
CONTRIBUTED RESEARCH ARTICLE 142

metapack: An R Package for Bayesian
Meta-Analysis and Network
Meta-Analysis with a Unified Formula
Interface
by Daeyoung Lim, Ming-Hui Chen, Joseph G. Ibrahim, Sungduk Kim, Arvind K. Shah and Jianxin
Lin

Abstract Meta-analysis, a statistical procedure that compares, combines, and synthesizes research
findings from multiple studies in a principled manner, has become popular in a variety of fields.
Meta-analyses using study-level (or equivalently aggregate) data are of particular interest due to data
availability and modeling flexibility. In this paper, we describe an R package metapack that introduces
a unified formula interface for both meta-analysis and network meta-analysis. The user interface—and
therefore the package—allows flexible variance-covariance modeling for multivariate meta-analysis
models and univariate network meta-analysis models. Complicated computing for these models has
prevented their widespread adoption. The package also provides functions to generate relevant plots
and perform statistical inferences like model assessments. Use cases are demonstrated using two real
data sets contained in metapack.

1 Introduction

The U.S. Food and Drug Administration provides a clear definition of meta-analysis as “the combining
of evidence from relevant studies using appropriate statistical methods to allow inference(s) to be made to
the population of interest” (U.S. Food and Drug Administration et al., 2018). In fields like medicine,
pharmacology, and epidemiology, meta-analysis has become popular for reconciling conflicting results
or corroborating consistent ones in multiple studies (Chalmers et al., 2002; Borenstein et al., 2011;
Hartung et al., 2011; Balduzzi et al., 2019). Findings produced from meta-analyses are often placed at
the apex of the evidence hierarchy (U.S. Food and Drug Administration et al., 2018).

R already has a large supply of meta-analysis packages. meta (Schwarzer, 2007) and rmeta (Lumley,
2018) use the method of moments introduced in DerSimonian and Laird (1986). metafor (Viechtbauer,
2010) further contains moderator analyses and fits meta-regression (Berkey et al., 1995) through
weighted least squares. On the other hand, metaLik (Guolo, 2012) takes a likelihood approach based
on the second-order approximation of the modified likelihood ratio test statistic (Skovgaard et al., 1996).
metatest (Huizenga et al., 2011) further includes hypothesis testing capabilities through the likelihood
ratio test with Barlett correction, and mvmeta (Gasparrini et al., 2012) fits multivariate meta-analysis
and meta-regression models via the method of maximum likelihood. There are packages for Bayesian
meta-analytic inference as well. bayesmeta (Röver, 2020) assumes the normal-normal hierarchical
random-effect model and allows the user to choose prior distributions with a great deal of flexibility,
both informative and noninformative. nmaINLA (Guenhan et al., 2018) provides functionalities for
network meta-analysis and meta-regression with integrated nested Laplace approximations (INLA) as
an alternative to the Markov chain Monte Carlo (MCMC) algorithm. On the other hand, bmeta (Ding
and Baio, 2016) delivers flexible meta-analytic modeling by interfacing with JAGS (Plummer, 2003).
MetaStan (Guenhan, 2020) provides binomial-normal hierarchical models with weakly informative
priors, building upon the probabilistic language Stan (Stan Development Team, 2020).

Despite its importance and the wide array of R packages available, meta-analysis is still regarded
as a niche field that interests a narrow group of researchers and remains relatively low impact. We
partially attribute this phenomenon to the fact that the R community has yet to come up with a user
interface that unifies the theoretical distinctions between univariate and multivariate models, and
between meta-analysis and network meta-analysis although the models have grown more complicated
in the intervening years. Furthermore, a large class of simple Bayesian meta-analytic models is
handled by probabilistic programming languages like Stan (Stan Development Team, 2020) or BUGS
(Sturtz et al., 2005). Meanwhile, many complex models are not easily programmable in probabilistic
languages, and are not readily available in R. Especially, in the context of variance-covariance matrix
modeling in (network) meta-analysis, metapack is the first attempt in the R cosmos, to the best of our
knowledge, to provide easy access to regression-modeling of the variances (of the treatment effects) as
well as a wide array of options for modeling the response covariance matrices when the aggregate
responses are multivariate with only a partially observed within-study sample covariance matrix.
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metapack presented in this paper proposes a formula structure that flexibly represents the types
of responses (univariate and multivariate) and the number of treatments (meta-analysis and net-
work meta-analysis). The package also provides functions to assess model fits such as the deviance
information criterion (DIC) and the logarithm of the pseudo-marginal likelihood (LPML), and to
generate diagnostic plots. Some potential complications, theoretical and computational, in these model
selection criteria may break the algorithm or erode the statistical inference when unaddressed (see Sec-
tion Model comparison), which metapack takes care of by default—an advantage over model-agnostic
programming languages.

The rest of this paper is organized as follows. Section Considered models briefly reviews the
(network) meta-analysis model. Section Meta-analytic data for metapack describes the general form
of a meta-analysis data set to establish a generic data structure for meta-analysis and network meta-
analysis. Section Basic implementation of metapack explains how the data structure can be represented
using R’s extended formula and how metapack’s main function parses it, and lays down the vari-
ous modeling options for meta-analysis and network meta-analysis. Section Performing inference
further introduces the S3 methods available for performing statistical inferences and comparing
models. Some computational considerations to accelerate the computation are detailed as well. Sec-
tion Demonstration with real data provides demonstrations using the cholesterol data and TNM data
included in metapack. Finally, Section Discussion concludes the paper by offering a cautionary remark
for multivariate meta-analysis models regarding the number of observations required to perform
valid inferences on the correlation matrix, and discussing future research and package development
directions.

2 Considered models

In this section, we briefly review the models considered in metapack. There are largely two umbrella
models: univariate or multivariate meta-analysis based on Yao et al. (2015), and univariate network
meta-analysis based on Li et al. (2021). The various modeling options for each model introduced in
this section encompass the ones in Yao et al. (2015) and Li et al. (2021). In what follows, the model
description will deal with a general multivariate model including both meta-analysis and network
meta-analysis, which is valid even when univariate response is assumed, i.e. J = 1. Occasionally, the
univariate model description will be provided side by side to avoid confusion.

Assume K randomized controlled trials (RCTs) where the k-th trial includes Tk treatment arms.
Meta-analysis refers to a special case where Tk = 2 for all k = 1, . . . , K. We adopt the notational
abuse of omitting the trial indicator in the treatment’s subscript. For instance, for the sample size of
the t-th treatment arm of the k-th trial, we write nkt, not ntkk. Furthermore, for readability, note that
boldface lowercase Latin letters are vectors, while uppercase Latin letters are matrices. Boldface Greek
letters can either be vectors or matrices and will be defined contextually. Let ykt be a J-dimensional
aggregate response vector for the t-th treatment of the k-th trial. Similarly, let xktj ∈ Rpj be the
treatment-within-trial level covariate corresponding to the j-th response, reflecting the fixed effects
of the t-th treatment arm, and let wktj ∈ Rqj be the vector of covariates for the random effects. The
model ykt = Xktβ + Wktγk + ϵkt describes the aggregate data model, where ϵkt = (ϵkt1, . . . , ϵktJ)

⊤,

Xkt = ⊕J
j=1x⊤ktj for which ⊕ indicates direct sum, β = (β⊤

1 , . . . , β⊤
J )

⊤, Wkt = ⊕J
j=1w⊤

ktj, and γk =

(γ⊤
k1, γ⊤

k2, . . . , γ⊤
kJ)

⊤. The aggregate (network) meta-analysis model becomes{
ykt = Xktβ + Wktγk + ϵkt and (nkt − 1)Skt ∼ Wnkt−1(Σkt), if J ≥ 2 (multivariate)

ykt = x⊤ktβ + w⊤
ktγk + ϵkt and (nkt − 1)s2

kt/σ2 ∼ χ2
nkt−1, if J = 1 (univariate)

, (1)

where ϵkt ∼ N (0, Σkt/nkt) or ϵkt ∼ N (0, σ2
kt/nkt), Skt is the sample covariance matrix, s2

kt is the sample
variance, and Σkt ∈ S J

++ for which S J
++ is the space of J × J symmetric positive-definite matrices. In

Equation (1), Wν(Σ) is the Wishart distribution with ν degrees of freedom and a J × J scale matrix Σ
with density

p(X | ν, Σ) =
1

2Jν|Σ|ν/2ΓJ(ν/2)
|X|(ν−J−1)/2 exp

(
−1

2
tr(Σ−1X)

)
I(X ∈ S J

++),

where ΓJ is the multivariate gamma function defined by ΓJ(z) = π J(J−1)/4 ∏J
j=1 Γ[z + (1 − j)/2]. χ2

ν

indicates the chi-squared distribution with ν degrees of freedom.

Stacking the random effects for all response endpoints, γk = (γ⊤
k1, . . . , γ⊤

kJ)
⊤. Since the random

effects are assumed to follow a distribution in the location-scale family (either a multivariate t-
distribution or a multivariate normal distribution), i.e. γk ∼ LS(γ, Ω), the fixed-effect coefficient
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vector β absorbs the random effects’ location parameter γ, forming θ = (β⊤, γ⊤)⊤. The corresponding
design matrix Xkt is also expanded to include the random-effect design matrix Wkt, written as X∗

kt =
[Xkt, Wkt]. With γk,o = γk − γ, the model now becomes

ykt = X∗
ktθ+ Wktγk,o + ϵkt, if J ≥ 2 (multivariate)

ykt = x∗kt
⊤θ+ w⊤

ktγk,o + ϵkt

⇒ yk = X∗
k θ+ Wkγk,o + ϵk

, if J = 1 (univariate)
, (2)

where yk = (yk,tk1
, . . . , yk,tkTk

)⊤, X∗
k = ((x∗k,tk1

)⊤, . . . , (x∗k,tkTk
)⊤)⊤, Wk = (w⊤

k,tk1
, . . . , w⊤

k,tkTk
)⊤, and ϵk =

(ϵk,tk1
, . . . , ϵk,tkTk

)⊤. We briefly restore the correct subscripts (i.e. tkl for l = 1, . . . , Tk) to demonstrate
that yk, X∗

k , and Wk may be different lengths and dimensions for different k’s. Here, {tk1, . . . , tkTk
}

denotes the set of treatments compared in the k-th trial. The random effects are modeled differently
in meta-analysis than in network meta-analysis. A major reason for this divergence is that the
variables explaining the treatment effects are not easily found in the presence of varying numbers of
treatments in different trials. The differences are further detailed in Section Meta-analysis models and
Section Network meta-analysis models.

3 Meta-analytic data for metapack

To streamline configuring models in R formula, it is important to understand the data structure for
metapack. Table An example of arm-level meta-analytic data. Trial is equivalent to Study ID. A
meta-analysis has two treatments in each trial for all trials, whereas a network meta-analysis can
have trials with different numbers of treatments across trials. This distinction determines the number
of rows for each trial (i.e. strictly two rows per trial in meta-analyses and a differing number of
rows per trial for network meta-analyses). Outcome, SD, DeisngM1, and DesignM2 can each be a vector,
in which case the row vector representation indicates distributing across columns. For example, if
Outcome consists of two endpoints, (Y1, Y2), then each y⊤

kt should enter a row as two columns, y1 and
y2. represents a typical arm-level data set for (network) meta-analysis, where each row represents a
trial arm.

Outcome (ykt) SD (skt) DesignM1 (xkt) DesignM2 (wkt) Trial (k) Treat (t) n

y⊤
14 s14 x⊤14 w⊤

14 1 4 1000
y⊤

11 s11 x⊤11 w⊤
11 1 1 545

y⊤
21 s21 x⊤21 w⊤

21 2 1 1200
...

...
...

...
...

...
...

Table 1: An example of arm-level meta-analytic data. Trial is equivalent to Study ID. A meta-analysis
has two treatments in each trial for all trials, whereas a network meta-analysis can have trials with
different numbers of treatments across trials. This distinction determines the number of rows for
each trial (i.e. strictly two rows per trial in meta-analyses and a differing number of rows per trial for
network meta-analyses). Outcome, SD, DeisngM1, and DesignM2 can each be a vector, in which case the
row vector representation indicates distributing across columns. For example, if Outcome consists of
two endpoints, (Y1, Y2), then each y⊤

kt should enter a row as two columns, y1 and y2.

Outcome is the response (or responses for multivariate cases), SD is the standard deviation(s) of the
response(s), DesignM1 and DesignM2 are design matrices, and n is the arm sample size. The pair of trial
and treatment indicators is unique to a row. The first design matrix, DesignM1, contains the covariates
for fixed effects and will be written as X henceforth. The second design matrix, DesignM2 or W ,
represents different things depending on the model, which will be explained in Section Meta-analysis
models and Section Network meta-analysis models. It should be noted that there can always be two
design matrices, whose configuration will be illustrated in Section Basic implementation of metapack.

A meta-analytic data set is characterized as folows: (1) univariate or multivariate and (2) meta-
analysis or network meta-analysis. Here, meta-analysis refers to when trials have specifically two
treatments (i.e. t = 1, 2 for all k) and all treatments are compared head to head. On the other hand,
network meta-analysis includes more than two total treatments, where each trial can have a different
set of treatments, allowing indirect comparison between treatments that are not compared head to
head. The data structure is unchanged for network meta-analysis except that Treat can have more
than two unique values. The first category (univariate vs. multivariate) is determined by the number
of response endpoints, and the second category (meta- vs. network meta-analysis) by the number of
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treatments. All other modeling choices fall into prior specification.

4 Basic implementation of metapack

bmeta_analyze is the main function in metapack, whose first argument is an R formula. bmeta_analyze
internally parses a formula to identify a model and ultimately calls a worker function. An extension
of R’s formula class, Formula (Zeileis and Croissant, 2010), accommodates multiple responses and
parts, lending itself well into meta-analysis modeling. Once a model is fully identified, the MCMC
algorithm is executed in C++, thanks to Rcpp (Eddelbuettel and Balamuta, 2017) and RcppArmadillo
(Eddelbuettel and Sanderson, 2014).

Name Functionality Description

bmeta_analyze Estimation Fits (network) meta-analysis models
hpd Inference Computes highest posterior density (HPD) intervals of model parameters
model_comp Inference Computes model comparison measures (DIC or LPML)
print Displays a summary of the output
summary Displays a summary of the output
plot Plots trace plots, density plots, or surface-under-the-cumulative-ranking-curve (SUCRA) plots
fitted Computes posterior means, standard deviations, and HPD intervals
coef Computes posterior means of fixed-effect coefficients
cholesterol Data set Cholesterol data for multivariate meta-analysis
TNM Data set Triglyceride data for network meta-analysis

Table 2: A list of available functions and data sets in metapack.

Using Formula

The three characterizations of a meta-analytic data set must be encoded in the formula. Requiring
the formula to have two left-hand sides (LHS) and two or three right-hand sides (RHS)1 is enough
to communicate the characterizations for a wide class of meta-analysis models. We invite other R
package developers to adopt the following representation for meta-analytic models, the general form
of which is given by

y1 + y2 | sd1 + sd2 ~ x1 + x2 + x3 + ns(n) | w1 + w2 + w3 | treat + trial (+ groups)

Each part in LHS or RHS is an R expression where variables (or functions of variables) are chained with
a plus sign (+)—e.g. x1 + x2. The tilde (~) separates all LHSs from all RHSs, each further separated
into parts by vertical bars (|). The meaning of each part is syntactically determined by its location
within the formula, like an English sentence. Therefore, every part must come in the exact order as
prescribed for bmeta_analyze to correctly identify the model.

• The first LHS (‘y1 + y2’), the responses, is required of all models. Depending on the number of
variables given in the first LHS, bmeta_analyze will determine whether the model is multivariate
or univariate. For example, a first LHS with only y would flag the model as univariate.

• The second LHS (‘sd1 + sd2’) supplies the standard deviations of the endpoints required of an
aggregate-data meta-analysis. The function call will break if this part is missing.

• The first RHS (‘x1 + x2 + x3 + ns(n)’) defines the fixed-effect covariates. For aggregate-data
models, the arm sample sizes must be passed as an argument to ns(). In the example code, n is
the variable containing the arm sample sizes.

• The second RHS (‘w1 + w2 + w3’) defines either the random-effect covariates (w⊤
ktγ) or the

variance-related covariates (log τkt = w⊤
ktϕ)—see Sections Meta-analysis models or Network

meta-analysis models for details. This part is optional. If omitted, bmeta_analyze will assume
wkt = 1 where 1 is a vector of ones.

• The third RHS (‘treat + trial’ or ‘treat + trial + groups’) corresponds to the treatment
and trial indicators, and optionally the grouping variable if it exists. Variables here must be
provided in the exact order shown in the example.

The dimension of the response(s) is explicit in the formula, which determines the first charac-
terization. The treatments are coerced to a factor—if not already one—whose number of levels is
extracted (i.e. ‘nlevels(treat)’) to resolve the second characterization, meta-analysis versus network
meta-analysis.

1Semantically, the LHS should refer to the entire left of tilde—same for RHS—but in R idioms, when a side is
counted or pluralized (e.g. LHSs, RHSs, or sides), it refers to a part or parts in the corresponding side.
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Function arguments

Aside from the first two arguments, formula and data, there are four other optional arguments that
must be provided as R’s list class: prior, mcmc, control, and init. All hyperparameters for the prior
distributions should be included in prior—see Section Considered models for hyperparameters. mcmc
only regards the numbers of MCMC iterations: ndiscard for the number of burn-in iterations, nskip
for thinning, and nkeep for the posterior sample size. control configures the Metropolis-Hastings
algorithm. *_stepsize with the asterisk replaced with one of the parameter names indicates the step
size for determining the sample evaluation points in the localized Metropolis algorithm. Lastly, initial
values for the parameters can be provided in init in case a user has a priori known high-quality
starting points.

Meta-analysis models

For meta-analysis models, metapack acknowledges the possible existence of the first-line and second-
line treatments trials. More generally, the trials may be grouped by a factor believed to generate
disparate random effects. Although an arbitrary number of groups can exist in theory, we restrict our
attention to two groups. Denoting the binary group indicators by ukt ∈ {0, 1} yields

yktj = x⊤ktjβ + (1 − ukt)w
⊤
ktjγ

0
kj + uktw

⊤
ktjγ

1
kj + ϵktj. (3)

The random effects are modeled as γl
kj

ind∼ N (γl
j
∗
, Ωl

j) and (Ωl
j)
−1 ∼ Wd0j

(Ω0j). Stacking the vectors,

γl
k = ((γl

k1)
⊤, . . . , (γl

kJ)
⊤)⊤ ∼ N (γl∗, Ωl), where γl∗ = ((γl

1
∗
)⊤, . . . , (γl

J
∗
)⊤)⊤, Ωj = Ω0

j ⊕ Ω1
j , and

Ω = ⊕J
j=1Ωj for l ∈ {0, 1}. Adopting the noncentered parameterization (Bernardo et al., 2003), define

γl
k,o = γl

k − γl∗. Denoting W∗
kt = [(1− ukt)Wkt, uktWkt], X∗

kt = [Xkt, W∗
kt], θ = (β⊤, γ0∗⊤, γ1∗⊤)⊤, and

γk,o = ((γ0
k,o)

⊤, (γ1
k,o)

⊤)⊤, the model is written as follows:

ykt = X∗
ktθ+ W∗

ktγk,o + ϵkt. (4)

If there is no distinction between the first-line and second-line therapies, then setting ukt = 0 for all
(k, t) reduces the model back to Equation (1). Finally, we assume θ ∼ N (0, c0 I) where I is an identity
matrix.

A (boilerplate) template for this class of models is as follows:

f <- "y1 + y2 | sd1 + sd2 ~ x1 + x2 | w1 + w2 | treat + trial + groups"
fit <- bmeta_analyze(formula(f), data = df,

prior = list(c0 = [real], dj0 = [real], Omega0 = [matrix],
a0 = [real], b0 = [real],
d0 = [real], nu0 = [real], Sigma0 = [matrix]),

control = list(sample_Rho = [logical], Rho_stepsize = [real],
R_stepsize = [real], delta_stepsize = [real], model = [string]))

We use ‘real’ and ‘string’ as aliases for ‘double’ and ‘character’ in R. Every bracketed expression
should be replaced with an instance of the enclosed class. The hyperparameters in ‘prior’ and step
sizes in ‘control’ will be clarified in the following modeling options. Note that all parameters with a
step size are sampled through the Metropolis-Hastings algorithm.

Modeling options for Σkt The covariance matrix between the response endpoints (Σkt) can be
modeled depending on (1) the amount of data available; and (2) what assumptions the practitioner
is willing to make. The diagonal elements of Σkt are always identifiable whereas the off-diagonal
elements require additional modeling assumptions. metapack presently offers five options, specifiable
through model in the control argument. For M2–M5, the unobserved sample correlation matrices
are sampled from their conditional distributions (Rkt | Vkt, Σkt) given by

p(Rkt | Vkt, Σkt) ∝ |Rkt|(nkt−J−2)/2 exp
{
− (nkt − 1)

2
tr
(

V
1
2

kt Σ−1
kt V

1
2

kt Rkt

)}
. (5)

• (M1: model="NoRecovery") The simplest and easiest way to model the covariance matrices is
to relinquish correlation recovery, in which case Equation (5) is ignored. We assume Σkt =
diag(σ2

kt,11, . . . , σ2
kt,J J) with σ2

kt,jj ∼ IG(a0, b0) for a0, b0 > 0, where IG(a, b) denotes the inverse-

gamma distribution whose density function is proportional to x−(a+1) exp(−b/x) for x > 0.
For univariate meta-analyses, this is the only valid option since there are no off-diagonal entries.
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• (M2: model="EquiCovariance") We can assume the covariance matrix is for all pairs of treat-
ments and trials. That is, Σkt = Σ for every combination of (k, t) for t = 1, . . . , T and k = 1, . . . , K.
A Wishart prior distribution is assumed for Σ−1, i.e. Σ−1 ∼ Ws0 (Σ0) for s0 > J − 1 and
Σ0 ∈ S J

++.

• (M3: model="EquiWithinTreat") If the equal covariance is too strong an assumption, we can
allow the covariance matrices to be equivalent within a treatment. That is, Σkt = Σt for
t = 1, . . . , T. Similar to M2, a Wishart prior distribution is assumed for Σ−1

t , i.e. Σ−1
t ∼ Ws0 (Σ0).

• (M4: model="EquiCorrelation") To achieve the best of both worlds—variances and correlations—
we can let the variances enjoy maximum freedom but attempt to recover the correlations by
restricting them to be identical across treatments and trials for identifiability. Performing the
decomposition,

Σkt = δktρδkt,

where δkt = diag(Σ1/2
kt,11, . . . , Σ1/2

kt,J J), and ρ is the correlation matrix, the elements in δkt and ρ are
sampled through the Metropolis-Hastings algorithm.

• (M5: model="Hierarchical") The hierarchical prior for Σkt is given by (Σ−1
kt | Σ) ∼ Wν0 ((ν0 −

J − 1)−1Σ−1) and Σ ∼ Wd0 (Σ0). By allowing the Σkt’s to differ but having them share informa-
tion across treatments and trials via Σ, this assumption aims to control the between-treatment
and between-trial variations simultaneously. Since the amount of information shared between
treatments and trials is controlled by ν0 (> J − 1), it is advised to try multiple values for ν0 and
perform a model assessment through the deviance information criterion (DIC) or the logarithm
of the pseudo-marginal likelihood (LPML). Σ is further decomposed for Metropolis-Hastings
algorithm as Σ = ∆ρ∆ where ∆ = diag(δ1, . . . , δJ) is the diagonal matrix of standard deviations,
and ρ is a correlation matrix with unit diagonal elements.

Network meta-analysis models

For univariate network meta-analysis, the design matrix for random effects is restricted to be the
selection matrix E⊤

k = (etk1 , etk2 , . . . , etkTk
)⊤, where etkl = (0, . . . , 1, . . . , 0)⊤, l = 1, . . . , Tk, with the

tklth element set to 1 and 0 otherwise, and Tk is the number of treatments included in the k-th trial.
Furthermore, we redefine γk,o to be γk,o := E⊤

k γk, a vector of Tk-dimensional scaled random effects.
The random effects γk ∼ tT(γ, ρ, ν), where tT(µ, Σ, ν) denotes a multivariate t-distribution with ν
degrees of freedom, a location parameter vector µ, and a scale matrix Σ. T indicates the number of
distinct treatments in all trials. The random effects γk are scaled since ρ is a correlation matrix with
unit diagonal entries, and the variance components can be modeled as a multiplicative term. That is,
with Wk(ϕ) = diag(exp(w⊤

ktk1
ϕ), . . . , exp(w⊤

ktkTk
ϕ)), the model is recast as

yk = X∗
k θ+ Wk(ϕ)γk,o + ϵk,

where X∗
k = (Xk, E⊤

k ), θ = (β⊤, γ⊤)⊤, ϵk ∼ NTk (0, Σk), and Σk = diag

(
σ2

ktk1
nktk1

, . . . ,
σ2

ktkTk
nktkTk

)
. This

allows exp(w⊤
ktϕ) to be the standard deviation of γkt. Since the multivariate t-random effects are not

analytically marginalizable, we represent it as a scale mixture of normals as

(γk,o | λk)
ind∼ NTk

(
0, λ−1

k (E⊤
k ρEk)

)
, λk

iid∼ Ga
( ν

2
,

ν

2

)
, (6)

where Ga(a, b) indicates the gamma distribution with mean a/b. Finally, θ ∼ N (0, c01 I) and ϕ ∼
N (0, c02 I).

A (boilerplate) template for this class of models is as follows:

f <- "y | sd ~ x1 + x2 | w1 + w2 | treat + trial"
fit <- bmeta_analyze(formula(f), data = df,

prior = list(c01 = [real], c02 = [real], df = [real],
a4 = [real], b4 = [real], a5 = [real], b5 = [real]),

control = list(sample_df = [logical], sample_Rho = [logical],
Rho_stepsize = [real], phi_stepsize = [real], lambda_stepsize = [real]))

Every bracketed expression should be replaced with an instance of the enclosed class. The hyper-
parameters in ‘prior’ and step sizes in ‘control’ will be clarified in the following modeling options.
Note that all parameters with a step size are sampled through the Metropolis-Hastings algorithm.
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Modeling options The appeal of considering heavy-tailed random effects and modeling the variance
to be a deterministic linear function of a covariate is that both extend but still cover the common cases
(normal random effects and no variance modeling) as either the limiting or a special case. Unlike
meta-analysis, there is no single argument (‘model’) determining the modeling option. A model is
rather specified by a combination of arguments.

• (M1 - No variance modeling) Sometimes, no covariate information is available for modeling
the variances, where wktkt

reduces to one—Wk(ϕ) = diag(eϕ, . . . , eϕ). The marginal variance of
ykt becomes Var(ykt) = σ2

kt/nkt + e2ϕ. This can be achieved by simply omitting the second RHS,
thereby making the trial and treatment configuration the second RHS. For example, ‘y | sd
~x1 + x2 | treat + trial’.

• (M2 - Normal random effects) In the limiting case where ν → ∞, γk,o ∼ NTk (0, E⊤
k ρEk).

bmeta_analyze treats ν (‘df’) as part of the prior specification. Thus, ‘df=Inf’ in the ‘prior’
argument corresponds to opting for normal random effects.

• (M3 - Random degrees of freedom) The degrees of freedom of the multivariate t-distribution for
the random effects are treated as unknown. In this case, a hierarchical prior is considered for the
degrees of freedom. That is, (ν | νa, νb) ∼ Ga(νa, νa/νb), νa ∼ Ga(a4, b4), and νb ∼ IG(a5, b5).
Since sampling ν regards the MCMC algorithm, a logical variable ‘sample_df’ is placed in the
‘control’ argument. If ‘sample_df=TRUE’, the value for ‘df’ in ‘prior’ will be used as the initial
value, and the related hyperparameters (‘a4’, ‘b4’, ‘a5’, and ‘b5’) can be set in ‘prior’. For
obvious reasons, ‘df’ cannot be assigned ‘Inf’ if ‘sample_df=TRUE’.

5 Performing inference

The object (fit) returned from bmeta_analyze remembers the function arguments, encapsulates the
model specification, and contains the posterior sample from the MCMC algorithm. Therefore, this
object alone can be passed to other methods to perform subsequent inferences. These methods include
fitted, hpd, coef, model_comp, and sucra.

The posterior means, standard deviations, and the HPD intervals are computed via the fitted()
function. The fitted() function has two optional arguments: ‘level’ and ‘HPD’. ‘level’ determines
the credibility level of the interval estimation. ‘HPD’, a logical parameter, decides whether a highest
posterior density or equal-tailed credible interval will be produced. It is also possible to obtain the
posterior interval estimates only using hpd().

R> est <- fitted(fit, level=0.99, HPD = TRUE)
R> hpd <- hpd(fit, level = 0.95, HPD = TRUE)

‘coef(fit)’ allows users to extract the posterior mean of the fixed-effect coefficients.

Model comparison It is crucial to determine a suitable model to base the statistical inference on.
Section Meta-analysis models introduces five models for Σkt, and Section Network meta-analysis
models contains infinitely many models since the degrees of freedom ν for the random effects can
assume any number on the positive real line including infinity. Such a circumstance calls for a
principled way of comparing models as well as evaluating goodness of fit.

The deviance information criterion (Spiegelhalter et al., 2002), or DIC, is defined as follows:

DIC = Dev(η̄) + 2pD,

where η indicates all model parameters for which η̄ = E[η | Dobs]. Dev(η) is the deviance function
given by Dev(η) = −2 log Loy(η | Dobs), for which Loy is the observed-data likelihood associated with
y, and pD is defined as pD = Dev(η)− Dev(η̄) where Dev(η) = E[Dev(η) | Dobs].

R> dic <- model_comp(fit, type = "dic", verbose = TRUE, ncores = 3)

Another Bayesian model selection criterion is the logarithm of the pseudo-marginal likelihood
(LPML), defined as the summed logarithm of the conditional predictive ordinates (CPO). The CPO has
a “leave-one-out” predictive interpretation, which in meta-analyses is often overlooked—a significant
oversight that will undermine model comparison. The aggregate nature of meta-analysis data calls for
a redefinition of what is “left out” and what should be the base unit for prediction. With trials as the
base unit, the CPO for the k-th trial is

CPOk =
∫

L(η | Doy)p(η | D−k
oy , Dos)dη,
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where D−k
oy is Doy with the k-th trial removed, and p(η | D−k

oy , Dos) is the posterior distribution based
on the data without the k-th trial. Then, LPML = 1

K ∑K
k=1 log(CPOk).

R> lpml <- model_comp(fit, type = "lpml", verbose = TRUE, ncores = 3)

Treatments included in only one trial violate the predictive interpretation of the CPO. The correspond-
ing trials thus should be removed from LPML calculation. model_comp returns the logarithm of the
CPO of every trial but corrects the LPML should such treatments exist. For those occasions, a naive
sum of the logarithm of the CPOk’s will not equal the corrected LPML in the returned object.

The DIC and LPML for the meta-analysis models are relatively straightforward since the observed-
data likelihood is a multivariate normal density. However, network meta-analysis models require
some technical considerations in evaluating the following observed-data likelihood that involves
an analytically intractable integral when t-random effects are used: slow computation speed and
numerical overflow. Observe the following observed likelihood function for the network meta-analysis
model:

Loy(η | Dobs) =
K

∏
k=1

∫ ∞

0
(2π)−

Tk
2 g(λk)

∣∣∣λ−1
k (Wk(ϕ)E⊤

k ρEkWk(ϕ)) + Σk

∣∣∣− 1
2

× exp

−
(yk − X∗

k θ)⊤
[
λ−1

k Wk(ϕ)E⊤
k ρEkWk(ϕ) + Σk

]−1
(yk − X∗

k θ)

2

 dλk,

where g(λk) is the gamma density with shape and rate parameters ν/2. The integral is evaluated
via double exponential (DE) quadrature, or equivalently tanh-sinh quadrature (Takahasi and Mori,
1974; Bailey et al., 2005), available in the math header of the BH package (Eddelbuettel et al., 2019).
DE quadrature is robust to singularities, terminates fast, and provides high precision (Bailey et al.,
2005). We address the slow speed through “shared memory multiprocessing programming” via OpenMP
(OpenMP Architecture Review Board, 2018). OpenMP is a widely used application programming
interface (API) for portable and scalable parallel processing in C, C++, and Fortran across many
operating systems. As long as R is configured for OpenMP, metapack will deploy parallelism. Unless
the argument ncores is specified otherwise, model_comp will use two CPU cores for parallel computing
by default.

To prevent overflow, we take the following steps:

• Let h(λk) denote the integrand. Then, compute λ̂k = arg maxλk
log h(λk).

• Redefine the integral as

exp
{

log h(λ̂k) + log
∫ ∞

0
exp

[
log h(λk)− log h(λ̂k)

]
dλk

}
.

Although the exponential shifting scheme does not warrant preventing every occurrence of numerical
overflow, we have observed stable evaluations of the integral for over several thousand batches of
simulations.

Model diagnostics and visualization

It is important to diagnose whether the results are consistent with the assumptions and visualize the
findings. metapack provides methods for these: plot and sucra. The plot method is available for both
meta-analysis and network meta-analysis whereas sucra is exclusively for network meta-analysis.

The plot method will take the fit object and generate the density plots and trace plots of θ. To
see the plots for other parameters, run the following commands using coda (Plummer et al., 2006):

R> library("coda")
R> posterior <- as.mcmc(data.frame(gammaR = fit$mcmc.draws$gamR,
+ sig2 = fit$mcmc.draws$sig2))
R> plot(posterior)

Similarly, boa (Smith, 2007) can be used for output analysis. The posterior sample of ρ comes in
three-dimensional arrays, which requires suitable indexing to generate trace plots for the off-diagonal
lower-triangular elements. To generate such trace plots, run the following command:

R> idx <- lower.tri(fit$mcmc.draws$Rho[,,1])
R> n_idx <- ncol(idx) * (ncol(idx) - 1) / 2
R> posterior <- as.mcmc(data.frame(
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+ rho = t(vapply(1:fit$mcmc$nkeep, function(ikeep) {
+ rho_i <- fit$mcmc.draws$Rho[,,ikeep]
+ rho_i[idx]
+ }, FUN.VALUE=numeric(n_idx)))))
R> plot(posterior)

Treatment comparisons The surface under the cumulative ranking (SUCRA) curve is useful when the
ranking of the treatments in a network meta-analysis is of interest. Based on the posterior sample,
P(t, r) denotes the probability that the treatment t is ranked 1 ≤ r ≤ T for t = 1, . . . , T. Let P be the
T×T discrete rank (row-stochastic) probability matrix whose (t, r)th element is P(t, r). The cumulative
probability is then computed through F(t, x) = ∑x

r=1 P(t, r), where F(t, x) is the probability that the
t-th treatment is ranked x or better. Since F(t, T) = 1 for every t, the surface under the cumulative
ranking distribution for the t-th distribution is given by

SUCRA(t) =
1

T − 1

T−1

∑
x=1

F(t, x).

sucra will take the fit object and return the SUCRA and the discrete rank probability matrix P.

R> s <- sucra(fit)
R> s$SUCRA
R> s$rankprob

If only plotting is needed, the storage of the sucra object can be bypassed via running plot(sucra(fit)).
Note that SUCRA s has a bijection with the mean rank r of a treatment, r = 1 + (1 − s)(T − 1), where
T is the number of treatments.

6 Demonstration with real data

Meta-analysis

metapack includes a data set, cholesterol, which consists of 26 double-blind, randomized, active,
or placebo-controlled clinical trials on patients with primary hypercholesterolemia sponsored by
Merck & Co., Inc., Kenilworth, NJ, USA (Yao et al., 2015). The data set can be loaded by running
data("cholesterol"). The cholesterol data set has three endpoints: low density lipoprotein choles-
terol (pldlc), high density lipoprotein cholesterol (phdlc), and triglycerides (ptg). The percent change
from the baseline in the endpoints, variables prefixed by p-, are the aggregate responses, followed by
the corresponding standard deviations prefixed by sd-. Variable documentation is also available in
help("cholesterol").

R> set.seed(2797542)
R> f_1 <- 'pldlc + phdlc + ptg | sdldl + sdhdl + sdtg ~
+ 0 + bldlc + bhdlc + btg + age + durat + white + male + dm + ns(n) | treat |
+ treat + trial + onstat'
R> fit_ma <- bmeta_analyze(formula(f_1), data = cholesterol,
+ prior = list(model="NoRecovery"),
+ mcmc = list(ndiscard = 1000, nkeep = 1000),
+ control=list(scale_x = TRUE, verbose=TRUE))
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Variable Description

study study identifier
trial trial identifier
treat treatment indicator for Statin or Statin+Ezetimibe
n the number of participants in the study arms
pldlc aggregate percentage change in LDL-C
phdlc aggregate percentage change from baseline in HDL-C
ptg aggregate percentage change from baseline in triglycerides (TG)
sdldl sample standard deviation of percentage change in LDL-C
sdhdl sample standard deviation of percentage change in HDL-C
sdtg sample standard deviation of percentage change in triglycerides (TG)
onstat whether the participants were on Statin prior to the trial
bldlc baseline LDL-C
bhdlc baseline HDL-C
btg baseline triglycerides (TG)
age age in years
white the proportion of white participants
male the proportion of male participants
dm the proportion of participants with diabetes mellitus
durat duration in weeks

Table 3: Variables included in the cholesterol data set.
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Figure 1: The trace plots (three top panels) and density plots (three bottom panels) of the treatment ef-
fects from the meta-analysis model generated from plot(fit_ma)—plots have been omitted for brevity.
The trace plots show good mixing and convergence of MCMC chains and the density plots indicate
that the marginal posterior distribution for each treatment effect is roughly symmetric. The MCMC
samples of the regression coefficients will be automatically assigned row names according to the
formula provided by the user. ‘treat*(1-2nd)_3’ indicates the treatment effect within the first-line pa-
tients (i.e. ‘onstat=0’) with respect to the third response variable, ‘ptg’. Likewise, ‘(Intercept)*2nd_3’
is the baseline effect within the second-line patients (i.e. ‘onstat=1’) with respect to ‘ptg’.
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summary can be used to summarize the posterior sample from the ‘fit’ object. summary will name
the variables accordingly in the output, suffixed by the index j in the corresonding outcome variable
yktj. For example, ‘bldlc_1’ in the output below corresponds to the base LDL-C’s coefficient associated
with the first endpoint (‘pldlc’). The summary table consists of the posterior mean, posterior standard
deviation, the HPD lower bound, and the HPD upper bound. Users may choose to compute the
equal-tailed credible intervals (CI) instead of the HPD intervals by setting ‘HPD=FALSE’.

R> summary(fit_ma, HPD = TRUE, level = 0.95)
Call:
bmeta_analyze(formula = formula(f_1), data = cholesterol,
prior = list(model = "NoRecovery"),
mcmc = list(ndiscard = 1000, nkeep = 1000), control = list(scale_x = TRUE,

verbose = TRUE))
Fixed-effects:

Post.Mean Std.Dev HPD(Lower) HPD(Upper)
bldlc_1 0.1394 0.0938 -0.0532 0.3051
bhdlc_1 -0.5146 0.6329 -1.7641 0.7243
btg_1 0.0018 0.0818 -0.1693 0.1607
age_1 0.3785 0.4389 -0.5308 1.1648
durat_1 0.9699 0.5234 -0.1658 1.9979
white_1 -5.2449 7.4048 -19.7345 8.9764
male_1 -1.2652 12.3948 -25.6807 23.0538
dm_1 0.3987 5.3392 -10.4995 9.4673
bldlc_2 -0.0128 0.0137 -0.0393 0.0134
bhdlc_2 -0.0294 0.1280 -0.2887 0.2149
btg_2 0.0228 0.0212 -0.0203 0.0619
age_2 -0.0963 0.0735 -0.2422 0.0460
durat_2 -0.0007 0.0712 -0.1320 0.1382
white_2 5.5822 1.3044 3.0802 8.1901
male_2 -2.1449 2.6956 -7.5975 2.6164
dm_2 -1.0457 1.0923 -3.1816 1.0341
bldlc_3 0.0141 0.0406 -0.0719 0.0853
bhdlc_3 0.0082 0.2637 -0.5278 0.4872
btg_3 -0.0734 0.0467 -0.1598 0.0154
age_3 -0.1385 0.2043 -0.5077 0.2591
durat_3 0.0996 0.2546 -0.3718 0.6080
white_3 -0.7053 5.2345 -11.0570 8.9591
male_3 14.5482 7.1735 0.0642 28.2959
dm_3 5.0535 2.9542 -1.4157 10.5545
(Intercept)*(1-2nd)_1 -42.8675 3.2934 -48.8356 -35.8794
treat*(1-2nd)_1 -12.1435 1.1211 -14.4040 -10.0135
(Intercept)*2nd_1 -3.2219 3.0426 -9.3109 2.7419
treat*2nd_1 -20.0843 1.5235 -23.3169 -17.2637
(Intercept)*(1-2nd)_2 5.1425 0.5840 3.8240 6.1036
treat*(1-2nd)_2 2.0787 0.4718 1.0663 3.0222
(Intercept)*2nd_2 0.7346 0.5814 -0.3377 1.8738
treat*2nd_2 1.3482 0.3116 0.7579 1.9880
(Intercept)*(1-2nd)_3 -18.5035 2.1543 -22.3232 -13.7985
treat*(1-2nd)_3 -4.7726 0.9952 -6.7784 -2.9511
(Intercept)*2nd_3 -4.1805 1.2910 -6.7672 -1.7005
treat*2nd_3 -8.8579 0.9443 -10.6208 -7.0530
---------------------------------------------------
*HPD level: 0.95

The suffixed ‘_j’ where j can be 1, 2, or 3 corresponds to the response endpoint. Since scale_x = TRUE
is equivalent to scale(<var>,center=TRUE,scale=TRUE), the covariates have been centered, which af-
fects the interpretation of the intercepts. This allows us to interpret (Intercept*(1-2nd)_1)=-42.8675
as the statin effect in the first-line studies, where 2nd represents the indicator variable for second-line
studies evaluating to one if second-line and zero otherwise. On the other hand, the coefficient estimate
-12.1435 for treat*(1-2nd)_1 is the Statin+Ezetimibe effect, compared to administering statin alone.
For the second-line studies where patients had already been on statin, (Intercept)*2nd_1=-3.2219
came out insignificant, according to the 95% HPD interval, as anticipated because the treatment for this
group was merely a continuation of taking statin. The coefficient estimate -20.0843 for treat*2nd_1
shows that ezetimibe on top of statin has a greater cholesterol-lowering effect than statin alone.

print is similar to summary but additionally prints the model specification. The output from
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‘print(fit_ma)’ is given as follows.

R> print(fit_ma, HPD = TRUE, level = 0.95)
Call:
bmeta_analyze(formula = formula(f_1),

data = cholesterol, prior = list(model = "NoRecovery"),
mcmc = list(ndiscard = 1000, nkeep = 1000),
control = list(scale_x = TRUE, verbose = TRUE))

Model:
(Aggregate mean)
y_kt = X_kt * theta + W_kt * gamma_k + N(0, Sigma_kt / n_kt)

(Sample Variance)
(n_kt - 1) S_kt ~ Wishart(n_kt - 1, Sigma_kt)

(Random effects)
[gamma_k | Omega] ~ N(0, Omega)

Priors:
theta ~ MVN(0, 1e+05 * I_p)
Omega_j^{-1} ~ Wishart( 2.1 , Omega0)
Sigma_kt = diag(sig_{tk,11}^2, ..., sig_{tk,JJ}^2)
where sig_{tk,jj}^2 ~ IG( 0.1 , 3.1 )

---------------------------------------------------
Number of trials: 26
Number of arms: 52
Number of treatments: 2

Post.Mean Std.Dev HPD(Lower) HPD(Upper)
bldlc_1 0.1394 0.0938 -0.0532 0.3051
bhdlc_1 -0.5146 0.6329 -1.7641 0.7243
btg_1 0.0018 0.0818 -0.1693 0.1607
age_1 0.3785 0.4389 -0.5308 1.1648
durat_1 0.9699 0.5234 -0.1658 1.9979
white_1 -5.2449 7.4048 -19.7345 8.9764
male_1 -1.2652 12.3948 -25.6807 23.0538
dm_1 0.3987 5.3392 -10.4995 9.4673
bldlc_2 -0.0128 0.0137 -0.0393 0.0134
bhdlc_2 -0.0294 0.1280 -0.2887 0.2149
btg_2 0.0228 0.0212 -0.0203 0.0619
age_2 -0.0963 0.0735 -0.2422 0.0460
durat_2 -0.0007 0.0712 -0.1320 0.1382
white_2 5.5822 1.3044 3.0802 8.1901
male_2 -2.1449 2.6956 -7.5975 2.6164
dm_2 -1.0457 1.0923 -3.1816 1.0341
bldlc_3 0.0141 0.0406 -0.0719 0.0853
bhdlc_3 0.0082 0.2637 -0.5278 0.4872
btg_3 -0.0734 0.0467 -0.1598 0.0154
age_3 -0.1385 0.2043 -0.5077 0.2591
durat_3 0.0996 0.2546 -0.3718 0.6080
white_3 -0.7053 5.2345 -11.0570 8.9591
male_3 14.5482 7.1735 0.0642 28.2959
dm_3 5.0535 2.9542 -1.4157 10.5545
(Intercept)*(1-2nd)_1 -42.8675 3.2934 -48.8356 -35.8794
treat*(1-2nd)_1 -12.1435 1.1211 -14.4040 -10.0135
(Intercept)*2nd_1 -3.2219 3.0426 -9.3109 2.7419
treat*2nd_1 -20.0843 1.5235 -23.3169 -17.2637
(Intercept)*(1-2nd)_2 5.1425 0.5840 3.8240 6.1036
treat*(1-2nd)_2 2.0787 0.4718 1.0663 3.0222
(Intercept)*2nd_2 0.7346 0.5814 -0.3377 1.8738
treat*2nd_2 1.3482 0.3116 0.7579 1.9880
(Intercept)*(1-2nd)_3 -18.5035 2.1543 -22.3232 -13.7985
treat*(1-2nd)_3 -4.7726 0.9952 -6.7784 -2.9511
(Intercept)*2nd_3 -4.1805 1.2910 -6.7672 -1.7005
treat*2nd_3 -8.8579 0.9443 -10.6208 -7.0530
---------------------------------------------------
*HPD level: 0.95

For model comparison, the deviance information criterion (DIC) and the logarithm of the pseudo
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marginal likelihood (LPML) can be computed using the model_comp method. The DIC will also contain
Dev(η̄) and pD. Similarly, the LPML will contain the logarithm of the CPOs, which is omitted.

R> dic <- model_comp(fit_ma, "dic")
R> lpml <- model_comp(fit_ma, "lpml")
R> c(dic$dic, dic$Dev, dic$pD)
[1] 827.80726 734.50691 46.65018

R> lpml$lpml
[1] -428.1813

Network meta-analysis

metapack includes another data set, ‘TNM’, which consists of 29 studies, dubbed the Triglycerides
Network Meta (TNM) data (Li et al., 2019). The data set has 73 observations and 15 variables, which
can be loaded via ‘data("TNM")’. The aggregate response variable is the mean percentage difference
in triglycerides (‘ptg’), paired with its corresponding standard deviation (‘sdtg’). Similarly to

Variable Description

trial trial identifier

treat

treatment indicator for placebo (PBO), simvastatin (S), atorvastatin (A),
lovastatin (L), rosuvastatin (R), pravastatin (P), ezetimibe (E),
simvastatin+ezetimibe (SE), atorvastatin+ezetimibe (AE),
lovastatin+ezetimibe (LE), or pravastatin+ezetimibe (PE)

n the number of participants in the study arms
ptg percentage change from baseline in triglycerides (TG)
sdtg sample standard deviation of percentage change in triglycerides (TG)
bldlc baseline LDL-C
bhdlc baseline HDL-C
btg baseline triglycerides (TG)
age age in years
white the proportion of white participants
male the proportion of male participants
bmi body fat index
potencymed the proportion of medium statin potency
potencyhigh the proportion of high statin potency
durat duration in weeks

Table 4: Variables included in the TNM data set.

‘cholesterol’, variable descriptions are also available through help("TNM").

LPML in Section Model comparison is not the only quantity affected by the treatments only
included in a single trial. The variances of the corresponding treatment effects are nonestimable. Li
et al. (2019) proposes to group those treatments and allow the treatments in a group to share the same
variance. This grouping scheme can be easily achieved using match in R:

R> TNM$group <- factor(match(TNM$treat, c("PBO", "R"), nomatch = 0))

In the following demonstration, we consider the following model:

R> f_2 <- 'ptg | sdtg ~
+ 0 + bldlc + bhdlc + btg + age + white + male + bmi +
+ potencymed + potencyhigh + durat + ns(n) |
+ scale(bldlc) + scale(btg) + group | treat + trial'

The model can be fit by running

R> set.seed(2797542)
R> fit_nma <- bmeta_analyze(formula(f_2), data = TNM,
+ mcmc = list(ndiscard = 1000, nskip = 1, nkeep = 1000),
+ control=list(scale_x = TRUE, verbose=TRUE))
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Again, the model summary can be obtained using either summary or print with minor differences.

R> summary(fit_nma)
Call:
bmeta_analyze(formula = formula(f_2), data = TNM, mcmc = list(ndiscard = 1000,

nskip = 1, nkeep = 1000), control = list(scale_x = TRUE,
verbose = TRUE))

Posterior inference in network meta-regression models
Fixed-effects:

Post.Mean Std.Dev HPD(Lower) HPD(Upper)
bldlc -0.0071 0.0171 -0.0409 0.0230
bhdlc 0.2332 0.2490 -0.2802 0.7027
btg 0.0846 0.0366 0.0006 0.1460
age -0.0068 0.1028 -0.2003 0.2020
white -7.2148 1.9867 -10.7112 -3.0757
male 1.2323 7.3305 -12.5660 15.6644
bmi -0.4505 0.3534 -1.1544 0.2184
potencymed 6.8278 7.9203 -8.5359 22.4551
potencyhigh -0.6474 7.9330 -16.9216 14.4191
durat 0.1880 0.1879 -0.1638 0.5652
A -24.3175 1.7820 -27.9255 -20.9635
AE -30.3604 2.9591 -35.7474 -24.2297
E -5.2737 6.1207 -17.4431 6.4066
L -11.6521 4.3747 -20.1106 -2.7431
LE -26.9507 3.4730 -33.3236 -19.9223
P -8.3357 4.5065 -16.9311 0.7870
PBO 1.6170 6.0629 -9.9366 13.6298
PE -22.7722 3.6333 -29.6129 -15.7540
R -17.7669 2.0010 -21.3989 -13.3839
S -19.1616 1.2175 -21.7647 -16.9279
SE -21.8271 2.0509 -25.8031 -17.6347
---------------------------------------------------
*HPD level: 0.95

We observe that with covariate adjustment, all active treatments (A, AE, E, L, LE, P, PE, R, S, SE) reduce
triglyceride (TG) more effectively than the placebo (PBO), although E and P have 95% HPD intervals
including zero.

The output from ‘print(fit_nma)’ further includes the model specification, and summary statistics
for ϕ.

R> print(fit_nma)
Call:
bmeta_analyze(formula = formula(f_2), data = TNM, mcmc = list(ndiscard = 1000,

nskip = 1, nkeep = 1000), control = list(scale_x = TRUE,
verbose = TRUE))

Model:
(Aggregate mean)
y_kt = x_kt'theta + tau_kt * gamma_kt + N(0, sigma_kt^2 / n_kt)

(Sample Variance)
(n_kt - 1) S^2 / sigma_kt^2 ~ chi^2(n_kt - 1)

(Random effects)
[gam | Rho,nu] ~ MVT(0, E_k' Rho E_k, nu)

Priors:
theta ~ MVN(0, c01 * I_p), c01= 1e+05
phi ~ MVN(0, c02 * I_q), c02= 4
p(sigma^2) ~ 1/sigma^2 * I(sigma^2 > 0)
p(Rho) ~ 1

---------------------------------------------------
Number of studies: 29
Number of arms: 73
Number of treatments: 11

Post.Mean Std.Dev HPD(Lower) HPD(Upper)
bldlc -0.0071 0.0171 -0.0409 0.0230
bhdlc 0.2332 0.2490 -0.2802 0.7027
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btg 0.0846 0.0366 0.0006 0.1460
age -0.0068 0.1028 -0.2003 0.2020
white -7.2148 1.9867 -10.7112 -3.0757
male 1.2323 7.3305 -12.5660 15.6644
bmi -0.4505 0.3534 -1.1544 0.2184
potencymed 6.8278 7.9203 -8.5359 22.4551
potencyhigh -0.6474 7.9330 -16.9216 14.4191
durat 0.1880 0.1879 -0.1638 0.5652
A -24.3175 1.7820 -27.9255 -20.9635
AE -30.3604 2.9591 -35.7474 -24.2297
E -5.2737 6.1207 -17.4431 6.4066
L -11.6521 4.3747 -20.1106 -2.7431
LE -26.9507 3.4730 -33.3236 -19.9223
P -8.3357 4.5065 -16.9311 0.7870
PBO 1.6170 6.0629 -9.9366 13.6298
PE -22.7722 3.6333 -29.6129 -15.7540
R -17.7669 2.0010 -21.3989 -13.3839
S -19.1616 1.2175 -21.7647 -16.9279
SE -21.8271 2.0509 -25.8031 -17.6347
phi1 0.4088 0.2716 -0.1610 0.8882
phi2 -0.3248 0.3869 -1.1721 0.2902
phi3 0.2692 0.2239 -0.1859 0.6835
phi4 -1.0862 1.2024 -3.2686 0.9419
phi5 0.5973 0.3407 -0.0341 1.2829
---------------------------------------------------
*HPD level: 0.95

The model comparison measures are computed using model_comp. For example,

R> dic <- model_comp(fit_nma, "dic")
R> c(dic$dic, dic$Dev, dic$pD)
[1] 386.41450 334.72118 25.84666

R> lpml <- model_comp(fit_nma, "lpml")
R> lpml$lpml
[1] -161.518

The plot method will generate trace plots and density plots of the fixed-effect coefficients. Figure 2
shows the trace plots and density plots of treatments R, S, and SE from the network meta-analysis
model, generated by ‘plot(fit_nma)’.
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Figure 2: The trace plots and density plots of treatments R, S, and SE from the network meta-analysis
model generate from ‘plot(fit_nma)’. The trace plots show good mixing and convergence of MCMC
chains and the density plots indicate that the marginal posterior distribution for each treatment effect
is roughly symmetric. The treatment labels come from the ‘group’. If ‘group’ is a factor, its levels will
be used. Otherwise, treatment labels will be numbered.

In addition to the MCMC diagnostics, network meta models can be visualized using SUCRA plots,
i.e. ‘plot(sucra(fit_nma))’. Figure 3 shows the SUCRA plot from the ‘fit_nma’ object. The plot
function for SUCRA uses ggplot2 (Wickham, 2016) and gridExtra (Auguie, 2017) to generate and
combine plots.

7 Discussion

This paper introduces metapack for (network) meta-analysis, and illustrates the usage of the main
function, bmeta_analyze. We further demonstrate how to analyze data using the cholesterol and TNM
data sets included in metapack. The package relies on Rcpp, RcppArmadillo, and OpenMP to boost
computation speed. Furthermore, we propose a unified formula structure to represent meta-analytic
data using Formula, which we hope to see gain currency in the community.

There is a cautionary remark worth mentioning about the ratio between the correlation information
in the data and the number of correlation-related parameters. The number of endpoints and the number
of arms in the multivariate meta-analysis models are critical in determining whether the missing
correlations (Rkt, ρ) are identifiable. If there are too many endpoints, there must be enough data points.
Otherwise, the prior distribution for ρ cannot be noninformative. From our experience, using only
one of the two therapies in cholesterol results in nonidentifiable correlations since each off-diagonal
entry of ρ will have four observations on average. This can render the MCMC algorithm unstable,
covering the whole (−1, 1). This could potentially break the MCMC chain if any of the elements gets
too close to either 1 or -1, violating positive definiteness.

The efficient estimation of the correlation matrix is an important future research direction for which
the package will serve as a valuable repository of resources. The first few future implementations will
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Figure 3: The SUCRA plot for all treatment arms generated by plot(sucra(fit_nma)). The green
dashed line represents the discrete probability mass and the orange solid line represents the cumulative
probability. The SUCRA values are displayed on top of each subplot. For optimal visualization, we
recommend the labels be three characters or fewer. AE is ranked highest according to SUCRA, followed
by LE.
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focus on the regression modeling of the correlations to address the cases where either the data are too
small to estimate the correlations or the number of treatments is too large. Models accommodating
various circumstances regarding the sample variances are under active development. For example,
researchers might want to suppress the sampling of the variance-covariance matrix as a whole for
various reasons. Researchers might also have partially observed sample variances, not covariances,
depending on the study included in the systematic review. metapack in the coming releases will
provide these options. Therefore, metapack has great potential for further development.

Acknowledgments

We would like to thank the Editor, the Associate Editor, and the two reviewers for their helpful
comments and suggestions, which led to a much improved version of the paper. Dr. Chen and Dr.
Ibrahim’s research was partially supported by NIH grants #GM70335 and #P01CA142538, and Merck
& Co., Inc., Rahway, NJ, USA. Dr. Kim’s research was supported by the Intramural Research Program
of National Institutes of Health, National Cancer Institute.

Bibliography

B. Auguie. gridExtra: Miscellaneous Functions for "Grid" Graphics, 2017. URL https://CRAN.R-project.
org/package=gridExtra. R package version 2.3. [p157]

D. H. Bailey, K. Jeyabalan, and X. S. Li. A comparison of three high-precision quadrature schemes.
Experimental Mathematics, 14(3):317–329, 2005. doi: em/1128371757. [p149]

S. Balduzzi, G. Rücker, and G. Schwarzer. How to perform a meta-analysis with R: a practical tutorial.
Evidence-based mental health, 22(4):153–160, 2019. [p142]

C. S. Berkey, D. C. Hoaglin, F. Mosteller, and G. A. Colditz. A random-effects regression model for
meta-analysis. Statistics in medicine, 14(4):395–411, 1995. [p142]

J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith, and M. West. Non-centered
parameterisations for hierarchical models and data augmentation. In Bayesian Statistics 7: Proceedings
of the Seventh Valencia International Meeting, volume 307. Oxford University Press, USA, 2003. [p146]

M. Borenstein, L. V. Hedges, J. P. Higgins, and H. R. Rothstein. Introduction to meta-analysis. John Wiley
& Sons, 2011. [p142]

I. Chalmers, L. V. Hedges, and H. Cooper. A brief history of research synthesis. Evaluation & the health
professions, 25(1):12–37, 2002. [p142]

R. DerSimonian and N. Laird. Meta-analysis in clinical trials. Controlled clinical trials, 7(3):177–188,
1986. [p142]

T. Ding and G. Baio. bmeta: Bayesian Meta-Analysis and Meta-Regression, 2016. URL https://CRAN.R-
project.org/package=bmeta. R package version 0.1.2. [p142]

D. Eddelbuettel and J. J. Balamuta. Extending R with C++: A Brief Introduction to Rcpp. PeerJ Preprints,
5:e3188v1, aug 2017. ISSN 2167-9843. URL https://doi.org/10.7287/peerj.preprints.3188v1.
[p145]

D. Eddelbuettel and C. Sanderson. RcppArmadillo: Accelerating R with high-performance C++
linear algebra. Computational Statistics and Data Analysis, 71:1054–1063, March 2014. URL http:
//dx.doi.org/10.1016/j.csda.2013.02.005. [p145]

D. Eddelbuettel, J. W. Emerson, and M. J. Kane. BH: Boost C++ Header Files, 2019. URL https://CRAN.R-
project.org/package=BH. R package version 1.69.0-1. [p149]

A. Gasparrini, B. Armstrong, and M. G. Kenward. Multivariate meta-analysis for non-linear and other
multi-parameter associations. Statistics in Medicine, 31(29):3821–3839, 2012. [p142]

B. K. Guenhan. MetaStan: Bayesian Meta-Analysis via ’Stan’, 2020. URL https://CRAN.R-project.org/
package=MetaStan. R package version 0.2.0. [p142]

B. K. Guenhan, T. Friede, and L. Held. A design-by-treatment interaction model for network meta-
analysis and meta-regression with integrated nested Laplace approximations. Research Synthesis
Methods, pages 179–194, 2018. URL https://doi.org/10.1002/jrsm.1285. [p142]

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=bmeta
https://CRAN.R-project.org/package=bmeta
https://doi.org/10.7287/peerj.preprints.3188v1
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005
https://CRAN.R-project.org/package=BH
https://CRAN.R-project.org/package=BH
https://CRAN.R-project.org/package=MetaStan
https://CRAN.R-project.org/package=MetaStan
https://doi.org/10.1002/jrsm.1285


CONTRIBUTED RESEARCH ARTICLE 160

A. Guolo. Higher-order likelihood inference in meta-analysis and meta-regression. Statistics in Medicine,
(31):313–327, 2012. [p142]

J. Hartung, G. Knapp, and B. K. Sinha. Statistical meta-analysis with applications, volume 738. John Wiley
& Sons, 2011. [p142]

H. M. Huizenga, I. Visser, and C. V. Dolan. Hypothesis testing in random effects meta-regression.
British journal of mathematical and statistical psychology, 64:1–19, 2011. [p142]

H. Li, M.-H. Chen, J. G. Ibrahim, S. Kim, A. K. Shah, J. Lin, and A. M. Tershakovec. Bayesian inference
for network meta-regression using multivariate random effects with applications to cholesterol
lowering drugs. Biostatistics, 20(3):499–516, 2019. [p154]

H. Li, D. Lim, M.-H. Chen, J. G. Ibrahim, S. Kim, A. K. Shah, and J. Lin. Bayesian network meta-
regression hierarchical models using heavy-tailed multivariate random effects with covariate-
dependent variances. Statistics in Medicine, 2021. [p143]

T. Lumley. rmeta: Meta-Analysis, 2018. URL https://CRAN.R-project.org/package=rmeta. R package
version 3.0. [p142]

OpenMP Architecture Review Board. OpenMP application programming interface version 5.0, 11
2018. URL https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf.
[p149]

M. Plummer. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling, 2003.
[p142]

M. Plummer, N. Best, K. Cowles, and K. Vines. Coda: Convergence diagnosis and output analysis for
MCMC. R News, 6(1):7–11, 2006. URL https://journal.r-project.org/archive/. [p149]

C. Röver. Bayesian random-effects meta-analysis using the bayesmeta R package. Journal of Statistical
Software, 4 2020. URL https://doi.org/10.18637/jss.v093.i06. [p142]

G. Schwarzer. meta: An R package for meta-analysis. R News, 7(3):40–45, 2007. [p142]

I. M. Skovgaard et al. An explicit large-deviation approximation to one-parameter tests. Bernoulli, 2(2):
145–165, 1996. [p142]

B. J. Smith. boa: An R package for MCMC output convergence assessment and posterior inference.
Journal of Statistical Software, 21(11):1–37, 2007. [p149]

D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van Der Linde. Bayesian measures of model
complexity and fit. Journal of the royal statistical society: Series b (statistical methodology), 64(4):583–639,
2002. [p148]

Stan Development Team. RStan: the R interface to Stan, 2020. URL http://mc-stan.org/. R package
version 2.21.1. [p142]

S. Sturtz, U. Ligges, and A. Gelman. R2winbugs: A package for running WinBUGS from R. Journal of
Statistical Software, 12(3):1–16, 2005. URL http://www.jstatsoft.org. [p142]

H. Takahasi and M. Mori. Double exponential formulas for numerical integration. Publications of the
Research Institute for Mathematical Sciences, 9(3):721–741, 1974. [p149]

U.S. Food and Drug Administration, Center for Drug Evaluation, and Research and Center for Biologics
Evaluation and Research. Meta-Analyses of Randomized Controlled Clinical Trials to Evaluate the Safety
of Human Drugs or Biological Products. U.S. Food and Drug Administration, 2018. [p142]

W. Viechtbauer. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software,
36(3):1–48, 2010. URL http://www.jstatsoft.org/v36/i03/. [p142]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p157]

H. Yao, S. Kim, M.-H. Chen, J. G. Ibrahim, A. K. Shah, and J. Lin. Bayesian inference for multivariate
meta-regression with a partially observed within-study sample covariance matrix. Journal of the
American Statistical Association, 110(510):528–544, 2015. [p143, 150]

A. Zeileis and Y. Croissant. Extended model formulas in R: Multiple parts and multiple responses.
Journal of Statistical Software, 34(1):1–13, 2010. URL https://doi.org/10.18637/jss.v034.i01.
[p145]

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=rmeta
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://journal.r-project.org/archive/
https://doi.org/10.18637/jss.v093.i06
http://mc-stan.org/
http://www.jstatsoft.org
http://www.jstatsoft.org/v36/i03/
https://ggplot2.tidyverse.org
https://doi.org/10.18637/jss.v034.i01


CONTRIBUTED RESEARCH ARTICLE 161

Daeyoung Lim
University of Connecticut
215 Glenbrook Rd. U-4120 Storrs, CT 06269-4120
United States
daeyoung.lim@uconn.edu

Ming-Hui Chen
University of Connecticut
215 Glenbrook Rd. U-4120 Storrs, CT 06269-4120
United States
ming-hui.chen@uconn.edu

Joseph G. Ibrahim
University of North Carolina
3109 McGavran-Greenberg Hall CB #7420 Chapel Hill, NC 27599
United States
ibrahim@bios.unc.edu

Sungduk Kim
Biostatistics Branch
Division of Cancer Epidemiology & Genetics
National Cancer Institute
National Institutes of Health
9609 Medical Center Drive Rockville, MD 20852
United States
kims2@mail.nih.gov

Arvind K. Shah
Merck & Co., Inc.
126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065
United States
arvind_shah@merck.com

Jianxin Lin
Merck & Co., Inc.
126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065
United States
jianxin_lin@merck.com

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

mailto:daeyoung.lim@uconn.edu
mailto:ming-hui.chen@uconn.edu
mailto:ibrahim@bios.unc.edu
mailto:kims2@mail.nih.gov
mailto:arvind_shah@merck.com
mailto:jianxin_lin@merck.com

	metapack: An R Package for Bayesian Meta-Analysis and Network Meta-Analysis with a Unified Formula Interface
	Introduction
	Considered models
	Meta-analytic data for metapack
	Basic implementation of metapack
	Using ```̃'`Formula
	Function arguments
	Meta-analysis models
	Network meta-analysis models

	Performing inference
	Model diagnostics and visualization

	Demonstration with real data
	Meta-analysis
	Network meta-analysis

	Discussion


