
CONTRIBUTED RESEARCH ARTICLE 193

Tidy Data Neatly Resolves
Mass-Spectrometry’s Ragged Arrays
by William Kumler and Anitra E. Ingalls

Abstract Mass spectrometry (MS) is a powerful tool for measuring biomolecules, but the data
produced is often difficult to handle computationally because it is stored as a ragged array. In R, this
format is typically encoded in complex S4 objects built around environments, requiring an extensive
background in R to perform even simple tasks. However, the adoption of tidy data (Wickham, 2014)
provides an alternate data structure that is highly intuitive and works neatly with base R functions
and common packages, as well as other programming languages. Here, we discuss the current state of
R-based MS data processing, the convenience and challenges of integrating tidy data techniques into
MS data processing, and present RaMS, a package that produces tidy representations of MS data.

1 Introduction

Mass-spectrometry (MS) is a powerful tool for identifying and quantifying molecules in laboratory
and environmental samples. It has grown enormously over recent decades and has been responsible
for countless advances in chemical and biological fields. It is often paired with liquid chromatography
(LC) to separate compounds by retention time and improve detection limits. The large quantity of data
produced by increasingly rapid and sensitive instruments has facilitated the adoption of computational
methods that use algorithms to detect, identify, and quantify molecular signatures.

Many mass-spectrometrists have some exposure to programming, often in R, and this familiarity
is expected to increase in the future as computational methods continue to become more popular
and available. However, these researchers typically focus on results and the conclusions that can
be drawn from them rather than the arcane details of any particular language or package. This
produces a demand for simple data formats that can be quickly and easily understood by even a
novice programmer. One such representation is the "tidy" data format, which is rapidly growing in
popularity among R users for its consistent syntax and large library of supporting packages (Wickham,
2014). By formatting MS data tidily, the barrier to entry for novice programmers is dramatically
reduced, as tidyverse functions learned elsewhere will function identically on MS data.

This article begins by reviewing the current theory and implementation of MS data handling, as
driven by three major questions. First, why is it difficult to access and interpret MS data? Second, why
should it be easier to do this? Finally, why don’t current algorithms make it trivial to do this? In the
latter portion of this article, we introduce a new package, called R-based access to Mass Spectrometry
data (RaMS) that provides tidy access to MS data and will facilitate future analysis and visualization.

2 Why is it difficult to access mass-spectrometry data?

Mass spectrometers produce data in the form of ragged (also sometimes called "jagged") arrays. These
data structures contain an unequal number of columns per row because any number of ion masses
(m/z ratios) may be observed at a given time point. This data is typically managed in a list-of-lists
format, with a list of time points each containing a list of the ions observed and their abundances.
While this is an effective way to preserve the data structure as it was produced by the instrument, it is
less helpful when performing analysis. Typically, analysis (both manual and computational) iterates
over m/z windows rather than time. The main focus is the extracted ion chromatogram (EIC) which
represents all time points for a given mass, and the spectrum of masses obtained at a given time point
is less useful during the preliminary review and initial discovery phases. This nested syntax, often
itself contained within S4 objects and encoded as an environment, makes it difficult to extract EICs
quickly and intuitively.

Even so, "difficult" is a relative assessment. Veteran R programmers have little difficulty writing
elegant code that embraces these ragged arrays and the list-of-lists syntax. Indeed, the dominant MS
processing package in R, MSnbase currently uses the S4 object system to great effect. However, MS
experts are rarely also R experts and have a working familiarity with R rather than a comprehensive
background in computer science. This working knowledge typically includes creating plots, subsetting
data, and manipulating simple objects but does not extend to the nuances of the S4 object system
or methods for rewriting package code. Thus, a package capable of converting these complex data
structures into a familiar format appears to be very much in demand.

Finally, it should be noted that existing MS data processing packages are designed to be holistic

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=RaMS
https://CRAN.R-project.org/package=tidyverse
https://www.bioconductor.org/packages/release/bioc/html/MSnbase.html

CONTRIBUTED RESEARCH ARTICLE 194

pipelines which accept raw data and output definitive results. There is very little room for a user’s
customization beyond the provided function arguments despite the enormous variability in MS setups,
usage, and data quality. It is often challenging to access intermediate objects as a way to debug
unexpected results, and published code is rarely easy to edit safely due to poor documentation and
unit test coverage. These issues are compounded by the agglomerative nature of R packages that
build extensively upon other R packages; the popular xcms processing package has over a hundred
dependencies installed from across CRAN and Bioconductor, with further functionality provided by
unregulated code from GitHub and SourceForge. When combined with additional issues from C++
compilers, versioning, and operating system discrepancies, MS data analysis becomes very much a
"black box" with functioning pipelines treated as fragile rather than simple, robust, and reproducible.

3 Why should it be easier to access mass-spectrometry data?

Mass-spectrometry data is fundamentally simple. In LC-MS full-scan mode, each data point has
three coordinates corresponding to the time, molecular mass, and intensity dimensions. Even the
more complex fragmentation data requires only a single additional dimension, fragment mass. While
this ignores the large quantity of critical metadata associated with each file that must also be stored
somewhere, a core part of MS research is driven by the data alone. In this preliminary stage of analysis,
metadata is less relevant than simple exploratory questions about which molecules can be detected and
preliminary assessments of data quality. This exploratory phase is driven by rapid, ad hoc discovery
and hypothesis testing that typically requires visualizing chromatograms and the raw data to assess
quality: this appears to be one of the reasons why R and its built-in plotting ability is so popular for
MS analysis (Gatto et al., 2021). These queries should be trivial to implement, even for beginning R
users, but current data storage methods make them difficult and often time-consuming. Currently, the
easiest questions to answer about MS data are metadata-based queries about the instrument that the
analyst is usually already able to answer. This is an artifact of information storage in most raw data
files, with metadata available readily at the top level and measurements buried deep within.

Raw MS data is typically converted from vendor-specific formats into open-source versions that
can be parsed without proprietary software. The modern standard is the mzML document, which has
been designed to combine the best aspects of precursor standards in a single universal format (Deutsch,
2010). These XML documents have well-defined schema built around a controlled vocabulary to
enable consistent parsing. Most critically, the development of the modern mzML format established
accession numbers for each attribute which (according to the specification document) should never
change. This stability means that the data can be accessed robustly with any XML parser. Older
formats, such as mzXML, are currently deprecated and will not undergo further development, making
them equally stable.

Finally, simple data formats make it easier to work within existing frameworks rather than
developing exclusive functions. Tidy data interacts neatly with the entire tidyverse thanks to its
shared design philosophy and it’s simple to upgrade basic data frames to data.tables for improved
access speed. More crucially, however, simple formats make it possible to port MS data to other
languages and interfaces. It is straightforward to convert an R data frame to Python’s pandas version
via the reticulate package, encode it as a SQL database, or export it as a CSV file to be viewed in
Excel or other familiar GUIs. The same cannot be said for R’s environments and S4 objects. This
connectivity ensures that the best tools possible can be applied to a problem, rather than the subset
available in a given package or programming language. Simplifying access to and working storage of
MS data is a critical step for the further development of fast, accurate algorithms for the detection and
quantification of molecules across many areas of science.

4 Why isn’t it already easier to access mass-spectrometry data?

Of course, there are challenges that make simplification difficult and a trade-off must be made between
speed, storage, and sanity. Tidy data favors code readability and intuitiveness over computational
efficiency: for example, a list-of-lists model is more memory efficient than the proposed rectangular
data structure because each time point is stored once rather than repeated in each row. When
multiple files are analyzed simultaneously, tidy data also requires that the filename be repeated
similarly, resulting in essentially a doubling of object size in the computer memory. Given that
most MS experiments involve tens or hundreds of large files, this is a major concern and current
packages handle memory carefully, either reading from disk only what is needed or running files in
batches. There are several ways to resolve this problem within the tidy data model as well. During
the exploration phase, it is rarely necessary to load all data from files simultaneously, but viewing
some portion of the data is still critically important for quality control. With the tidy model, it’s not

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://www.bioconductor.org/packages/release/bioc/html/xcms.html
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=reticulate

CONTRIBUTED RESEARCH ARTICLE 195

required to import all the data in a single comprehensive step. Instead, quality control files or pooled
samples can be viewed as representative of the whole run and rarely challenge memory requirements.
Additionally, tidy data makes it easy to subset only the masses of interest for targeted analyses, and
the remainder of the data can be discarded from memory. For the final comprehensive analysis, it is
much simpler to encode MS data into an external database for access via SQL or other query language
when formatted tidily than it is to wrangle current implementations into some accessible object that
can handle project sizes larger than the computer’s memory.

Theoretically, the ideal data structure for MS data processing speed would invert the current
list-of-lists schema by constructing a list of unique m/z values, each containing the time points at which
that mass ratio was observed and the corresponding intensity. However, this method is complicated by
the instrumental error inherent in measuring molecular masses. The same molecule may be measured
to have a slightly different mass at each time point, and "binning" these masses together across all time
points for a single consensus value risks incorporating nearby masses together even at hypothetical
sub-ppm mass accuracy (Kind and Fiehn, 2006). Instead, m/z values are continuous rather than discrete,
making it difficult to encode the data in this way. A tidy framework resolves part of this issue by
storing the time and m/z values in columns that can be indexed by a binary search, such as the one
implemented by data.table. This allows for rapid subsetting by both time and m/z. Finally, it is worth
noting that computers have rapidly grown faster and larger while human intuition has not grown as
quickly. This indicates that concerns with processing time and memory will lessen over time and that
in the long run, sanity should be prioritized over speed and storage.

There are other reasons that a tidy approach has not yet been implemented for MS data. MS files
include large amounts of metadata which should not be discarded, but are challenging to encode
efficiently in a rectangular format. A proper tidy approach requires that a separate table be constructed
to hold this per-file metadata, with a key such as file name that permits joining the metadata back to
the original information. Compared to the monolithic S4 objects constructed by traditional workflows,
managing multiple tables may be unappealing. S4 objects also excel at recording each process that is
performed on the data, and a specific "processes" slot is found in some objects to record exactly this.
However, with the emergence of code sharing and open-source projects it becomes less critical that the
data itself records the process because the source code is available.

Finally, a significant history exists for today’s methods. MSnbase, the first widely-used R package
designed to process MS data, implemented S4 objects as a way to hold entire MS experiments in
memory, and dependent packages extend this MSnExp object in various ways rather than discarding
it entirely. This development history and connected network of packages is incredibly useful and
represents an extensive process of innovation and refinement. We would like to emphasize that the
concerns raised here and the package introduced below are not designed to critique or replace this
significant effort. Instead, our goal is to function alongside prior work as a way to enable rapid,
interactive, and preliminary exploration. Following initial investigation, we recommend using the
existing pipelines and extensive package network to establish a reproducible, scripted process of MS
data analysis.

5 The RaMS package

The RaMS package implements in R a set of methods used to parse open-source mass-spectrometry
documents into the R-friendly data frame format. Functions in the package accept file names and
the type of data requested as arguments and return rectangular data objects stored in R’s memory.
This data can then be processed and visualized immediately using base R functions such as plot and
subset, passed to additional packages such as ggplot2 and data.table, or exported to language-agnostic
formats such as CSV files or SQL databases.

Installation

The RaMS package can be installed in two ways:

The release version from CRAN:

install.packages("RaMS")

Or the development version from GitHub:

install.packages("remotes")
remotes::install_github("wkumler/RaMS")

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 196

Input arguments

RaMS is simple and intuitive, requiring the memorization of a single new function grabMSdata with
the following usage:

grabMSdata(files)

Where files is a vector of file paths to mzML or mzXML documents, which can be located on the
user’s computer, a network drive, FTP site, or even at a URL on the Internet. Further parameters are
documented below in Table 1:

Parameter Description

grab_what Specifies the information to extract from the mzML or mzXML file. Can
currently accept any combination of "MS1", "MS2", "EIC", "EIC_MS2", "meta-
data", and "everything" (the default).

verbosity Controls progress messages sent to the console at three different levels: no
output, loading bar and total time elapsed, and detailed timing information
for each file.

mz Used when grab_what includes "EIC" or "EIC_MS2". This argument should
be a vector of the m/z ratios interesting to the user, if the whole file is too
large to load into memory at once or only a few masses are of interest.

ppm Used alongside the mz argument to provide a parts-per-million error window
associated with the instrument on which the data was collected.

rtrange A length-two numeric vector with start and end times of interest. Often
only a subset of the LC run is of interest, and providing this argument limits
the data extracted to those between the provided bounds.

Table 1: Parameters accepted by the grabMSdata function.

Usage

Extracting data with grabMSdata returns a list of tables, each named after one of the parameters
requested. A grab_what argument of "MS1" will return a list with a single entry, the MS1 (i.e. full-scan
data) for all of the files:

msfile <- system.file("extdata", "LB12HL_AB.mzML.gz", package = "RaMS")
msdata <- grabMSdata(files = msfile, grab_what="MS1")
head(msdata$MS1)

rt mz int filename
4.009 104.0710 1297755.000 LB12HL_AB.mzML.gz
4.009 104.1075 140668.125 LB12HL_AB.mzML.gz
4.009 112.0509 67452.859 LB12HL_AB.mzML.gz
4.009 116.0708 114022.531 LB12HL_AB.mzML.gz
4.009 118.0865 11141859.000 LB12HL_AB.mzML.gz
4.009 119.0837 9636.127 LB12HL_AB.mzML.gz

Table 2: Tidy format of RaMS output showing columns of MS1 data, with columns for retention time
(rt), mass-to-charge ratio (mz), intensity (int) and name of the source file (filename). Note that this is a
subset - the actual object contains 8,500 entries.

This table is already tidied, ready to be processed and visualized with common base R or tidyverse
operations. For example, it’s often useful to view the maximum intensity observed at each time
point: this is known as a base peak chromatogram or BPC. Below are two examples of calculating and
plotting a BPC using base R and the tidyverse.

Base R
BPC <- tapply(msdata$MS1$int, msdata$MS1$rt, max)
plot(names(BPC), BPC, type="l")

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 197

Figure 1: A simple chromatogram plotted using base R. This plot shows the retention time of all
compounds in a sample plotted against the maximum intensity at each timepoint. Base graphics were
used so the plot is fully customizable with normal graphics options.

Tidyverse
library(tidyverse)
BPC <- msdata$MS1 %>%

group_by(rt) %>%
summarize(BPC_int=max(int))

ggplot(BPC) + geom_line(aes(x=rt, y=BPC_int))

Figure 2: A simple chromatogram plotted using the ggplot2 package. This plot shows the same data
as Figure 1 of retention time by maximum intensity across compounds but uses ggplot2 syntax and
defaults.

Importantly, note that the creation of these plots required no special knowledge of the S3 or
S4 systems and the plots themselves are completely customizable. While similar packages provide
methods for plotting output, it is rarely obvious what exactly is being plotted and how to customize
those plots because the data is stored in environments and accessed with custom code. RaMS was
written with the beginning R user in mind, and its design philosophy attempts to preserve the most
intuitive code possible.

RaMS uses data.table internally to enhance speed, but this also allows for more intuitive subsetting
in mass-spectrometry data. With data.table, operations are nearly as easy to write in R as they are
to write in natural language, leveraging the user’s intuition and decreasing the barrier to entry for
non-coder MS experts. For example, a typical request for MS data might be written in natural language
as:

"All MS1 data points with m/z values between an upper and lower bound, from start time
to end time."

This request can be written in R almost verbatim thanks to data.table’s intuitive indexing and
%between% function:

msdata$MS1[mz %between% c(upper_bound, lower_bound) &
rt %between% c(start_time, end_time)]

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 198

Most importantly, this syntax doesn’t require the mass-spectrometrist to have an understanding
of how the data is stored internally. Current implementations use S4 objects with slots such as
"chromatograms" and "spectra" or derivatives of these, despite their inconsistent usage across the field
and unclear internal structure. (Smith et al., 2015)

RaMS enhances the intuitive nature of data.table’s requests slightly by providing the pmppm
function, short for "plus or minus parts-per-million (ppm)". Masses measured on a mass-spectrometer
have a certain degree of inherent deviation from the true mass of a molecule, and the size of this error
is a fundamental property of the instrument used. This means that mass-spectrometrists are often
interested in not only the data points at an exact mass, but also those within the ppm error range. MS
data exploration often makes requests for data in natural language like:

"All MS1 data points with m/z values within the instrument’s ppm error of a certain
molecule’s mass"

Which can again be expressed in R quite simply as:

msdata$MS1[mz %between% pmppm(molecule_mass, ppm_error)]

Internals

Fundamentally, RaMS can be considered an XML parser optimized for mzML and mzXML documents.
The rigorous specification and detailed documentation make it possible for a generic XML parser to
efficiently extract the document data. In R, the xml2 package provides modern parsing capabilities
and is efficient in both speed and memory usage by calling C’s libxml2 library, making it an attractive
choice for this processing step. Much of RaMS’s internal code consists of a library of XPath expressions
used to access specific nodes and extract the (often compressed) values . Table 3 below provides
several examples of XPath expressions used to extract various parameters from the mzML internals:

Parameter of interest mzML XPath expression

Fragmentation level //spectrum/cvParam[@name="ms level"]
Retention time //scanList/scan/cvParam[@name="scan start time"]

m/z values //binaryDataArrayList/binaryDataArray[1]/binary
Intensity values //binaryDataArrayList/binaryDataArray[2]/binary

Polarity (for positive mode) //spectrum/cvParam[@accession="MS:1000130"]

Table 3: A few example parameters extracted from the mzML file and the corresponding XPath
expression used to extract it.

These sample expressions illustrate the controlled vocabulary of the mzML parameters (the
cvParam elements above) and the remarkable stability of the specification that permits optimization.
While the "polarity" parameter for positive mode is the only one above that is specified via its accession
number ("MS:1000130"), it’s worth noting that the other parameters also have unique accession number
attributes that could be used but instead have been foregone in favor of readability.

MS data files are often highly compressed and the m/z and intensity data is typically encoded
as base 64 floating point arrays. MS data extracted from the binary data array must then first be
decoded from base64 to binary using the base64enc package, then decompressed if necessary using
R’s base memDecompress function, and finally cast to double-precision floating point values via base
R’s readBin.

After the data has been extracted from the XML document, RaMS uses the data.table package to
provide fast aggregation and returns data.table objects to the user. This is also the step which converts
the data from a ragged array format into a tidy format, and neatly illustrates the strength of tidy data.
Rather than continuing to store the data as a list-of-lists and preserving the nested data structure,
this step creates separate columns for retention time (rt) and m/z (mz) values. This allows the user to
perform rapid binary searches on both the retention time and m/z columns and can greatly accelerate
the extraction of individual masses of interest, as is often the goal when analyzing MS data.

Comparison to similar packages

While many packages exist to process MS data within R, very few can be found that actually read the
raw data into the R environment. The dominant package by far is MSnbase, which describes itself as

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=xml2
https://CRAN.R-project.org/package=base64enc

CONTRIBUTED RESEARCH ARTICLE 199

providing "infrastructure for manipulation, processing and visualisation of mass spectrometry and pro-
teomics data", and is thus very similar to RaMS. MSnbase itself calls the Bioconductor package mzR
to provide the C++ backend used to parse the raw XML data. Other packages include readMzXmlData
and MALDIquantForeign, both developed by Sebastian Gibb and hosted on CRAN. One additional
package to note is the caMassClass package that no longer exists on CRAN but code from which can
be found in the CorrectOverloadedPeaks package and only parses the deprecated mzXML format.
Finally, the Spectra package is under active development by the RforMassSpectrometry initiative and
represents a useful comparison for other cutting-edge frameworks that will be expanded in the future
(Rainer et al., 2022). However, all of these packages preserve the list-of-list format and none produce
naturally tidy representations.

This section illustrates how RaMS compares to MSnbase as the current dominant processing
package and Spectra as the next iteration of MS processing. MSnbase has undergone constant revision
since its inception in 2010, while Spectra has been under development since 2020. The most recent
version of MSnbase as of this writing was announced in 2020 and focuses on the new "on-disk"
infrastructure that loads data into memory only when needed. This new infrastructure and the legacy
storage mode released in the first version of MSnbase provide useful comparisons for RaMS in terms
of memory usage and speed and the Spectra package will provide a useful future-oriented comparison.
As noted above, however, RaMS has different goals from either of these packages. RaMS is optimized
for raw data visualization and rapid data exploration while MSnbase and Spectra are designed to
provide a solid foundation for more streamlined data processing and these packages all can work
neatly in concert rather than replacing each other.

To compare the different methods, ten MS files were chosen from the MassIVE dataset
MSV000080030 to mimic the large-experiment processing of Gatto et al. (2021). Methods were com-
pared in terms of memory usage, time required to load the data into R’s working memory, and the
time required to subset an EIC and plot the data. Due to the differences in method optimization, we
expected MSnbase to be significantly faster when loading the data, RaMS to be significantly faster
during subsetting and plotting, and MSnbase to have the smallest memory footprint. The Spectra
package’s capabilities were less well known in advance but should represent a consistent improvement
over MSnbase. These expectations were well-validated by the results shown in Figure 3.

RaMS performed better than expected on the data load-time metric, taking approximately the
same amount of time as the new on-disk MSnbase backend and the Spectra package and significantly
less than the old in-memory method. This was surprising because while RaMS is performing the
physical I/O process essentially equivalent to the creation of the MSnExp, both the OnDiskMSnExp
method and the Spectra object instead create a system of pointers to the data and don’t actually read
the data into memory. However, the new backend begins to perform better as the number of files
increases and proportional improvements are expected with even larger file quantities. The Spectra
package, as expected, shows consistent improvements over both MSnbase backends.

For the subsetting and plotting metric, our expectation that RaMS would be the fastest method was
validated by times approximately two orders of magnitude smaller than those obtained by MSnbase
(note the log scale used in the figure). These results also validated earlier results demonstrating
the superiority of the new on-disk method (Gatto et al., 2021) and the improvements in the new
Spectra package. The sub-second subset and plot times of RaMS are so much smaller than the other
timings recorded in this trial that RaMS essentially has a single fixed cost associated with the initial
data import, making it ideal for the exploratory phase of data analysis where files are loaded once
and then multiple chromatograms may be extracted and reviewed. This design also aligns with the
user’s expected workflow in which data import is accepted as a time-consuming task, but subsequent
analysis should be relatively seamless and instantaneous.

The greatly reduced subsetting and plotting time required by RaMS and the observation that file
load times and data plotting times were approximately equal for MSnbase led to the creation of the
bottom-left graph in Figure 3. This follow-up analysis highlights that the slightly increased file load
time of RaMS combined with the very short subsetting and plotting phase is actually less than the
total time required by MSnbase and Spectra to read, subset, and plot, establishing RaMS as the fastest
option even if the end goal is to extract a single chromatogram. This follow-up also demonstrates
the largest improvements of the new MSnbase on-disk method over the old one and the clearest
improvements in Spectra.

As expected, this speed comes at a cost. RaMS has a larger memory footprint than even the old
in-memory MSnExp object. While all three objects grew approximately linearly with the number of
files processed, the RaMS object was approximately 2 times larger than the in-memory MSnbase
object and several orders of magnitude larger than the new, on-disk version. This was expected
because RaMS stores retention time and filename information redundantly in the tidy format while
the list-of-lists method only stores that information once. In fact, the RaMS object size was larger than
the uncompressed mzXML files themselves! However, this trade-off can be minimized through the

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://www.bioconductor.org/packages/release/bioc/html/mzR.html
https://CRAN.R-project.org/package=readMzXmlData
https://CRAN.R-project.org/package=MALDIquantForeign
https://CRAN.R-project.org/package=CorrectOverloadedPeaks
https://www.bioconductor.org/packages/release/bioc/html/Spectra.html

CONTRIBUTED RESEARCH ARTICLE 200

Figure 3: Time and memory required by RaMS compared to the MSnbase and Spectra methods
across 1, 5, and 10 mzXML files. The top-left plot shows the time required to load the mzXMLs into
memory (RaMS and MSnExp) or construct pointers (OnDiskMSnExp, Spectra’s mzR backend) with
the MSnExp object taking approximately an order of magnitude longer than the other methods. The
top-right plot shows the time required to subset the data by m/z to a single chromatogram and plot
that subset after the object has already been created. The RaMS package performs this approximately
an order of magnitude faster than the other packages and the Spectra package is second-fastest, with
RaMS taking less than a second for up to 10 mzXMLs and the Spectra package taking between one and
ten seconds depending on the number of files to be subset. The bottom-left plot shows a combination
of the two plots above by timing each package as it performs the full object construction, subsets to a
single chromatogram, and plots it with RaMS again the fastest among the packages. The bottom-right
plot shows the memory required for each package across different numbers of files as well as the size
of the original mzXML documents as a benchmark. Both RaMS and the MSnExp objects occupied
more space in RAM than the original file size (RaMS occuying approximately 2x as much memory,
MSnExp closer to 1.1x), while the OnDiskMSnExp and mzR backend were consistently two orders
of magnitude smaller. Times were obtained by the microbenchmark package and object sizes were
obtained with pryr. Note the log-scaled y-axes.

use of RaMS’s vectorized grab_what = "EIC" and grab_what = "EIC_MS2" functions that can extract
a vector of masses of interest and discard the remainder of the data to free up memory for analyses
where the specific ions of interest are known beforehand. The general lesson from this analysis seems
to be that if the memory is available and a quick and intuitive interaction is desired, RaMS is now the
top contender. For other purposes, MSnbase or Spectra remain the obvious choices depending on
expected workflow.

Broader interactions

RaMS is intentionally simple. By encoding MS data in a rectangular, long data format, RaMS facilitates
not only R-specific development but contributes to MS analysis across languages and platforms. At
the most basic level, subsets of interest can be exported as CSV files for use in any language that can
read this ubiquitous format. Even users with zero programming background are familiar with Excel
and other spreadsheet GUIs, so this method of export and data-sharing improves transparency by

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=pryr

CONTRIBUTED RESEARCH ARTICLE 201

allowing anyone to open the raw data corresponding to compounds of interest.

The list-of-tables format that RaMS returns was inspired by traditional relational databases, and
this provides a slightly more complex method of storing data with several advantages over CSV
export. The dominant convenience of relational databases is that they can grow almost indefinitely,
rather than being limited by computer memory. While existing packages perform admirably when
operating on files that fit into RAM, there are few good solutions for the MS experiments that can
exceed hundreds of gigabytes in size. Both batching and subset analysis face issues with systematic
inter-sample variation rarely controlled for across subsets. Additionally, an external relational database
can be easily appended with additional files as experiments continue to be performed, rather than
demanding that all samples be run before any analysis can begin. RaMS output can be easily written
to SQL databases using existing packages such as DBI and RSQLite:

library(DBI)
db <- dbConnect(RSQLite::SQLite(), "msdata.sqlite")
dbWriteTable(db, "MS1", msdata$MS1)
dbListTables(db)
dbGetQuery(db, "SELECT * FROM MS1 LIMIT 3")
dbDisconnect(db)

Finally, with reticulate, R data frames can be directly coerced into Pandas DataFrames. This allows
for an unprecedented degree of interaction between R and Python for MS data analysis, reducing the
need for parallel development in both languages and allowing the optimal functions to be used at
each step rather than the limited selection that have already been implemented in R or Python. As
MS data exploration and analysis continues to grow increasingly machine-learning heavy, allowing R
to interact elegantly with Python enables the best of R’s extensive MS analysis history with Python’s
powerful interfaces to deep learning frameworks such as TensorFlow and Pytorch.

6 Summary

In this paper, we discussed the current paradigm of MS data analysis in R and identify an area where
tidy data techniques significantly improve user experience and support increased interaction with
other packages and software. We also present RaMS as a package that fills this gap by presenting MS
data to the R user in a tidy format that can be instantly queried and plotted.

7 Acknowledgements

We are grateful to members of the Ingalls Lab and other labs at the University of Washington who
gave invaluable feedback on early versions of this package and the philosophy behind it. Katherine
Heal and Laura Carlson generated the data used in the demo files and were early adopters, and
Angie Boysen and Josh Sacks provided crucial testing and application of the package. We also thank
both anonymous reviewers for their insightful commentary and suggestions that improved both the
manuscript and the CRAN package. This work was supported by grants from the Simons Foundation
(329108, 385428, and 426570, A.E.I.).

Bibliography

E. W. Deutsch. Mass spectrometer output file format mzML. In S. J. Hubbard and A. R. Jones, editors,
Proteome Bioinformatics, pages 319–331. Humana Press, Totowa, NJ, 2010. ISBN 978-1-60761-444-
9. doi: 10.1007/978-1-60761-444-9_22. URL https://doi.org/10.1007/978-1-60761-444-9_22.
[p194]

L. Gatto, S. Gibb, and J. Rainer. MSnbase, efficient and elegant R-based processing and visualization of
raw mass spectrometry data. Journal of Proteome Research, 20(1):1063–1069, 2021. doi: 10.1021/acs.
jproteome.0c00313. URL https://doi.org/10.1021/acs.jproteome.0c00313. [p194, 199]

T. Kind and O. Fiehn. Metabolomic database annotations via query of elemental compositions: mass
accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics, 7(1):234, Apr 2006. doi:
10.1186/1471-2105-7-234. URL https://doi.org/10.1186/1471-2105-7-234. [p195]

J. Rainer, A. Vicini, L. Salzer, J. Stanstrup, J. M. Badia, S. Neumann, M. A. Stravs, V. Verri Hernandes,
L. Gatto, S. Gibb, and M. Witting. A modular and expandable ecosystem for metabolomics data

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=DBI
https://CRAN.R-project.org/package=RSQLite
https://doi.org/10.1007/978-1-60761-444-9_22
https://doi.org/10.1021/acs.jproteome.0c00313
https://doi.org/10.1186/1471-2105-7-234

CONTRIBUTED RESEARCH ARTICLE 202

annotation in R. Metabolites, 12(2), 2022. ISSN 2218-1989. doi: 10.3390/metabo12020173. URL
https://doi.org/10.3390/metabo12020173. [p199]

R. Smith, R. M. Taylor, and J. T. Prince. Current controlled vocabularies are insufficient to uniquely
map molecular entities to mass spectrometry signal. BMC Bioinformatics, 16(7):S2, Apr 2015. doi:
10.1186/1471-2105-16-S7-S2. URL https://doi.org/10.1186/1471-2105-16-S7-S2. [p198]

H. Wickham. Tidy data. Journal of Statistical Software, 59(10):1–23, 2014. doi: 10.18637/jss.v059.i10.
URL https://doi.org/10.18637/jss.v059.i10. [p193]

William Kumler
University of Washington School of Oceanography
1501 NE Boat St., Seattle, WA 98105 United States of America
ORCiD: 0000-0002-5022-8009
wkumler@uw.edu

Anitra E. Ingalls
University of Washington School of Oceanography
1501 NE Boat St., Seattle, WA 98105 United States of America
ORCiD: 0000-0003-1953-7329
aingalls@uw.edu

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://doi.org/10.3390/metabo12020173
https://doi.org/10.1186/1471-2105-16-S7-S2
https://doi.org/10.18637/jss.v059.i10
mailto:wkumler@uw.edu
mailto:aingalls@uw.edu

	Tidy Data Neatly Resolves Mass-Spectrometry's Ragged Arrays
	Introduction
	Why is it difficult to access mass-spectrometry data?
	Why should it be easier to access mass-spectrometry data?
	Why isn't it already easier to access mass-spectrometry data?
	The RaMS package
	Installation
	Input arguments
	Usage
	Internals
	Comparison to similar packages
	Broader interactions

	Summary
	Acknowledgements

