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did2s: Two-Stage
Difference-in-Differences
by Kyle Butts and John Gardner

Abstract Recent work has highlighted the difficulties of estimating difference-in-differences models
when the treatment is adopted at different times for different units. This article introduces the R
package did2s which implements the estimator introduced in Gardner (2022). The article provides an
approachable review of the underlying econometric theory and introduces the syntax for the function
did2s. Further, the package introduces functions, event_study and plot_event_study, which uses a
common syntax to implement all of the modern event-study estimators.

Introduction

A rapidly growing econometric literature has identified difficulties in traditional difference-in-differences
estimation when treatment turns on at different times for different groups and when the effects of
treatment vary across groups and over time (Callaway and Sant’Anna 2020; Sun and Abraham 2020;
Goodman-Bacon 2018; Borusyak, Jaravel, and Spiess 2021; Chaisemartin and D’Haultfoeuille 2019).
Gardner (2022) proposes an estimator of the two-way fixed-effects model that is quick and intuitive.
The estimator relies on the standard two-way fixed-effect model (see the following section) and forms
an intuitive estimate: the average difference in outcomes between treated and untreated units after
removing fixed unit- and time-invariant shocks.

This article first discusses the modern difference-in-differences theory in an approachable way and
second discusses the software package, did2s, which implements the two-stage estimation approach
proposed by Gardner (2022) to estimate robustly the two-way fixed-effects (TWFE) model. There are
two notable technical features of this package. First, did2s utilizes the incredibly fast package, fixest
(Bergé 2018), which can estimate regressions with a high number of fixed-effects very quickly. Second,
since there are a few alternative TWFE event-study estimators implemented in R, each with their own
syntax and data formatting requirements, the package also has a set of functions that allow quick
estimation and plotting of every alternative event study estimator using a standardized syntax. This
allows for easy comparison between the results of different methods.

Difference-in-differences theory

Researchers commonly use the difference-in-differences (DiD) methodology to estimate the effects
of treatment in the case where treatment is non-randomly assigned. Instead of random assignment
giving rise to identification, the DiD method relies on the so-called “parallel trends” assumption,
which asserts that outcomes would evolve in parallel between the treated and untreated groups in a
world where the treated were untreated. This is formalized with the two-way fixed-effects (TWFE) model. In
a static setting where treatment effects are constant across treatment groups and over time, researchers
estimate the static TWFE model:

yigt = µg + ηt + τDgt + εigt, (1)

where yigt is the outcome variable of interest, i denotes the individual, t denotes time, and g denotes
group membership where a “group” is defined as all units that start treatment at time g.1 µg is a vector
of time-invariant group fixed-effects, ηt is a vector of shocks in a given time period that is experienced
by all individuals equally, and Dgt is an indicator for whether initial-treatment group g is receiving
treatment in period t, i.e. Dgt ≡ 1(g ≤ t). The coefficient of interest is τ, which is the (constant)
average effect of the treatment on the treated (ATT). If it is indeed true that the treatment effect is
constant across groups and over time, then the estimate formed by estimating the static TWFE model
will be consistent for τ under a parallel trends assumption on the error term.

However, treatment effects are not constant in most settings. The magnitude of a unit’s treatment
effect can differ based on group status g (e.g. if groups that benefit more from a policy implement it
earlier) and treatment duration (e.g. if treatment effects grow as the policy has been in place for longer
periods). Therefore to enrich our model, we allow heterogeneity in treatment effects across g and t
by introducing the group-time average treatment effect, τgt. Correspondingly, we modify the TWFE
model as follows:

yigt = µg + ηt + τgtDgt + εigt.

1In the literature, never treated units often are given a value of g = ∞.
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The key difference is that treatment effects are allowed to differ based on group status g and time
period t. Estimating any individual τgt may not be desirable since there would be too few observations.
Instead, researchers aggregate group-time average treatment effects into the overall average treatment
effect, τ, which averages across τgt:

τ ≡ ∑
g,t

Ngt

Npost
τgt,

where Ngt denotes the number of observations in (g, t) and Npost is the number of post-treatment
observations (t ≥ g). The natural question is, “does the static TWFE model, (1), produce a consistent
estimate for the overall average treatment effect?” Except for a few specific scenarios, the answer is no
(Sun and Abraham 2020; Goodman-Bacon 2018; Borusyak, Jaravel, and Spiess 2021; Chaisemartin and
D’Haultfoeuille 2019).

One way of thinking about this disappointing result is through the Frisch–Waugh–Lovell (FWL)
theorem (Frisch and Waugh 1933). This theorem says that estimating the Static TWFE model is
equivalent to estimating

yigt − µ̂g − η̂t = τD̃gt + ε̃gt,

where D̃gt denotes the residuals from regressing Dgt on µg and ηt; µ̂g and η̂t are estimates for the
group and time fixed-effects, respectively. The left-hand side of this equation, under a parallel trends
restriction on the error term εit, is our estimate for τgt. Therefore, the FWL theorem tells us estimating
the static TWFE model is equivalent to estimating2

τ̂gt = τD̃gt + ε̃gt

The resulting estimate for τ can be written as:

τ̂ ≡ ∑
g,t

wgtτ̂gt,

where wgt is the weight put on the corresponding τ̂gt. Results of Gardner (2022), Borusyak, Jaravel,
and Spiess (2021), and Chaisemartin and D’Haultfoeuille (2019) all characterize the weights wgt
from this regression. There are only two cases where the τ̂ is a consistent estimate for the overall
average treatment effect. First, when treatment occurs at the same time for all treated units, then wgt
is equal to Ngt/Npost for all {g, t} and therefore τ̂ is a consistent estimate for the overall average
treatment effect. The other scenario where τ̂ estimates the overall average treatment effect is when τgt
is constant across group and time, i.e. τgt = τ. Since the weights, wgt, always sum to one, we have
that τ̂ = ∑ wgtτ̂gt → ∑ wgtτ = τ.

The above cases are not the norm in research. If there is heterogeneity in group-time treatment
effects and units get treated at different times, then τ̂ is not a consistent estimate for the average
treatment effect τ. Instead, τ̂ will be a weighted average of group-time treatment effects with some
weights, wgt, being potentially negative. This yields a treatment effect estimate that does not provide a
good summary of the “average” treatment effect. It is even possible for the sign of τ̂ to differ from that
of the overall average treatment effect. This would occur, for example, if negative weights are placed
primarily on the largest (in magnitude) group-time treatment effects.

To summarize the modern literature, the fundamental problem faced in estimating the TWFE
model is the potential negative weighting. The proposed methodology in Gardner (2022) is based on
the fact that if τ̂gt is regressed on Dgt, instead of D̃gt, the resulting weights would be exactly equal to
Ngt/Npost and the coefficient of Dgt would estimate the overall average treatment effect.

Event-study estimates

Researchers have attempted to model treatment effect heterogeneity by allowing treatment effects to
change over time. To do this, they introduce a (dynamic) event-study TWFE model:

yigt = µg + ηt +
−2

∑
k=−L

τkDk
gt +

K

∑
k=0

τkDk
gt + εigt, (2)

where Dk
gt are lags/leads of treatment (k periods from initial treatment date). The coefficients of

interests are the τk, which represent the average effect of being treated for k periods. For negative
values of k, τk are known as “pre-trends,” and represent the average deviation in outcomes for treated
units k periods away from treatment, relative to their value in the reference period. These pre-trend

2This is a minor abuse of notation since yigt − µ̂g − η̂t is an estimate for τigt which can be different from τgt if
there is within group-time heterogeneity.
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estimates are commonly used as a test of the parallel counterfactual trends assumption.

Our goal is to estimate the average treatment effect of being exposed for k periods, an average of
τgt for only the set of {g, t} where k periods have elapsed since g, i.e. t − g = k:

τk = ∑
g,t : t−g=k

Nk
gt

Nk τgt,

where the sum is over {g, t} with t − g = k, Nk
gt is the number of observations in group g and Nk is

the total number of observations with t − g = k. The results of Sun and Abraham (2020) show that
even though we allow for our average treatment effects to vary over time τk, the negative weighting
problems would arise if units are treated at different times and there is group-heterogeneity in treatment
effects. Similar to the static TWFE model, the estimates of τk from running the event-study model
form non-intuitively weighted averages of τgt with wk

gt ̸= Nk
gt/Nk. Even worse, the group-time

treatment effects for t − g ̸= k will be included in the estimate of τ̂k. Hence, the need for a robust
difference-in-differences estimator remains even in the event-study model.

Two-stage difference-in-differences estimator

Gardner (2022) proposes an estimator to resolve the problem with the two-way fixed-effects approaches.
Rather than attempting to estimate the group and time effects simultaneously with the ATT (causing
Dit to be residualized), Gardner’s approach proceeds from the observation that, under parallel trends,
the group and time effects are identified from the subsample of untreated/not-yet-treated observations
(Dgt = 0). This suggests a simple two-stage difference-in-differences estimator:

1. Estimate the model
yigt = µg + ηt + εigt,

using the subsample of untreated/not-yet-treated observations (i.e., all observations for which
Dgt = 0), retaining the estimated group and time effects to form the adjusted outcomes ỹigt ≡
yigt − µ̂g − η̂t.

2. Regress adjusted outcomes ỹigt on treatment status Dgt or Dk
gt in the full sample to estimate

treatment effects τ or τk.

To see why this procedure works, note that parallel trends implies that outcomes can be expressed
as

yigt = µg + ηt + τgtDgt + εigt

= µg + ηt + τ̄Dgt + (τgt − τ̄)Dgt + εigt,

where τgt = E(Y1
igt − Y0

igt | g, t) is the average treatment effect for group g in period t3 and τ̄ =

E(τgt|Dgt = 1) is the overall average treatment effect4. Note from parallel trends, E(εigt|Dgt, g, t) = 0.
Rearranging, this gives

yigt − µg − ηt = τ̄Dgt + (τgt − τ̄)Dgt + εigt.

Suppose you knew the time and group fixed-effects and were able to directly observe the left-hand
side (later we will estimate the left-hand side). Regressing the adjusted y variable, on Dgt will produce
a consistent estimator for τ̄. To see this, note that E[(τgt − τ̄)Dgt | Dgt] = 0. Hence, the treatment
dummy is uncorrelated with the omitted variable and the average treatment effect is identified in
the second-stage. Since we are not able to directly observe µg and ηt, we estimate them using the
untreated/not-yet-treated observations in the first-stage. However, standard errors need adjustment
to account for the added uncertainty from the first-stage estimation.

This approach can be extended to dynamic models by replacing the second stage of the procedure
with a regression of residualized outcomes onto the leads and lags of treatment status, Dk

gt, k ∈
{−L, . . . , K}. Under parallel trends, the second-stage coefficients on the lags identify the overall
average effect of being treated for k periods (where the average is taken over all units treated for at
least that many periods). The second-stage coefficients on the leads identify the average deviation
from predicted counterfactual trends among units that are k periods away from treatment, which
under parallel trends should be zero for any pre-treatment value of k. Hence, the coefficients on the
leads represent a test of the validity of the parallel trends assumption.

3i.e., the average difference between treated and untreated potential outcomes y1
igt and y0

igt, conditional on the
observed treatment-adoption times.

4i.e., the population-weighted average of the group-time specific ATTs, τgt.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 165

Inference

The standard variance-covariance matrix from the second-stage regression will be incorrect since it
fails to account for the fact that the dependent variable is generated from the first-stage regression.
However, this estimator takes the form of a joint generalized method of moments (GMM) estimator
whose asymptotic variance is well understood (Newey and McFadden 1986).

Specifically, the estimator takes the form of a two-stage GMM estimator with the following two
moment conditions:

m(θ) = (Y − X′
10γ)X10, (3)

g(γ, θ) = (Y − X′
1γ − X′

2θ)X2, (4)

where X1 is the matrix of group and time fixed-effects, X10 corresponds to the matrix X1, but with
rows corresponding to observations for which Dgt = 1 replaced with zeros (as only observations with
Dgt = 0 are used in the first stage) and X2 is the matrix of treatment variable(s). The first equation
corresponds with the first stage and the second equation corresponds with the second stage. From
Theorem 6.1 of Newey and McFadden (1986), the asymptotic variance of the two-stage estimator is

V = G−1
θ E

[
(g + Gγψ)(g + Gγψ)′

]
G−1′

θ , (5)

where from our moment conditions, we have:

Gθ = −E
(
X2X′

2
)

,

Gγ = −E
(
X2X′

1
)

,

ψ = E(X10X′
10)

−1ε10X10.

This can be estimated using

(
X′

2X2
)−1

(
G

∑
g=1

W ′
gWg

) (
X′

2X2
)−1 , (6)

where
Wg = X′

2g ε̂2g − ε̂′10gX1g

(
X′

1gX1g

)−1 (
X′

1gX2g

)
,

and matrices indexed by g correspond to the gth cluster.

The did2s package

The did2s package introduces two sets of functions. The first is the did2s command which implements
the two-stage difference-in-differences estimator as described above. The second is the event_study
and plot_event_study commands that allow individuals to implement alternative ‘robust’ estimators
using a singular common syntax.

The did2s command

The command did2s implements the two-stage difference-in-differences estimator following Gardner
(2022). The general syntax is

did2s(data, yname, first_stage, second_stage,
treatment, cluster_var, weights = NULL,
bootstrap = FALSE, n_bootstraps = 250,
verbose = TRUE)

and full details on the arguments is available in the help page, available by running ?did2s. There
are a few arguments that are worth discussing in more detail.

The first_stage and second_stage arguments require formula arguments. These formulas are
passed to the fixest::feols function from fixest and can therefore utilize two non-standard formula
options that are worth mentioning (Bergé 2018). First, fixed-effects can be inserted after the covariates,
e.g. ~ x1 | fe_1 + fe_2, which will make estimation much faster than using factor(fe_1). Second,
the function fixest::i can be used for treatment indicators instead of factor. The advantage of this
is that you can easily specify the reference values, e.g. for event-study indicators where researchers
typically want to drop time t = −1, ~ i(rel_year, ref = c(-1)) would be the correct second-stage
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Figure 1: This figure plots simulated data with two treated groups and a never-treated group. Each
line represents the average outcome (y-value) in a given year (x-value) for each of the three groups. In
the absence of treatment, all three groups would exhibit parallel trends (staying around a value of 4
in each period). Each of the treated groups are experience different treatment effect magnitudes that
grow over time. This treatment effect heterogeneity creates problems for the classical two-way fixed
effect OLS estimator.

formula. Additionally, fixest has a number of post-estimation exporting commands to make tables
with fixest::etable and event-study plots with fixest::iplot/fixest::coefplot. The fixest::i
function is better integrated with these functions as we will see below.

The option treatment is the variable name of a 0/1 variable that denotes when treatment is active
for a given unit, Dgt in the above notation. Observations with Dgt = 0 will be used to estimate the
first stage, which removes the problem of treatment effects contaminating estimation of the unit and
time fixed-effects. However, as an important note, if you suspect anticipation effects before treatment
begins, the treatment variable should be shifted forward by x periods for observations to prevent the
aforementioned contamination. For example, if you suspect that units could experience treatment
effects 1 period ahead of treatment (a so-called anticipatory effect), then the treatment should begin
one period ahead. These anticipation effects can be estimated, after adjusting the treatment variable,
by using a reference year of say, t = −2 and looking at the estimate for relative year −1.

Example usage of did2s For basic usage, I will use the simulated dataset, df_het, that comes with
the did2s package with the command

data(df_het, package = "did2s")

The data-generating process is displayed in Figure 1. The lines represent the mean outcome
for each treatment group and the never-treated group. In the absence of treatment, each group is
simulated to be on parallel trends. There is heterogeneity in treatment effects both within a treatment
group over time and across treatment groups.

First, we will calculate a static difference-in-differences estimate using the did2s function.

static = did2s(
data = df_het,
yname = "dep_var",
treatment = "treat",
first_stage = ~ 0 | unit + year,
second_stage = ~ i(treat, ref = FALSE),
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cluster_var = "unit",
verbose = FALSE

)

summary(static)

#> OLS estimation, Dep. Var.: dep_var
#> Observations: 46,500
#> Standard-errors: Custom
#> Estimate Std. Error t value Pr(>|t|)
#> treat::TRUE 2.23048 0.021408 104.19 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> RMSE: 1.0357 Adj. R2: 0.505683

Since the returning object is a fixest object, all the accompanying output commands from fixest
are available to use. For example, we can create regression tables:

fixest::etable(static, fitstat = c("n"), tex = TRUE,
title = "Estimate of Static TWFE Model",
notes = "This table presents the estimated overall treatment effect. The effect is estimated using Two-Stage Difference-in-Differences proposed by Gardner (2021). The estimated effect is close to the true value.")

Table 1: Estimate of Static TWFE Model

Dependent Variable: dep_var
Model: (1)

Variables
treat = TRUE 2.230∗∗∗

(0.0214)

Fit statistics
Observations 46,500

Custom standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

This table presents the estimated overall treatment effect. The effect is estimated using
Two-Stage Difference-in-Differences proposed by Gardner (2021). The estimated effect is
close to the true value.

However, since there are dynamic treatment effects in this example, it is much better to estimate
the dynamic effects themselves using an event-study specification. We will then plot the results using
fixest::iplot, which plots coefficients corresponding to an i() variable. Note that rel_year is coded
as Inf for never-treated units, so this has to be noted in the reference part of the formula.

es = did2s(
data = df_het,
yname = "dep_var",
treatment = "treat",
first_stage = ~ 0 | unit + year,
second_stage = ~ i(rel_year, ref = c(-1, Inf)),
cluster_var = "unit",
verbose = FALSE

)

fixest::iplot(
es,
main = "Event study: Staggered treatment",
xlab = "Relative time to treatment",
col = "steelblue", ref.line = -0.5

)
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Figure 2: This figure plots the true treatment effect and estimates using the Two-Stage Difference-in-
Differences proposed by Gardner (2021). The x-axis of this figure is the relative time to treatment, i.e.
how many years pre-/post- treatment that period is. The y-axis is estimated treatment effects. There
are two sets of points. The first is for the true effect which is equal to 0 in all pre-periods and in the
post-period starts at 1.5 and linearly grows to 3 by post-period 20. The second set of points is the
estimates from the two-stage difference-in-difference estimates which follows closely the true effects
but with additional noise from estimation error.

# Add the (mean) true effects
true_effects = tapply((df_het$te + df_het$te_dynamic), df_het$rel_year, mean)
true_effects = head(true_effects, -1)
points(-20:20, true_effects, pch = 20, col = "grey60")

# Legend
legend(x=-20, y=3, col = c("steelblue", "grey60"),

pch = c(20, 20),
legend = c("Two-stage estimate", "True effect"))

The event study estimates are found in Figure 2 and match closely to the true average treatment
effects. For comparison to traditional OLS estimation of the event-study specification, Figure 3 plots
point estimates from both methods. As pointed out by Sun and Abraham (2020), treatment effect
heterogeneity between groups biases the estimated pre-trends. In the figure below, the OLS estimates
appear to show violations of pre-trends even though the data was simulated under parallel pre-trends.

twfe = feols(dep_var ~ i(rel_year, ref=c(-1, Inf)) | unit + year, data = df_het)

fixest::iplot(list(es, twfe), sep = 0.2, ref.line = -0.5,
col = c("steelblue", "#82b446"), pt.pch = c(20, 18),
xlab = "Relative time to treatment",
main = "Event study: Staggered treatment (comparison)")

# True Effects
points(-20:20, true_effects, pch = 20, col = "grey60")

# Legend
legend(x=-20, y=3, col = c("steelblue", "#82b446", "grey60"), pch = c(20, 18, 20),

legend = c("Two-stage estimate", "TWFE", "True Effect"))
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Event study: Staggered treatment (comparison)

Relative time to treatment

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

0.
0

1.
0

2.
0

3.
0

−20 −10 0 10 20

Two−stage estimate
TWFE
True Effect

Figure 3: This figure adds the standard ordinary-least squares estimates to the true effect and the
‘did2s‘ estimates present in Figure 2. The x-axis of this figure is the relative time to treatment, i.e. how
many years pre-/post- treatment that period is. The y-axis is estimated treatment effects. There are
three sets of points. The first two sets of points are the same as in Figure 2. The third set of points is
the ordinary-least squares estimates. These points exhibit show evidence of parallel pre-trends failing.

The event_study and plot_event_study command

The command event_study presents a common syntax that estimates the event-study TWFE model
for treatment-effect heterogeneity robust estimators recommended by the literature and returns all the
estimates in a data.frame for easy plotting by the command plot_event_study. The general syntax is

event_study(
data, yname, idname, tname, gname,
estimator,
xformla = NULL, horizon = NULL, weights = NULL

)

The option data specifies the data set that contains the variables for the analysis. The four
other required options are all names of variables: yname corresponds with the outcome variable of
interest; idname is the variable corresponding to the (unique) unit identifier, i; tname is the variable
corresponding to the time period, t; and gname is a variable indicating the period when treatment first
starts (group status).
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There are five main estimators available and the choice is specified for the estimator argument
and are described in Table 2.5 The following paragraphs will aim to highlight the differences and
commonalities between estimators. These estimators fall into two broad categories. First, did2s
and didimputation (Butts 2021) are imputation-based estimators as described above. Both rely on
“residualizing” the outcome variable Ỹ = Yit − µ̂g − η̂t and then averaging those Ỹ to estimate the
event-study average treatment effect τk. These two estimators return identical point estimates for
post-treatment effects, but differ in their asymptotic regime and hence their standard errors.

The second type of estimator, which we label 2x2 aggregation, takes a different approach for
estimating event-study average treatment effects. The packages did (Callaway and Sant’Anna 2021),
fixest and staggered (Roth and Sant’Anna 2021) first estimate τgt for all group-time pairs. To estimate
a particular τgt, they use a two-period (periods t and g − 1) and two-group (group g and a “control
group”) difference-in-differences estimator, known as a 2x2 difference-in-differences. The particular
“control group” they use will differ based on estimator and is discussed in the next paragraph. Then,
the estimator manually aggregate τgt across all groups that were treated for (at least) k periods to
estimate the event-study average treatment effect τk.

These estimators do not all rely on the same underlying assumptions, so the rest of the table
summarizes the primary differences between estimators. The comparison group column describes
which units are utilized as comparison groups in the estimator and hence will determine which units
need to satisfy a parallel trends assumption. For example, in some circumstances, treated units will
look very different from never-treated units. In this case, parallel trends may only hold between units
that receieve treatment at some point and hence only these units should be used in estimation. In
other cases, for example if treatment is assigned randomly, then it’s reasonable to assume that both
not-yet- and never-treated units would all satisfy parallel trends.

For estimators labeled “Not-yet- and/or never-treated”, the default is to use both not-yet- and
never-treated units in the estimator. However, if all never-treated units are dropped from the data
set before using the estimator, then these estimators will use only not-yet-treated groups as the
comparison group. did provides an option to use either the not-yet- treated or the never- treated group
as a comparison group depending on which group a researcher thinks will make a better comparison
group. staggered will automatically drop units that are never treated from the sample and hence only
use not-yet-treated groups as a comparison group.

The next column, Main Assumptions, summarize concisely the main theoretical assumptions
underlying each estimator. First, the assumptions about parallel trends match the previous discussion
on the correct comparison group. The only estimator that doesn’t rely on a parallel trends assumption
is staggered which relies on the assumption that when a unit receives treatment is random.

The next assumption, that is common across all estimators, is that there should be “limited
anticipation” of treatment. In general, anticipatory effects are when units respond to treatment before
it is actually implemented. For example, this can be common if the news of a policy triggers behavior
responses before the treatment is put in place. “Limited anticipation” is when these anticipatory effects
can only exist in a “few” pre-periods.6 In any of these cases, “treatment” should be manually moved
back by the maximum number of periods where anticipation can occur. For example, if treatment
starts in 2012 and anticipatory effects are reasonably only possible 2 years before, this units’ “group”
should be labeled as 2010 in the data.

The imputation-based estimators require an additional assumption that the parametric model
of Y(0) = µi + ηt + εit is correctly specified. This is because in the first stage, you have to accu-
rately impute Y(0) when residualizing Y which relies on the correct specification of Y(0). The 2x2
aggregation models do not estimate a parametric form of Y(0) and hence only relies on a parallel
trends assumption. While not in the table, it is worth noting that did allows for uniform inference of
estimates. This addresses the problem that multiple hypotheses tests are being done by researchers
(e.g. checking individually if all post period estimates are significant) by creating standard errors that
adjust for multiple testing.

Example usage of event_study The result of event_study is a tibble in a tidy format (Robinson,
Hayes, and Couch 2021) that contains point estimates and standard errors for each relative time indi-
cator for each estimator. The results of event_study are stored as a dataframe with event-study term,
the estimate, standard error, and a column containing which estimator is used for that estimate. This
output dataframe will in turn be passed to plot_event_study for easy comparison. plot_event_study
will return a ggplot object (Wickham 2016). We return to the df_het dataset to see example usage of
these functions.

5Except for Sun and Abraham, the estimator option is the package name. For Sun and Abraham, the estimator
option is sunab. A value of “all” will estimate all 5 estimators.

6There should be more periods before treatment in the sample than whatever number a “few” is.
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Figure 4: This figure contains six plots displayed in a grid of different event study estimators. The
estimators are labeled ’TWFE’, ’Borusyak, Jaravel, Spiess (2021)’, ’Callaway and Sant’Anna (2020)’,
’Gardner (2021)’, ’Roth and Sant’Anna (2021)’, and ’Sun and Abraham (2020)’. Each estimator’s
necessary assumptions are described above. Each plot in the figure displays point estimates from
pre-treatment year -5 through post-treatment year 10. Each estimator is approximately 0 for all pre-
treatment periods. In post-periods, each figure follows the true treatment effect starting at 1.5 in
post-period 1 and growing afterwards.

data(df_het, package = "did2s")
out = event_study(
data = df_het, yname = "dep_var", idname = "unit",
tname = "year", gname = "g", estimator = "all"

)

head(out)

#> estimator term estimate std.error
#> 1: TWFE -20 0.04097725 0.07167704
#> 2: TWFE -19 0.13665695 0.07147683
#> 3: TWFE -18 0.14015820 0.07245520
#> 4: TWFE -17 0.15793252 0.07431871
#> 5: TWFE -16 0.09910002 0.07379570
#> 6: TWFE -15 0.20561127 0.07116478

plot_event_study(out, horizon = c(-5, 10))

Conclusion

This article introduced the package did2s which provides a fast, memory-efficient, and treatment-effect
heterogeneity robust way to estimate two-way fixed-effect models. The package also includes the
event_study and plot_event_study functions to allow for a single syntax for the various estimators
introduced in the literature. A companion package in Stata is also available with similar syntax for the
did2s function.

While this package includes an event_study function that aims to help individuals implement any
of the proposed modern “solutions” to the difference-in-differences estimation, further research on
this topic is needed to help practitioners be able to more precisely determine which estimators work
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best in their settings. Potentially, there could be data-driven methods to try to identify the plausibility
of the different assumptions. Additionally, there is still more work to be done to formalize under what
conditions covariates can flexibly be used in estimation. There is some initial work from Caetano et al.
(2022), but there does not yet exist statistical software to perform their proposed estimator.
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