The RFEAT() function requires the data containing
the variables for the analysis, x and y corresponding to the inputs and outputs indexes respectively,
the minimum number of observations in a node for a split to be attempted (numStop) and na.rm to
ignore observations with NA cells. All these arguments are used for the construction of the p (this is
denoted with m in the RFEAT() function) individual Efficiency Analysis Trees that make up the random
forest. Finally, the argument s_mtry indicates the number of inputs that can be randomly selected in
each split. It can be set as any integer although there are also certain predefined values. Let m be the
number of inputs, let s be the number of outputs and let n(t) be the number of observations in a node.
Then, the predefined values for s_mtry are:

• BRM = m
3 ,

• DEA1 = n(t)
2 − s,

• DEA2 = n(t)
3 − s,

• DEA3 = n(t)
2s ,

• DEA4 = min
{

n(t)
s , n(t)

3 − s
}

.

As an example, using data from subsection Dataset and statistical sources, we next create a forest
with 30 trees. Results are returned as an RFEAT object, as explained in Section Data structure.

modelRFEAT <- RFEAT(data = PISAindex, x = 4:8, y = 1:3, m = 30)

Predictions

The estimators of the Efficiency Analysis Trees and Random Forest for Efficiency Analysis Trees can be
computed in R using the function predict():

predict(
object,
newdata,
x, ...

)

Regarding the arguments of predict(), object can be an EAT or an RFEAT object, newdata refers
to a data.frame and x to the set of inputs to be used. This function returns a data.frame with the
expected output for a set of observations. For predictions using an EAT object, only one tree is used.
However, for the RFEAT model, the output is predicted by each of the p (m in the RFEAT() function)
individual trees trained and subsequently the mean value of all predictions is obtained.

As an example, we next evaluate the last 3 DMUs from the data of subsection Dataset and statistical
sources and the corresponding EAT and RFEAT models. Results are returned in a data.frame structure
with the output predictions:

predict(object = modelEAT, newdata = tail(PISAindex, 3), x = 4:8)

#> S_PISA_pred R_PISA_pred M_PISA_pred
#> 1 428 424 437
#> 2 377 359 368
#> 3 377 359 368
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predict(object = modelRFEAT, newdata = tail(PISAindex, 3), x = 4:8)

#> S_PISA_pred R_PISA_pred M_PISA_pred
#> 1 439.9667 435.1333 441.2000
#> 2 402.0667 389.0667 403.9000
#> 3 399.0333 389.3333 399.6333

In the same way, the user can also create a new data.frame and calculate predictions for it as
follows:

new <- data.frame(AAE = c(61, 72), PR = c(76, 81), I = c(41, 55), GDP_PPP = c(19, 31),
PFC = c(67, 78))

predict(object = modelEAT, newdata = new, x = 1:5)

#> S_PISA_pred R_PISA_pred M_PISA_pred
#> 1 428 424 421
#> 2 481 479 488

Importance of predictor variables

The way to compute in R the predictor variables importance in the Efficiency Analysis Trees methodol-
ogy is using the functions rankingEAT() or rankingRFEAT():

# Through Efficiency Analysis Trees
rankingEAT(
object,
barplot = TRUE,
threshold = 70,
digits = 2

)

# Through Random Forest for Efficiency Analysis Trees
rankingRFEAT(
object,
barplot = TRUE,
digits = 2

)

These functions allow a selection of variables by calculating a score of importance through Effi-
ciency Analysis Trees or Random Forest for Efficiency Analysis Trees, respectively. These importance
scores represent how influential each variable is in the model. Regarding the Efficiency Analysis
Trees [RankingEAT()], the notion of surrogate splits by Breiman et al. (1984) was implemented. In
this regard, the measure of importance of a variable xj is defined as the sum over all nodes of the
decrease in mean squared error produced by the best surrogate split on xj at each node (see Definition
5.9 in Breiman et al. (1984)). Since only the relative magnitudes of these measures are interesting
for researchers, the actual measures of importance that we report are normalized. In this way, the
most important variable has always a value of 100, and the others are in the range 0 to 100. As for the
Random Forest for Efficiency Analysis Trees [RankingRFEAT()], (9) was implemented for each input
variable. Regarding the available arguments of the functions, the user can specify the number of
decimal units (digits) and include a barplot (from ggplot2) with the scores of importance (barplot).
Additionally, the rankingEAT() function allows to display a horizontal line in the graph to facilitate
the cut-off point between important and irrelevant variables (threshold).

As an example, we next use the objects modelEAT (an EAT object from the EAT() function) and
modelRFEAT (an RFEAT object from the RFEAT() function) created in the previous section to assess the
predictors used. These functions return the name of the predictor variables, the scores of importance
(in the range 0-100 for the rankingEAT() function) and a barplot (without horizontal line for the
rankingRFEAT() function).

rankingEAT(object = modelEAT)

#> $scores
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Figure 1: Barplot generated by applying ‘rankingEAT()‘ to the PISAindex database to determine the
ranking of variable importance.

#> Importance
#> AAE 100.00
#> GDP_PPP 82.13
#> I 72.58
#> PR 72.45
#> PFC 29.07
#>
#> $barplot

rankingRFEAT(object = modelRFEAT)

#> $scores
#> Importance
#> PR 1.75
#> PFC -1.64
#> GDP_PPP -2.16
#> I -2.87
#> AAE -3.67
#>
#> $barplot

Note that negative scores may appear when calculating the importance of variables using the
rankingRFEAT() function. The appearance of this type of (negative) score can be understood as, if that
variable were removed from the model, ceteris paribus, then an improvement in the predictive capacity
of the model would be produced.

5 Basic EAT and RFEAT models

Efficiency scores are numerical values that indicate the degree of efficiency of a set of Decision Making
Units (DMU). In the eat package, these scores can be calculated through an Efficiency Analysis Trees
model, a Random Forest for Efficiency Analysis Trees model or a Convexified Efficiency Analysis
Trees model. The code is as follows:

# For Efficiency Analysis Trees
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Figure 2: Barplot generated by applying ‘rankingRFEAT()‘ to the PISAindex database to determine
the ranking of variable importance.

efficiencyEAT(
data, x, y, object, scores_model, digits = 3,
FDH = TRUE, print.table = FALSE, na.rm = TRUE

)

# For Random Forest for Efficiency Analysis Trees
efficiencyRFEAT(
data, x, y, object, digits = 3,
FDH = TRUE, print.table = FALSE, na.rm = TRUE

)

# For Convexified Efficiency Analysis Trees
efficiencyCEAT(
data, x, y, object, scores_model, digits = 3,
DEA = TRUE, print.table = FALSE, na.rm = TRUE

)

A dataset (data) and the corresponding indexes of input(s) (x) and output(s) (y) must be entered.
It is recommended that the data with the DMUs whose efficiency is to be calculated coincide with
those used to estimate the frontier. However, it is also possible to calculate the efficiency scores for
new data. The efficiency scores are calculated using the mathematical programming model included
in the argument scores_model. The following models are available:

• BCC.OUT: The output-oriented radial model (Banker, Charnes, and Cooper 1984).

• BCC.INP: The input-oriented radial model (Banker, Charnes, and Cooper 1984).

• RSL.OUT: The output-oriented Russell model (Färe and Lovell 1978).

• RSL.INP: The input-oriented Russell model (Färe and Lovell 1978).

• DDF: The Directional Distance Function (Chambers, Chung, and Färe 1998).

• WAM.MIP: The Measure of Inefficiency Proportions as a type of Weighted Additive Model (Lovell
and Pastor 1995).

• WAM.RAM: The Range-Adjusted Measure of Inefficiency as a type of Weighted Additive Model
(Lovell and Pastor 1995; W. W. Cooper, Park, and Pastor 1999).

FDH or DEA scores can optionally be computed by setting FDH = TRUE or DEA = TRUE, respectively.
Finally, a summary descriptive table of the efficiency scores can be displayed with the argument
print.table = TRUE.
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The output-oriented radial model

The output-oriented radial model determines the efficiency score for (xk, yk) ∈ Rm+s
+ by equipro-

portionally increasing all its outputs while maintaining inputs constant: ϕ (xk, yk) = max{ϕk ∈ R :
(xk, ϕkyk) ∈ Ψ}.

The efficiency score ϕ (xk, yk) can be estimated through FDH by plugging Ψ̂FDH from (2) into
max {ϕk ∈ R : (xk, ϕkyk) ∈ Ψ} in place of Ψ. In that case, the optimization problem can be rewritten
as a mixed-integer linear optimization program, as follows:

ϕFDH (xk, yk) = max ϕ,
s.t.

∑n
i=1 λixji ≤ xjk, j = 1, ..., m

∑n
i=1 λiyri ≥ ϕyrk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ∈ {0, 1} , i = 1, ..., n

(10)

The Linear Programming model that should be solved under Data Envelopment Analysis would
be:

ϕDEA (xk, yk) = max ϕ,
s.t.

∑n
i=1 λixji ≤ xjk, j = 1, ..., m

∑n
i=1 λiyri ≥ ϕyrk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ≥ 0, i = 1, ..., n

(11)

The following Mixed-Integer Linear Program should be solved for Efficiency Analysis Trees:

ϕEAT (xk, yk) = max ϕ,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ ϕyrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ∈ {0, 1} , t ∈ T̃∗

(12)

In R, this model can be computed by setting scores_model = "BCC.OUT" in efficiencyEAT():

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "BCC.OUT", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> EAT 1.03 0.04 1 1 1.01 1.01 1.16
#> FDH 1.01 0.02 1 1 1.00 1.00 1.12

scores %>% sample_n(3)

#> EAT_BCC_OUT FDH_BCC_OUT
#> CHL 1.09 1.05
#> SAU 1.05 1.00
#> CAN 1.01 1.01

Finally, the optimization model that should be solved for Convexified Efficiency Analysis Trees is:

ϕCEAT (xk, yk) = max ϕ,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ ϕyrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ≥ 0, t ∈ T̃∗

(13)

In R, this model can be computed by setting scores_model = "BCC.OUT" in efficiencyCEAT():

scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
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scores_model = "BCC.OUT", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 1.11 0.07 1 1.05 1.09 1.09 1.31
#> DEA 1.05 0.04 1 1.01 1.05 1.05 1.18

scores %>% sample_n(3)

#> CEAT_BCC_OUT DEA_BCC_OUT
#> BLR 1.07 1.00
#> SVK 1.07 1.04
#> RUS 1.04 1.00

In the case of the output-oriented radial model, Esteve et al. (2021) showed how this measure
can be computed through Random Forest where ϕ (xk, yk) = max {ϕk ∈ R : (xk, ϕkyk) ∈ Ψ} can be
estimated by substituting the theoretical production possibility set Ψ by its estimation Ψ̂RF+EAT ,
i.e., ϕRF+EAT (xk, yk) = max

{
ϕk ∈ R : (xk, ϕkyk) ∈ Ψ̂RF+EAT

}
. In particular, ϕRF+EAT (xk, yk) may be

calculated as:

ϕRF+EAT (xk, yk) = min
r=1,...,s

{
yRF+EAT(ℵ)

r (xk)

yrk

}
, (14)

where yRF+EAT(ℵ)
r (xk) is the estimation of the r-th output given the input bundle xk.

In R, this model can be computed using efficiencyREAT():

scores <- efficiencyRFEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelRFEAT,
digits = 2, print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> RFEAT 1.03 0.04 0.94 1 1.02 1.02 1.15
#> FDH 1.01 0.02 1.00 1 1.00 1.00 1.12

scores %>% sample_n(3)

#> RFEAT_BCC_OUT FDH_BCC_OUT
#> SGP 0.94 1
#> HUN 0.99 1
#> MEX 1.00 1

The input-oriented radial model

By analogy with the previous section, where the output-oriented radial model was shown, it is possible
to calculate the input-oriented radial technical efficiency of the input-output bundle (xk, yk) by solving
the following Mixed-Integer Linear Program, counterpart to (10):

min θ,
s.t.

∑n
i=1 λixji ≤ θxjk, j = 1, ..., m

∑n
i=1 λiyri ≥ yrk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ∈ {0, 1} , i = 1, ..., n

(15)

The same type of technical measure can be estimated through DEA by convexification of the
production frontier generated by FDH. Next, we show the Linear Programming model that should be
solved in that case:

min θ,
s.t.

∑n
i=1 λixji ≤ θxjk, j = 1, ..., m

∑n
i=1 λiyri ≥ yrk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ≥ 0, i = 1, ..., n

(16)
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The input-oriented radial model in the case of the Efficiency Analysis Trees technique can be
determined through the following Mixed-Integer Linear Program:

min θ,
s.t.

∑t∈T̃∗ λtat
j ≤ θxjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ∈ {0, 1} , t ∈ T̃∗

(17)

In R, this model can be computed by setting scores_model = "BCC.INP" in efficiencyEAT():

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "BCC.INP", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> EAT 0.94 0.06 0.69 0.90 0.96 0.96 1
#> FDH 0.98 0.03 0.90 0.97 1.00 1.00 1

scores %>% sample_n(3)

#> EAT_BCC_INP FDH_BCC_INP
#> DEU 0.88 0.92
#> KAZ 1.00 1.00
#> SRB 0.99 1.00

Additionally, under the Convexified Efficiency Analysis Trees technique, the optimization model
corresponding to the convexification of the production possibility set derived from conv(Ψ̂T∗ ) from (5)
should be solved in order to determine an estimation of the input-oriented radial measure as follows:

min θ,
s.t.

∑t∈T̃∗ λtat
j ≤ θxjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ≥ 0, t ∈ T̃∗

(18)

In R, this model can be computed by setting scores_model = "BCC.INP" in efficiencyCEAT():

scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "BCC.INP", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 0.82 0.08 0.69 0.76 0.81 0.81 1
#> DEA 0.92 0.07 0.72 0.87 0.91 0.91 1

scores %>% sample_n(3)

#> CEAT_BCC_INP DEA_BCC_INP
#> QAT 0.93 1.00
#> CYP 0.69 0.78
#> CHE 0.73 0.85

The output-oriented Russell measure

The output-oriented Russell measure under FDH must be calculated through the following optimiza-
tion model:
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max 1
s ∑s

r=1 ϕr,
s.t.

∑n
i=1 λtxji ≤ xjk, j = 1, ..., m

∑n
i=1 λtyri ≥ ϕryrk, r = 1, ..., s

∑n
i=1 λt = 1,

λi ∈ {0, 1} , i = 1, ..., n
ϕ ≥ 1s.

(19)

Under DEA, the corresponding model would be:

max 1
s ∑s

r=1 ϕr,
s.t.

∑n
i=1 λtxji ≤ xjk, j = 1, ..., m

∑n
i=1 λtyri ≥ ϕryrk, r = 1, ..., s

∑n
i=1 λt = 1,

λi ≥ 0, i = 1, ..., n
ϕ ≥ 1s.

(20)

If we resort to the Efficiency Analysis Trees technique, then the model to be solved should be the
following:

max 1
s ∑s

r=1 ϕr,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗ (at) ≥ ϕryrk, r = 1, ..., s
∑t∈T̃∗ λt = 1,
λt ∈ {0, 1} , i = 1, ..., n
ϕ ≥ 1s.

(21)

In R, this model can be computed by setting scores_model = "RSL.OUT" in efficiencyEAT():

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "RSL.OUT", digits = 2,
print.table = TRUE)

scores %>% sample_n(3)

Finally, under the Convexified Efficiency Analysis Trees technique, the model would be:

max 1
s ∑s

r=1 ϕr,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ ϕryrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ≥ 0, i = 1, ..., n
ϕ ≥ 1s.

(22)

In R, this model can be computed by setting scores_model = "RSL.OUT" in efficiencyCEAT():

scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "RSL.OUT", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 1.13 0.08 1 1.07 1.10 1.10 1.34
#> DEA 1.06 0.05 1 1.02 1.06 1.06 1.22

scores %>% sample_n(3)

#> CEAT_RSL_OUT DEA_RSL_OUT
#> LVA 1.07 1.05
#> CHL 1.18 1.13
#> MAR 1.14 1.00
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The input-oriented Russell measure

By analogy with the output-oriented Russell measure, the input-oriented Russell measure should be
calculated through the following optimization models, depending on the selected approach:

min 1
m ∑m

j=1 θj,
s.t.

∑n
i=1 λtxji ≤ θjxjk, j = 1, ..., m

∑n
i=1 λtyri ≥ yrk, r = 1, ..., s

∑n
i=1 λt = 1,

λi ∈ {0, 1} , i = 1, ...n
θ ≤ 1m.

(23)

Under DEA, the corresponding model would be:

min 1
m ∑m

j=1 θj,
s.t.

∑n
i=1 λtxji ≤ θjxjk, j = 1, ..., m

∑n
i=1 λtyri ≥ yrk, r = 1, ..., s

∑n
i=1 λt = 1,

λi ≥ 0, i = 1, ...n
θ ≤ 1m.

(24)

If we resort to the Efficiency Analysis Trees technique, then the model to be solved should be the
following:

min 1
m ∑m

j=1 θj,
s.t.

∑t∈T̃∗ λtat
j ≤ θjxjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ∈ {0, 1} , i = 1, ..., n
θ ≤ 1m.

(25)

In R, this model can be computed by setting scores_model = "RSL.INP" in efficiencyEAT():

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "RSL.INP", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> EAT 0.58 0.09 0.43 0.52 0.56 0.56 0.81
#> FDH 0.87 0.10 0.59 0.81 0.86 0.86 1.00

scores %>% sample_n(3)

#> EAT_RSL_INP FDH_RSL_INP
#> LBN 0.58 0.73
#> MAR 0.69 0.97
#> MKD 0.58 0.87

Finally, under the Convexified Efficiency Analysis Trees technique, the model would be:

min 1
m ∑m

j=1 θj,
s.t.

∑t∈T̃∗ λtat
j ≤ θjxjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ≥ 0, i = 1, ..., n
θ ≤ 1m.

(26)

In R, this model can be computed by setting scores_model = "RSL.INP" in efficiencyCEAT():

scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 269

scores_model = "RSL.INP", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 0.54 0.08 0.43 0.49 0.53 0.53 0.79
#> DEA 0.80 0.11 0.59 0.74 0.78 0.78 1.00

scores %>% sample_n(3)

#> CEAT_RSL_INP DEA_RSL_INP
#> ARG 0.44 0.59
#> LUX 0.44 0.65
#> CHE 0.49 0.74

The directional distance function

Chambers, Chung, and Färe (1998) introduced the directional distance function (DDF) as a techni-
cal efficiency measure that projects (xk, yk) through a pre-assigned direction g = (−g−j ,+g+r ) ̸=
0m+s, g−j ∈ Rm, g+r ∈ Rs to the efficiency frontier of the corresponding technology. Under FDH, the
DDF is calculated as follows:

max βk,
s.t.

∑n
i=1 λixji ≤ xjk − βkg−j , j = 1, ..., m

∑n
i=1 λiyri ≥ yrk + βkg+r , r = 1, ..., s

∑n
i=1 λi = 1,

λi ∈ {0, 1} , i = 1, ..., n

(27)

The corresponding linear program in DEA is as follows:

max βk,
s.t.

∑n
i=1 λixji ≤ xjk − βkg−j , j = 1, ..., m

∑n
i=1 λiyri ≥ yrk + βkg+r , r = 1, ..., s

∑n
i=1 λi = 1,

λi ≥ 0, i = 1, ..., n

(28)

In the context of Efficiency Analysis Trees, the DDF is calculated through the following Mixed-
Integer Linear Program:

max βk,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk − βkg−j , j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk + βkg+r , r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ∈ {0, 1} , t ∈ T̃∗.

(29)

In R, this model can be computed by setting scores_model = "DDF" in efficiencyEAT():

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "DDF", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> EAT 0.02 0.02 0 0 0.01 0.01 0.13
#> FDH 0.01 0.01 0 0 0.00 0.00 0.05

scores %>% sample_n(3)

#> EAT_DDF FDH_DDF
#> MDA 0.00 0.00
#> LVA 0.00 0.00
#> BRA 0.03 0.01
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In the case of Convexified Efficiency Analysis Trees, the optimization model is as follows.

max βk,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk − βkg−j , j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk + βkg+r , r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ≥ 0, t ∈ T̃∗.

(30)

In R, this model can be computed by setting scores_model = "DDF" in efficiencyCEAT():

scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "DDF", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 0.07 0.04 0 0.05 0.06 0.06 0.18
#> DEA 0.03 0.03 0 0.00 0.03 0.03 0.12

scores %>% sample_n(3)

#> CEAT_DDF DEA_DDF
#> IRL 0.05 0.03
#> LBN 0.15 0.10
#> FRA 0.07 0.06

The weighted additive model

The additive model measures technical efficiency based on input excesses and output shortfalls. It
characterizes efficiency in terms of the input and output slacks: s− ∈ Rm and s+ ∈ Rs, respectively.
The eat package implements the weighted additive model formulation of Lovell and Pastor (1995),
where (w−, w+) ∈ Rm

+ × Rs
+ are the input and output weights whose elements can vary across DMUs.

In the case of the FDH, the optimization program to be solved would be:

max ∑m
j=1 w−

j s−jk + ∑s
r=1 w+

r s+rk,
s.t.

∑n
i=1 λtxji ≤ xjk − s−jk , j = 1, ..., m

∑n
i=1 λtyri ≥ yrk + s+rk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ∈ {0, 1} , i = 1, ..., n
s−k ≥ 0m, s+k ≥ 0s.

(31)

Under DEA, the model would be as follows:

max ∑m
j=1 w−

j s−jk + ∑s
r=1 w+

r s+rk,
s.t.

∑n
i=1 λtxji ≤ xjk − s−jk , j = 1, ..., m

∑n
i=1 λtyri ≥ yrk + s+rk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ≥ 0, i = 1, ..., n
s−k ≥ 0m, s+k ≥ 0s.

(32)

Within the framework of Efficiency Analysis Trees, the weighted additive model would be calcu-
lated as follows:

max ∑m
j=1 w−

j s−jk + ∑s
r=1 w+

r s+rk,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk − s−jk , j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk + s+rk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ∈ {0, 1} , i = 1, ..., n
s−k ≥ 0m, s+k ≥ 0s.

(33)
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In R, this model can be computed by setting scores_model = "WAM.MIP" for the Measure of
Inefficiency Proportions or "WAM.RAM" for the Range-Adjusted Measure of Inefficiency (W. W. Cooper,
Park, and Pastor 1999) in efficiencyEAT():

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "WAM.MIP", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> EAT 2.07 0.56 0.61 1.58 2.18 2.18 3.14
#> FDH 0.40 0.58 0.00 0.00 0.00 0.00 2.37

scores %>% sample_n(3)

#> EAT_WAM_MIP FDH_WAM_MIP
#> MLT 2.54 0
#> SVN 1.86 0
#> HRV 2.30 0

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "WAM.RAM", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> EAT 2704.65 1677.11 455.3 1467.78 2425.09 2425.09 8293.59
#> FDH 959.09 1388.56 0.0 0.00 0.00 0.00 5413.27

scores %>% sample_n(3)

#> EAT_WAM_RAM FDH_WAM_RAM
#> ITA 2192.98 0.00
#> LVA 1890.38 0.00
#> CAN 1724.26 1182.66

And, finally, the Convexified Efficiency Analysis Trees weighted additive model would be:

max ∑m
j=1 w−

j s−jk + ∑s
r=1 w+

r s+rk,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk − s−jk , j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk + s+rk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ≥ 0, i = 1, ..., n
s−k ≥ 0m, s+k ≥ 0s.

(34)

In R, this model can be computed by setting scores_model = "WAM.MIP" for the Measure of Ineffi-
ciency Proportions or "WAM.RAM" for the Range-Adjusted Measure of Inefficiency in efficiencyCEAT():

scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "WAM.MIP", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 2.39 0.45 0.96 2.24 2.50 2.50 3.14
#> DEA 0.90 0.62 0.00 0.23 1.07 1.07 2.37

scores %>% sample_n(3)

#> CEAT_WAM_MIP DEA_WAM_MIP
#> ISR 2.74 1.13
#> ITA 2.73 1.31
#> SGP 1.91 0.00
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scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "WAM.RAM", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 5285.99 2573.13 612.54 3362.98 4836.79 4836.79 12088.64
#> DEA 2413.66 1821.33 0.00 746.22 2495.20 2495.20 7167.29

scores %>% sample_n(3)

#> CEAT_WAM_RAM DEA_WAM_RAM
#> KOR 1538.61 0.00
#> ROU 7239.16 4727.17
#> EST 612.54 0.00

6 Advanced options and displaying and exporting results

Advanced optimization options

The bestEAT() and bestRFEAT() functions are aimed at finding the value of the hyperparameters that
minimize the root mean squared error (RMSE) calculated from a test sample through an Efficiency
Analysis Trees or a Random Forest for Efficiency Analysis Trees model fitted using a training sample.
The code of these functions is as follows:

# Hyperparameter tuning for Efficiency Analysis Trees
bestEAT(
training, test, x, y,
numStop = 5, fold = 5,
max.depth = NULL,
max.leaves = NULL,
na.rm = TRUE
)

# Hyperparameter tuning for Random Forest for Efficiency Analysis Trees
bestRFEAT(
training, test, x, y,
numStop = 5, m = 50,
s_mtry = c("5", "BRM"),
na.rm = TRUE
)

Here is an example of using the bestEAT() function. First, the PISAindex database explained in
Section Data structure is divided into a training subset with 70% of the DMUs and a test subset with
the remaining 30% (these values can be modified).

n <- nrow(PISAindex) # Observations in the dataset
selected <- sample(1:n, n * 0.7) # Training indexes
training <- PISAindex[selected, ] # Training set
test <- PISAindex[- selected, ] # Test set

Then, we can apply the bestEAT() function. This function, and its equivalent bestRFEAT(), requires
a training set (training) on which to fit an Efficiency Analysis Trees model (with cross-validation), a
test set (test) on which to calculate the root mean squared error and the input and output indexes (x
and y, respectively). The rest of the arguments (numStop, fold, max.depth and max.leaves in case of
using the bestEAT() function) are used to create a grid of combinations that determines the number of
models to fit. Notice that it is not possible to enter NULL and a certain value in max.depth or max.leaves
arguments at the same time (i.e. max.depth = c(NULL, 5, 3)).

In the following example, the arguments numStop = (3, 5, 7) and fold = (5, 7) are entered and,
consequently, six different models are constructed and fitted with {numStop = 3, fold = 5}, {numStop
= 3, fold = 7}, {numStop = 5, fold = 5}, {numStop = 5, fold = 7}, {numStop = 7, fold = 5} and
{numStop = 7, fold = 7}. Let us show a numerical example:
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bestEAT(training = training, test = test, x = 4:8, y = 1:3,
numStop = c(3, 5, 7), fold = c(5, 7))

#> numStop fold RMSE leaves
#> 1 5 5 74.74 15
#> 2 7 7 83.61 13
#> 3 3 5 84.17 13
#> 4 3 7 84.17 13
#> 5 7 5 86.39 8
#> 6 5 7 104.93 8

The best model is given by the hyperparameters {numStop = 5, fold = 5} with RMSE = 74.74 and
15 leaf nodes. Note that sometimes it might be interesting to select a model with a higher RMSE but
with a lower number of leaf nodes. With this result, we fit the final Efficiency Analysis Trees model
using all the original data.

bestEAT_model <- EAT(data = PISAindex, x = 4:8, y = 1:3, numStop = 5, fold = 5)

Displaying results

General functions for the EAT object

The simplest functions to use in order to explore the results of an EAT object are print() and summary().
The function print() returns the tree-structure of an Efficiency Analysis Trees model; while the
function summary() returns general information about the fitted model. We show the results with an
example:

modelEAT2 <- EAT(data = PISAindex, x = 7, y = 3)

print(modelEAT2) # [node] y: [prediction] || R: error n(t): nº of DMUs

#> [1] y: [ 569 ] || R: 15724.19 n(t): 72
#>
#> | [2] AAE < 70.12 --> y: [ 486 ] || R: 3094.43 n(t): 34
#>
#> | | [4] AAE < 60.75 --> y: [ 472 ] <*> || R: 1553.93 n(t): 17
#>
#> | | [5] AAE >= 60.75 --> y: [ 486 ] <*> || R: 1006.94 n(t): 17
#>
#> | [3] AAE >= 70.12 --> y: [ 569 ] <*> || R: 3753.38 n(t): 38
#>
#> <*> is a leaf node

# Primary & surrogate splits: Node i --> {SL, SR} || var --> {R: error, s: threshold}
summary(modelEAT2)

#>
#> Formula: M_PISA ~ AAE
#>
#> # ========================== #
#> # Summary for leaf nodes #
#> # ========================== #
#>
#> id n(t) % M_PISA R(t)
#> 3 38 53 569 3753.38
#> 4 17 24 472 1553.93
#> 5 17 24 486 1006.94
#>
#> # ========================== #
#> # Tree #
#> # ========================== #
#>
#> Interior nodes: 2
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#> Leaf nodes: 3
#> Total nodes: 5
#>
#> R(T): 6314.25
#> numStop: 5
#> fold: 5
#> max.depth:
#> max.leaves:
#>
#> # ========================== #
#> # Primary & surrogate splits #
#> # ========================== #
#>
#> Node 1 --> {2,3} || AAE --> {R: 6847.81, s: 70.12}
#>
#> Node 2 --> {4,5} || AAE --> {R: 2560.88, s: 60.75}

Representing the efficiency scores

efficiencyJitter() returns a jitter plot from ggplot2. This graphic shows how DMUs are grouped
into leaf nodes in a model built using the EAT() function where each leaf node groups DMUs with
the same level of resources. A black dot and a black line represent, respectively, the mean value and
the standard deviation of the scores (df_scores from the efficiencyEAT() or the efficiencyCEAT()
functions) of a given node. Additionally, efficient DMU labels are always displayed based on the
model entered in the scores_model argument. Finally, the user can specify an upper bound (upb) and
a lower bound (lwb) in order to show, in addition, the labels whose efficiency score lies between them.
The code is as follows:

efficiencyJitter(
object,
df_scores,
scores_model,
upb = NULL,
lwb = NULL

)

As an example, using data from Section Data structure, we create a new Efficiency Analysis Trees
model containing only the AAE and the M_PISA variables. Next, we evaluate the Efficiency Analysis
Trees efficiency scores corresponding to the output-oriented radial model and plot them through
efficiencyJitter().

scores <- efficiencyEAT(data = PISAindex, x = 7, y = 3, object = modelEAT2,
scores_model = "BCC.OUT", digits = 2,
print.table = FALSE)

efficiencyDensity() returns a density plot from ggplot2. This graphic allows to verify the
similarity between the scores obtained by the different available methodologies (EAT, FDH, CEAT, DEA
and RFEAT) in the eat package.

efficiencyDensity(
df_scores,
model = c("EAT", "FDH")

)

In this case, a comparison between the scores of the EAT and FDH models is shown, where it can
be clearly seen how FDH is less restrictive when determining a unit as efficient:

Other graphics

In the limited case of using only one input for producing only one output, we can display the frontier
(from ggplot2) estimated by the EAT() function through the frontier() function:
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Figure 3: Jitter plot generated by ’efficiencyJitter()’ to show how the countries are grouped inside three
particular leaf nodes.
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obtained by EAT and FDH.
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Figure 5: Plot of productions functions corresponding to the EAT and the FDH estimator when
’frontier()’ is applied.

frontier(
object, FDH = TRUE,
observed.data = TRUE,
observed.color = "black",
pch = 19,vsize = 1,
rwn = FALSE,
max.overlaps = 10

)

Optionally, the frontier estimated by FDH can also be plotted if FDH = TRUE. Observed DMUs can
be showed by a scatterplot if observed.data = TRUE and its color, shape and size can be modified
with observed.color, pch and size respectively. Finally, row names can be included with rwn = TRUE.

As an example, we use data simulated from the eat package to generate a data.frame with 50
rows (N = DMUs) and 1 input (nX):

simulated <- Y1.sim(N = 50, nX = 1)
modelEAT3 <- EAT(data = simulated, x = 1, y = 2)

Then, we apply the frontier() function, where it can be observed how the Efficiency Analysis
Trees model generalizes the results obtained by the FDH model:

The function frontier() shown above only works for the simple case of a low-dimensional
scenario with one input and one output. For multiple input and/or output scenarios, the typical tree-
structure showing the relationships between outputs and inputs is given by the function plotEAT().

plotEAT(
object

)

The nodes of the tree are colored according to the variable by which the split is performed or they
are black, in the case of being a leaf node. For each node, we can obtain the following information:

• id: node index.
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• R: error at the node.

• n(t): number of DMUs at the node.

• input variable associated with the split.

• y: vector of output predictions.

Next, we limit the growth of an Efficiency Analysis Trees model to a maximum size of 5 (max.depth
= 4) and display the tree-structure using the plotEAT() function:

Finally, the function plotRFEAT() returns the Out-Of-Bag error for a random forest consisting of k
trees. The code of the function and an example with the object modelRFEAT are shown above:

plotRFEAT(
object

)

In view of the results, it can be seen how the OOB error presents a great variability for a small
number of trees, however, it usually levels off. In our case, it seems that the OOB error levels off from
20 trees onwards around an OOB error of 56, so it could be interesting not to include a greater number
of trees in the random forest in order to reduce the computational cost.

7 Conclusions

The eat package allows the estimation of production frontiers in microeconomics and engineering
through suitable adaptations of Regression Trees and Random Forest. In the first case, the package
implements in R the so-called Efficiency Analysis Trees (EAT) by Esteve et al. (2020), which is a non-
parametric technique that competes against the more standard Free Disposal Hull (FDH) technique. In
this regard, the EAT technique overcomes the overfitting problem suffered by the FDH technique. FDH
is based on three microeconomic postulates. First, the technology determined by FDH satisfies free
disposability in inputs and outputs. Second, it is assumed to be deterministic, that is, the production
possibility set built by this technique always contains all the observations that belong to the data
sample. Third, FDH meets the minimal extrapolation principle. This last postulate implies that
FDH generates the smallest set that satisfies the first two postulates. Consequently, the derived
efficient frontier is as close to the data as possible, generating overfitting problems. In contrast, the
Efficiency Analysis Trees (EAT) technique meets the first two postulates but does not satisfy the
minimal extrapolation principle. This fact avoids possible overfitting problems. The difficulty for
non-overfitted models lies in where to locate the production possibility set in such a way that it is
close to the (unknown) technology associated with the underlying Data Generating Process. In the
case of EAT, it is achieved through cross-validation and pruning. A subsequent convexification of the
EAT estimation of the technology, known as CEAT by its acronym, yields an alternative estimate of the
production possibility set in contrast to the traditional Data Envelopment Analysis (DEA) technique.
In the second case, an ensemble of tree models is fitted and aggregated with the objective of achieving
robustness in the estimation of the production frontier (Esteve et al. 2021).

Several functions have been implemented in the eat package for determining the best model,
through a pruning process based on cross-validation, graphing the results, calculating a ranking
of importance of inputs and comparing the efficiency scores estimated by EAT with respect to the
standard approaches, i.e., FDH and DEA, through a list of standard technical efficiency measures. We
refer to the input and output-oriented radial models, the input and output-oriented Russell measures,
the Directional Distance Function and the Weighted Additive model.

Throughout the paper, we have also shown how to organize the data, use the available functions,
and interpret the results. In particular, to illustrate the different functions implemented in the package,
we applied all of them on a common empirical example so that results can easily be compared. In
this way, we believe that the eat package is a valid self-contained R package for the measurement of
technical efficiency from the popular machine learning technique: Decision Trees. Finally, since the
code is freely available in an open source repository, users will benefit from the collaboration and
review of the community. Users may check and modify the code to adapt it to their own needs and
extend it with new definitions.
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