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HDiR: An R Package for Computation and
Nonparametric Plug-in Estimation of
Directional Highest Density Regions and
General Level Sets
by Paula Saavedra-Nieves, Rosa M. Crujeiras

Abstract A deeper understanding of a distribution support, being able to determine regions of a certain
(possibly high) probability content is an important task in several research fields. Package HDiR for
R is designed for exact computation of directional (circular and spherical) highest density regions
and density level sets when the density is fully known. Otherwise, HDiR implements nonparametric
plug-in methods based on different kernel density estimates for reconstructing this kind of sets.
Additionally, it also allows the computation and plug-in estimation of level sets for general functions
(not necessarily a density). Some exploratory tools, such as suitably adapted distances and scatterplots,
are also implemented. Two original datasets and spherical density models are used for illustrating
HDiR functionalities.

1 An overview on directional general level sets and highest density re-
gions

When analyzing a data distribution, it is often the case that for a deeper understanding of the modelling
problem, it is interesting to determine regions on the density support exceeding a certain threshold
on the density function values. These regions are known as density level sets and, if the density is
unknown, such a task can be accomplished from a set estimation perspective. Set estimation deals with
the problem of reconstructing a set (or estimating any of its features such as its boundary or its volume)
from a random sample of points intimately related to it. Since Hartigan (1975) establishes the notion
of clusters as connected components of a density level set, the reconstruction of this particular type
of sets has been widely considered in the literature (mainly for densities supported on an Euclidean
space). There are only very few contributions where density level set theory has been extended to more
general domains such as the unit sphere or manifolds. Cuevas et al. (2006) consider the estimation of
level sets for general functions (not necessarily a density) such as regression curves, providing some
consistency theoretical results and showing a density level set on the sphere for illustration. More
recently, the reconstruction of density level sets on manifolds is studied in Cholaquidis et al. (2022),
who also presents some simulations illustrating the performance of their approach on the torus and on
the sphere.

Let X be a random vector taking values on a d−dimensional unit sphere Sd−1 with density f and
t > 0, the goal of (directional) density level set estimation is to reconstruct the set

G f (t) = {x ∈ Sd−1 : f (x) ≥ t}. (1)

from a random sample of points Xn = {X1, · · · , Xn} of X when f is unknown. As an illustration, some
(theoretical) level sets are shown in Figure 1 by representing G f (t) for a circular (left) and a spherical
density (right) when three different values of the level t are chosen. The threshold t is represented
through a dotted line for the circular case. Note that, if large values of t are considered, G f (t) coincides
with the greatest modes of the circular/spherical distribution. However, for small values of t, the
level set G f (t) is practically equal to the support of the distribution. Therefore, cluster definition via
connected components in Hartigan (1975) is clearly related to the notion of mode. Note also that the
computation of the number of modes considering the values of a density over a certain range of values
for the level t, would enable the construction of a directional cluster tree. Azzalini and Torelli (2007)
already present this statistical tool for Euclidean data. Moreover, the association between clusters and
modes is the basis of modal clustering methodology (see Menardi, 2016 for a review on this topic).
Most modal clustering algorithms are based on the application of a mode-seeking numerical method
to the sample points and assigning the same cluster to those data that are iteratively shifted to the
same limit value. Examples of such procedures include the mean shift algorithm that has been already
studied in Sd−1 (see, for instance, Chang-Chien et al., 2010 and Yang et al., 2014).

Despite a practitioner may be interested in determining this type of regions, the value of the
level t could be (in principle) unknown in real situations. In practice, it is quite common to assume
that the set in (1) must satisfy a probability content previously established. Following Box and Tiao
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Figure 1: For a circular density (left) and a spherical density (right), level set G f (t) for t = t1, t = t2
and t = t3 verifying 0 < t1 < t2 < t3. Equivalently, HDR L( fτ) for τ = τ1 = 0.2, τ = τ2 = 0.5 and
τ = τ3 = 0.8.

(1973), Hyndman (1996) and, more recently, Azzalini and Torelli (2007), Saavedra-Nieves and Crujeiras
(2021b) generalize the definition of HDRs from the Euclidean to the directional setting, providing a
plug-in estimation method. Specifically, HDRs are a kind of density level sets where the set probability
content is fixed instead of the level t. The estimation of HDRs involves further complexities given
that the threshold must be computed from the previously fixed probability content. Formally, given
τ ∈ (0, 1), the 100(1 − τ)% HDR is the subset

L( fτ) = {x ∈ Sd−1 : f (x) ≥ fτ}, (2)

where fτ can be seen as the largest constant such that

P(X ∈ L( fτ)) ≥ 1 − τ,

with respect to the distribution induced by f . Figure 1 also shows the HDR L( fτ) for a circular and a
spherical densities with three different values of τ. Note that, if large values of τ are considered, L( fτ)
is equal to the greatest modes and the most distinct clusters can be easily identified. However, for
small values of τ, L( fτ) is almost equal to the support of the distribution.

To sum up, given a value of t, the computation of the level set established in (1) (and of its
connected components) is a quite simple mathematical task when f is known. Under this assumption
and taking a fixed τ ∈ (0, 1), determining the HDR introduced in (2) presents a similar complexity
but, in this case, it is additionally necessary to determine the threshold fτ . In particular, numerical
integration methods can be applied to solve that problem. However, when the density f is assumed
to be unknown and a random sample Xn ∈ Sd−1 generated from f is the only available information
to reconstruct the set, nonparametric set estimation techniques such as plug-in methods must be
considered in order to reconstruct the connected components of the set. Perhaps due to its practical
importance, Euclidean HDRs plug-in algorithms based on kernel smoothing have been widely studied
even solving the problem of selecting an appropriate smoothing parameter specifically devised for the
HDR reconstruction (see Baíllo and Cuevas, 2006, Samworth and Wand, 2010 or Casa et al., 2020). In
the directional setting, given that a proper definition of the HDR L( fτ) was not available, no work on
this area had been carried out until the recent contribution by Saavedra-Nieves and Crujeiras (2021b).

The contents of this paper, describing the contributions in HDiR, mainly focus on computation
and plug-in estimation of highest density regions (HDRs) and density level sets in the circle and the
sphere. Although general level sets can be also analysed using HDiR, we will not formally detail
aspects on their computation and on their plug-in reconstruction given that they can be seen as a
direct generalisation of those introduced for density level sets by replacing the density by the general
function under study. Therefore, with the objective of showing the capabilities of the HDiR package
for exact computation of directional HDRs and density level sets when f is known and for plug-in
estimation otherwise, this paper is organized as follows. First, a basic overview on nonparametric
plug-in estimation methods is given. Initially, the classical directional kernel density estimator is
briefly introduced, as it is the key tool for plug-in reconstruction and exploratory methods. Then,
the problems of threshold estimation (with known and unknown density) and specific bandwidth
selection for HDRs are considered. Circular confidence regions for HDRs are also established. Next,
the reader will find a guided tour across HDiR package, illustrating its use with simulated examples
first and with two real data examples later. Following the perspective in Cuevas et al. (2006), HDiR
also allows the computation and plug-in estimation of general level sets. A reconstruction example of
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a (circular) regression level set is detailed. Moreover, distances between sets and circular/spherical
scatterplots are also described as exploratory tools. Finally, some discussion is provided, considering
on the possible extensions of the package.

2 Plug-in estimation methods

This section provides a brief background on the design of plug-in tools included in HDiR for directional
(circular and spherical) HDR and density level set estimation. Following Cuevas et al. (2006), if a
nonparametric estimator is available for a general function, this methodology may be directly extended
for reconstructing the corresponding level sets.

Plug-in estimation methods for HDRs and level sets

Although there are other nonparametric alternative routes for level set estimation, the plug-in approach
has received considerable attention in the Euclidean literature (see Tsybakov, 1997, Baíllo, 2003, Mason
and Polonik, 2009, Rigollet et al., 2009, Mammen and Polonik, 2013 or Chen et al., 2017). This is with no
doubt a natural methodology, which can be generalized to the directional setting as in Saavedra-Nieves
and Crujeiras (2021b). Given that level set estimation is a simpler problem than HDR reconstruction,
we will restrict to this last setting in what follows. Given a random sample Xn ∈ Sd−1 of the unknown
directional density f , plug-in methods reconstruct the 100(1 − τ)% HDR namely L( fτ) in (2) as

L̂( f̂τ) = {x ∈ Sd−1 : fn(x) ≥ f̂τ}, (3)

where f̂τ is an estimator of the threshold fτ and fn denotes a nonparametric directional density
estimator. Package HDiR implements the kernel density estimator provided in Bai et al. (1989) (d > 2).
From Xn, it is defined at a point x ∈ Sd−1 as

fn(x) =
1
n

n

∑
i=1

KvM(x; Xi; 1/h2), (4)

where KvM denotes the von Mises-Fisher kernel density and 1/h2 > 0 is the concentration parameter.

Following Bai et al. (1989), package HDiR also enables to use any kernel function (not necessarily
the von Mises-Fisher density implemented by default). An example where an uniform kernel is
considered will be presented later. Even more generally, HDiR would allow the user to define different
density estimators that the one introduced in (4). See, for instance, Pelletier (2005).

As for the concentration parameter 1/h2, it plays an analogous role to the bandwidth in the
Euclidean case. For small values of 1/h2, the density estimator is oversmoothed. The opposite effect is
obtained as 1/h2 increases. Hence, the choice of h is a crucial issue. For simplicity, in what follows, we
refer to h as bandwidth parameter. Many approaches for selecting h in practice, in circular and even
directional settings, have been proposed in the literature (see Taylor, 2008, Oliveira et al., 2012, Hall
et al., 1987, Di Marzio et al., 2011 or García-Portugués, 2013). All these existing proposals designed for
density estimation are implemented in the package NPCirc and their aim is to minimize some error
criterion on the target density. However, such a bandwidth selector may not be adequate for HDRs or
level set estimation. As far as we know, such a tool was not available in the directional setting until
the selector by Saavedra-Nieves and Crujeiras (2021b). It is also available in package HDiR. Different
plug-in estimators for HDRs emerge from the consideration of all these bandwith selectors.

For the circular and the spherical densities shown in Figure 1, now Figure 2 contains the HDR
plug-in estimators (bluish colours) for τ = 0.5 computed using cross-validation bandwidths and
samples of sizes n = 100 and n = 500, respectively. Although the theoretical circular HDR is composed
by three connected components (see Figure 1), the plug-in estimator is able to detect only the two
biggest clusters when n = 100. In order to assess the agreement of a given estimate with the theoretical
target, distances between sets are the usual tools to measure the discrepancies between the theoretical
sets and the corresponding empirical reconstructions. One of the most common distances in the
Euclidean setting is the Hausdorff distance between the boundaries of both sets.

If the target is the reconstruction of a HDR or a density level set, the Hausdorff metric is a suitable
error criterion in the directional setting (see Cuevas et al., 2006 and Cholaquidis et al., 2022). If A and
B are non-empty compact sets in the d−dimensional Euclidean space, the Hausdorff distance between
A and B is defined as follows

dH(A, B) = max

{
sup
x∈A

dE ({x}, B) , sup
y∈B

dE ({y}, A)

}
,
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Figure 2: For the circular density shown in Figure 1 (first row), L̂( f̂τ) (bluish colour) for τ = τ2 = 0.5
computed from X100 (first column) and X500 (second column). Additionally, confidence regions are
represented (dark red colour) for the second estimation. For the spherical density shown in Figure
1 (second row), L̂( f̂τ) (bluish colour) for τ = τ2 = 0.5 computed from X100 (first column) and X500
(second column).

where dE({x}, B) = infy∈B{dE(x, y)} being dE(x, y) the Euclidean distance between two points.
However, this metric dH is not completely successful in detecting shape-related differences. For
instance, two sets can be very close in Hausdorff distance and still show quite different shapes. This
typically happens where the boundaries ∂A and ∂B are far apart, no matter the proximity of A and B.
So, a natural way to reinforce the notion of visual proximity between two sets provided by Hausdorff
distance is to account also for the proximity of their respective boundaries. In particular, Hausdorff
distance between the boundaries of the theoretical HDR and its plug-in reconstruction is a measure
of the estimation error. HDiR allows to compute Euclidean and Hausdorff distances between the
frontiers of two arbitrary sets on the circle and on the sphere.

Threshold estimation and confidence regions for HDRs

For a given τ ∈ (0, 1), determining the set L( fτ) in (2) and its plug-in estimator L̂( f̂τ) in (3) involve
the exact computation and the estimation of the threshold fτ , respectively. As in the Euclidean
setting, both tasks require the use of numerical integration methods. Specifically, HDiR uses the
classical trapezoidal rule in the circular setting. However, for the spherical case, the computational cost
becomes a major issue due to the complexity of the numerical integration algorithms considered on
high dimensional spaces. It should be noted that package SphericalCubature includes some functions
for solving numerical integration over spheres. However, it does not provide sufficiently accurate
solutions for our problem.

An alternative approach is implemented in the internal function sphere.integration of HDiR.
Specifically, the proposed numerical integration procedure on the sphere requires the definition of a
triangular mesh, such as the ones depicted in Figure 3, obtained from the projection over the sphere
of triangular meshes on an embedded icosaedrum. This type of mesh guarantees that there is not a
prevailing direction. For computing the corresponding spherical integral, the Cartesian coordinates of
the mesh vertices are transformed into spherical coordinates and standard quadrature formulae are
applied in each triangle over the plane formed by the azimuthal and polar angles (see Strang and Fix,
1973).

Package HDiR additionally includes a computationally feasible approach for estimating fτ in the
circular and spherical context. As before, let X be a random vector with directional density f and
let Y = f (X) be the random vector obtained by transforming X by its own density function. Since
P( f (X) ≥ fτ) = 1 − τ, fτ is exactly the τ− quantile of Y. Saavedra-Nieves and Crujeiras (2021b)
establish that fτ can be estimated as a sample quantile from a set of independent and identically
distributed random vectors with the same distribution as Y. In particular, if Xn = {X1, · · · , Xn}
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Figure 3: 3D Cartesian meshes for numerical integration on the unit sphere S2 composed by a total of
2000 (left), 8000 (center) and 32000 (right) triangular cells.

denotes a set of independent observations in Sd−1 from a density f , { f (X1), · · · , f (Xn)} is a set of
independent observations from the distribution of Y. Let f(j) be the j−th largest value of { f (Xi)}n

i=1 so
that f(j) is the (j/n) sample quantile of Y. We shall use f(j) as an estimate of fτ . Specifically, we choose
f̂τ = f(j) where j = ⌊τn⌋. Threshold values in Figure 2 were estimated following this approach.

This estimation method presents a lower computational complexity than numerical integration
algorithms. Furthermore, it involves a statistical approximation. Therefore, it is possible to establish
confidence intervals in order to quantify uncertainty in estimates of fτ and, as direct consequence, to
establish confidence regions for HDR’s. Following Hyndman (1996), the simplest case where X is a
circular random variable is considered by Saavedra-Nieves and Crujeiras (2021b). Standard asymptotic
results for a sample in Cox and Hinkley (1979) ensure that f̂τ is asymptotically normally distributed
with mean fτ and variance τ(1 − τ)/(n[g( fτ)]2) where

g(y) = y
n(y)

∑
i=1

| f
′
(zi)|−1,

and {zi} denote those points in the sample space of X such that f (zi) = y, i = 1, 2, · · · , n(y). Figure 2
(first row, right) depicts the confidence regions obtained with package HDiR (in dark red colour) for
the circular model presented in Figure 1.

Suitable bandwidth selection for HDRs estimation

The plug-in reconstruction of the directional HDRs in (3) also involves the calculation of the kernel
density estimator in (4) that is known to be heavily dependent on the selection of h. Package HDiR
implements the proposal in Saavedra-Nieves and Crujeiras (2021b) where the first selector of h
specifically designed for HDRs reconstruction is presented. The idea is to use an error criterion
that quantifies the differences between the theoretical region and its plug-in reconstruction. In the
real-valued setting, Samworth and Wand (2010) use a similar idea in order to propose one of the first
bandwidth selectors for HDRs estimation.

The closed expression of the Hausdorff distance between the boundaries of the HDR and its plug-in
reconstruction, dH(∂L( fτ), ∂L̂( f̂τ)), is not known in the directional case. However, such a distance
could be approximated through a bootstrap procedure. With this view in mind, Saavedra-Nieves and
Crujeiras (2021b) consider a new bandwidth selector as follows:

h∗ = arg min
h>0

EB

[
dH(∂L∗( f̂ ∗τ ), ∂L̂( f̂τ))

]
, (5)

where EB denotes the bootstrap expectation with respect to random samples of points Xn = {X∗
1 , · · · , X∗

n}
generated from the directional kernel fn that, of course, requires a pilot bandwidth chosen for comput-
ing L̂( f̂τ).

3 Using HDiR

This section presents an overview of the structure of the package. HDiR (Saavedra-Nieves and
Crujeiras, 2021a) is an easy-to-use toolbox that R practitioners can use for computation or plug-in
estimation of directional highest density regions and general level sets defined on the circle and sphere.
The methods included in the package facilitate both data exploration and nonparametric estimation of
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the target regions. Functions in this library automatize the required operations for the computation of
this kind of sets. First, we will describe the real data sets included in the package. Then, the functions
available in HDiR are detailed. Of course, there exist several libraries in the CRAN repository of R
dealing with plug-in estimation of Euclidean level sets and HDRs. In particular, the library pdfCluster
(Azzalini et al., 2014) provides a routine to estimate the probability density function by kernel methods
from a set of linear data with arbitrary dimension. The main focus is on cluster analysis via kernel
density estimation according to the approach by Hartigan (1975). For modal clustering, package
LPCM (Einbeck and Evers, 2019) implements the mean-shift algorithm and Modalclust (Cheng and
Ray, 2014) performs the method for mode seeking introduced in Li et al. (2007). There are also other
packages that do not solve the task of estimate HDRs directly, but they usually allow to compute the
linear kernel density estimator and, therefore, address HDRs graphical representation (not necessarily
with an appropriate estimate). A brief summary of the capabilities of these libraries are provided
below.

• denpro (Klemelä, 2005, Klemelä, 2006, Klemelä, 2008, Klemelä, 2009, Holmström et al., 2017
and Klemelä, 2015): This library allows to visualize multivariate densities and density estimates
with level set trees and also to represent level sets with shape trees in moderate dimensional
cases. Furthermore, the kernel estimator implemented by default could be replaced by other
density estimates.

• hdrcde (Hyndman et al., 2018): This package computes Euclidean HDRs in one and two dimen-
sions. The specific HDR bandwidth selector proposed in Samworth and Wand (2010) is also
implemented. Confidence regions for one-dimensional HDRs and bivariate HDRs scatterplots
(colouring sample points according to the region in which they fall) are also available.

• lsbs (Doss and Weng, 2018): This package implements the bandwidth selector for two-dimensional
Euclidean level sets and HDRs proposed in Doss and Weng (2018). A plug-in strategy to estimate
the asymptotic risk function and minimize to get the optimal bandwidth matrix is applied.

Other packages such as sm (Bowman and Azzalini, 2018) and ks (Duong, 2007) also include tools
for kernel density estimation allowing for graphical displays of density contours in the two- and
three-dimensional Euclidean spaces. Moreover, there are many libraries in the CRAN repository for
directional data analysis but, as far as we know, none of them solves the problem of level set or HDR
reconstruction. In this section, we would like to highlight those packages including tools for kernel
density estimation, both for circular and directional data:

• circular (Agostinelli and Lund, 2013): It is an extension of the CircStats package. It provides
functions for the statistical analysis (descriptive statistics, circular models, hypothesis tests),
graphical representation and some classical circular datasets.

• Directional (Tsagris et al., 2017): A collection of functions for directional data analysis are
implemented in this library. Apart from hypothesis testing, discriminant and regression analysis,
it allows to compute the kernel density estimation for hyper-spherical data using a von Mises-
Fisher kernel.

• DirStats (García-Portugués, 2021): This library also allows to compute a kernel density estimator
and, additionally, it implements the cross-validation and plug-in bandwidth selectors in Hall
et al. (1987) and García-Portugués (2013), respectively.

• NPCirc (Oliveira et al., 2014): Nonparametric density and regression estimation methods for
circular data are included in this package. Specifically, a circular kernel density estimation
procedure is provided, jointly with different alternatives for choosing the smoothing parameter.
Based on the kernel density estimator, a SiZer technique (CircSiZer) is developed for circular
data. The package also includes functions for nonparametric circular regression.

Note also that there are other packages including tools for circular/directional data analysis. For
instance, CircStats (Lund and Agostinelli, 2012) is a companion to Jammalamadaka and Sengupta
(2001), although functions implemented in this package are also available in circular. CircNNTSR
(Fernández-Durán and Gregorio-Domínguez, 2013) provides an alternative estimation method for
circular distributions based on nonnegative trigonometric sums. isocir (Barragán et al., 2013) im-
plements some routines for analyzing angular data subjected to order constraints on a unit circle.
Finally, movMF (Hornik and Grün, 2014) is focused on mixtures of von Mises distributions, allowing
to draw random samples from these models and to proceed with parameter estimation, by using an
expectation-maximization algorithm.

Specifically, the goal of HDiR package is to provide tools for directional (circular and spherical)
general level sets and HDRs exact computation also including their plug-in estimation. This library
implements the first specific bandwidth selector devised for directional HDRs proposed in Saavedra-
Nieves and Crujeiras (2021b), but it also allows directly user-defined bandwidth selection and to use the
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Dataset Description
earthquakes Geographical coordinates (latitude and longitude) of earthquakes

of magnitude greater than or equal to 2.5 degrees between Octo-
ber 2004 and April 2020

sandhoppers Orientation of two sandhoppers species, Talitrus saltator and Ta-
lorchestia brito under different natural conditions

Function Description
circ.boot.bw Circular bootstrap bandwidth for HDRs estimation
circ.distances Euclidean and Hausdorff distances between two sets of points on

the unit circle
circ.hdr Computation of HDRs and general level sets for a given circular

real-valued function
circ.plugin.hdr Circular plug-in estimation of HDRs and level sets and confiden-

ce regions
circ.scatterplot Circular scatterplot for plug-in HDRs
dspheremix Density functions for mixtures of spherical von Mises-Fisher
rspheremix Random generation functions for mixtures of spherical von Mises-

Fisher
sphere.boot.bw Spherical bootstrap bandwidth for HDRs estimation
sphere.distances Euclidean and Hausdorff distances between two sets of points on

the unit sphere
sphere.hdr Computation of HDRs and general level sets for a given spherical

real-valued density
sphere.plugin.hdr Spherical plug-in estimation of HDRs and level sets
sphere.scatterplot Spherical scatterplot for plug-in HDRs

Table 1: Summary of HDiR package contents.

existing directional bandwidth selection methods devised for kernel density estimation. Additionally,
two alternative methods for estimating the threshold fτ (based on the proposal in Hyndman, 1996
and numerical integration methods, respectively) are developed. Moreover, confidence regions for
circular HDR are also available and can be depicted for illustration. Two exploratory tools are also
implemented. The first one is a scatterplot computed from HDRs plug-in reconstructions. Sample
points are coloured according to the directional HDRs in which they fall. Finally, Euclidean and
Hausdorff distances between sets can be also computed. Their roles are crucial to measure the
distances between directional clusters or, for instance, to quantify the estimation error between the
theoretical HDRs and the corresponding plug-in estimators.

A complete description of the HDiR package capabilities is provided in this section. The complete
list of functions, illustrative density models (density functions and random sample generation) and
the two novel datasets available in HDiR, with a brief description, can be seen in Table 1.

Data description

The package HDiR includes a circular and a spherical datasets, used for the illustration of the different
functions. The first dataset, sandhoppers, contains the orientation angles (in radians between 0 and
2π) of two species of sandhoppers, Talitrus saltator and Talorchestia brito. Orientation was measured
under natural conditions on the exposed nontidal sand of Zouara beach located in the Tunisian
northwestern coast. Additionally, other variables of interest for analyzing the behavioral plasticity
of both species were also registered. For instance, information on the month, the time of the day, the
temperature, the air relative humidity or the sex of each animal is also available. This dataset was
already analyzed in Scapini et al. (2002) and Marchetti and Scapini (2003). Specifically, the behavior of
these two species is compared through regresion procedures. Scapini et al. (2002) conclude that Talitrus
saltator showed more differentiated orientations, depending on the time of day, period of the year and
sex, with respect to Talorchestia brito. As an illustration, Saavedra-Nieves and Crujeiras (2021b) also
study the behavior of these two species of sandhoppers under the HDR estimation approach.

The second dataset, earthquakes, contains the geographical coordinates (latitude and longitude)
of earthquakes of magnitude greater than or equal to 2.5 degrees on the Richter scale registered on
Earth between 1st October 2004 and 9th April 2020. It can be downloaded from the website of the
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European-Mediterranean Seismological Centre (EMSC)1. The planar points included in the dataset
correspond to spherical coordinates on Earth. Due to the important damages that earthquakes of a
certain intensity may cause, cluster detection of HDRs could be also useful to identify, from a real
dataset, where earthquakes are specially likely. This information is crucial for decision-making, for
example, to update construction codes guaranteeing a better building seismic-resistance. Saavedra-
Nieves and Crujeiras (2021b) also analyze the recent world earthquakes distribution through HDRs
estimation from this dataset. Results shows that the greatest mode of sample distribution is identified
in the Southeast of Europe. Countries such as Italy, Greece or Turkey (located within this cluster) are,
as expected, the most affected areas in the analyzed period. The second dataset, earthquakes, contains
the geographical coordinates (latitude and longitude) of earthquakes of magnitude greater than or
equal to 2.5 degrees on the Richter scale registered on Earth between 1st October 2004 and 9th April
2020. It can be downloaded from the website of the European-Mediterranean Seismological Centre
(EMSC)2. The planar points included in the dataset correspond to spherical coordinates on Earth.
Due to the important damages that earthquakes of a certain intensity may cause, cluster detection of
HDRs could be also useful to identify, from a real dataset, where earthquakes are specially likely. This
information is crucial for decision-making, for example, to update construction codes guaranteeing
a better building seismic-resistance. Saavedra-Nieves and Crujeiras (2021b) also analyze the recent
world earthquakes distribution through HDRs estimation from this dataset. Results shows that the
greatest mode of sample distribution is identified in the Southeast of Europe. Countries such as Italy,
Greece or Turkey (located within this cluster) are, as expected, the most affected areas in the analyzed
period.

Spherical density models

Functions dspheremix and rspheremix allow to compute density functions and to generate data from
the spherical distributions introduced in Saavedra-Nieves and Crujeiras (2021b). These densities
represent a variety of complex structures showing multimodality and/or asymetry. Any user of
package HDiR could use them for simulations or even for illustration purposes.

Function dspheremix computes the density function of 9 different spherical distributions that
can be written as finite mixtures of spherical von Mises-Fisher. Function rspheremix is designed
for random data generation from these 9 spherical models. Both functions have an argument called
model which allows to specify a model (a number between 1 and 9) among the ones considered in
Saavedra-Nieves and Crujeiras (2021b). The other inputs of dspheremix and rspheremix are x and
n, respectively. x represents a matrix whose rows collect to points on the unit sphere (in Cartesian
coordinates) and n denotes the number of observations to be randomly generated.

Specifically, model number 9 corresponds to the spherical density shown in Figure 1. For instance,
the evaluation of this density on the north pole (0, 0, 1) and the south pole (0, 0,−1) can be easily
obtained by:

> data <- rbind(c(1, 0, 0), c(0, 0, 1))
> dspheremix(x = data, model = 9)
[1] 0.0009079986 7.0233299246

Output of this example with dspheremix is a numeric vector containing the density values on both
poles. Additionally, 100 random deviates from the same model can be obtained, fixing set.seed(1) as
in the rest of examples throughout this work, by:

> rspheremix(n = 100, model = 9)
[,1] [,2] [,3]

[1,] 0.254793394 -0.186993591 0.948743233
[2,] 0.227755936 0.896600223 0.379783194
[3,] -0.227024808 0.516581111 0.825592934
[4,] 0.125075316 0.960536966 -0.248444967

Output of function rspheremix is a matrix of dimension n × 3 where each row corresponds to the
Cartesian coordinates of a point generated on the unit sphere. For this example, the output is partially
shown (only four of one hundred sample points are printed).

Computation of HDRs and general level sets with HDiR

Functions circ.hdr and sphere.hdr must be considered when the objective is to compute theoretical
density level sets or HDRs from a fully known circular and spherical density f , respectively. However,

1European-Mediterranean Seismological Centre: www.emsc-csem.org.
2European-Mediterranean Seismological Centre: www.emsc-csem.org.
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they could be also used for exact computation or plug-in estimation of general level sets when f is any
(circular or spherical) real-valued function. In particular, level sets of a theoretical regression curve
could be determined.

The basic arguments of function circ.hdr that the user must provide are the circular (not neces-
sarily a density) function f and, depending on the set to be computed (a level set or a HDR), level or
tau must be indicated. It is worth to mention that level represents the value of t in (1) and 1-tau, the
probability coverage required for HDR computation in (2). Note that tau must be specified only when
f is a density. Otherwise, fixing the probability content of the level set makes no sense. Additionally, a
graphical display is generated with different plot arguments (col, lty, shrink, · · · ). If no graphical
representation is required, it is enough to consider plot.hdr=FALSE (by default plot.hdr=TRUE).

If level is specified, the output is a list with two components: levelset, a matrix where each row
contains the boundaries (in radians) of each connected component of the level set and level, the input
level or a character indicating if the level set is equal to the empty set or the support distribution.
If tau is provided, the output is also a list with the next components: hdr, a matrix where each
row contains the boundaries (in radians) of each connected component of the HDR; prob.content,
probability coverage 1-tau and level, threshold of the HDR computed by numerical integration
methods.

An example with the code lines in order to computing a level set (second code line) and a HDR
(third code line) for the circular density represented in Figure 1 is given below. This circular density
is the model 13 implemented in the package NPCirc. Therefore, it is necessary to install this library
before executing the following code.

> f <- function(x){return(dcircmix(x, 13))}
> circ.hdr(f, level = 0.35)
$levelset

[,1] [,2]
[1,] 0.3301974 0.6698291
[2,] 2.8271189 3.1730400
[3,] 4.9089351 5.0913298
$level
[1] 0.35
> circ.hdr(f, tau = 0.5)
$hdr

[,1] [,2]
[1,] 0.2232764 0.7767501
[2,] 2.7201978 3.2799611
[3,] 4.8523298 5.1479351
$prob.content
[1] 0.5
$level
[1] 0.3024789

From the outputs obtained, some conclusions on the number of connected components can be extracted.
HDR computed when τ = 0.5 has exactly three connected components with boundaries fully detailed
in the element hdr of the obtained list. Density level set with threshold 0.35 is slightly different but the
information in levelset also shows the existence of three connected components.

As for function sphere.hdr, argument f is now a spherical real-valued function. Again, f may not
be a density. The other basic arguments level, tau and plot.hdr coincide with the usage description
for function circ.hdr. Additionally, the user can specify two parameters related to the estimated
boundary or to the numerical integration possibilities on the unit sphere to calculate the HDRs
threshold. In particular, nborder indicates the maximum number of boundary points to be represented
and tol, the tolerance parameter used to determinate the boundary. Two extra parameters control the
numerical integration procedure, when required. Argument mesh indicates the number of vertices on
each edge of the embedded icosaedrum (reproducing the meshes in Figure 3). Possible values of this
argument are 10, 20 and 40, corresponding with 2000, 8000 and 32000 triangular cells on the sphere,
respectively. Quadrature formulae on the triangles are possible with different degrees, controlled by
deg, with values ranging from 0 up to 6.

An example with the code lines in order to compute a level set (second line) and a HDR (third line)
for the spherical density represented in Figure 1 is presented in what follows:

> f <- function(x){return(dspheremix(x, model = 9))}
> sphere.hdr(f, level = 0.1, mesh = 10, deg = 3)
> sphere.hdr(f, tau = 0.5, mesh = 10, deg = 3)

Outputs are similar to those presented for function circ.hdr. Again, levelset and hdr are matrices of
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rows of points (in Cartesian coordinates) on the level set and HDR boundaries, respectively. Moreover,
it is worth to mention that execution time of sphere.hdr is considerably higher when tau is set instead
level because, in this case, threshold estimation via numerical integration methods is required.

Plug-in estimation of HDRs and general level sets with HDiR

The HDiR package contains the implementation of density plug-in methods in order to estimate
HDRs. Furthermore, it also enables plug-in estimation of general level sets.

Basic plug-in estimation of HDRs and density level sets

Function circ.plugin.hdr allows to reconstruct density level sets or HDRs from the kernel estimator
described in (4). The arguments tau, level and plot.hdr have basically the same description for func-
tion circ.hdr. The argument sample denotes a numeric vector of angles (in radians) corresponding to
the sample of points Xn. The smoothing parameter to be used for kernel density estimation is denoted
through bw. Its value could be directly established by the user. Following Oliveira et al. (2014), it
could be also chosen by using the classical functions bw.rt, bw.CV, bw.pi or bw.boot in NPCirc (by
default bw=bw.CV(circular(sample)) providing a cross-validation bandwidth). The previous options
are designed for density estimation. An appropriate bandwidth for HDR estimation can be obtained
using circ.boot.bw. The argument tau.method is a character value selecting the rule to estimate the
HDRs threshold. This must be one of "quantile" or "trapezoidal". The default option estimates
the threshold using the quantile method proposed in Hyndman (1996); the second one, using the
trapezoidal rule for numerical integration. The confidence for limits on HDR are established from
conf that is a numeric probability that takes the value conf=0.95 by default. Finally, plot.hdrconf is
a logical string. If plot.hdr=TRUE and plot.hdrconf=TRUE (default options), the confidence region for
the estimated HDR is added to the estimation graphical representation. The argument boot is a logical
string. If TRUE, confidence regions are not computed. Its name is due to this option is only used by
function circ.boot.bw for reducing the execution time. Default boot=FALSE.

If level is specified, the output is a list with four components: levelset, a matrix where each row
contains the boundary (in radians) of a connected component of the level set or a character indicating if
the HDR is equal to the empty set or the support distribution; prob.content, the empirical probability
coverage of the set; level indicates the level of the level set and bw, the value of the smoothing
parameter. If tau is provided, the output is a list with the next components: hdr, a matrix where each
row contains the boundary (in radians) of a connected component of the level set; prob.content, the
probability coverage 1-tau; level, the estimated threshold; bw, the numeric value of the smoothing
parameter used; hdr.lo and hdr.hi, HDRs corresponding to lower and upper confidence limits,
respectively; threshold.lo and threshold.hi the corresponding thresholds.

For example, the circular confidence regions in Figure 2 can be obtained from the next code lines:

> sample <- rcircmix(500, 13)
> circ.plugin.hdr(sample, tau = 0.5, plot.hdrconf = TRUE, k = 2, col = "blue")
$hdr

[,1] [,2]
[1,] 0.1478027 0.6761185
[2,] 2.6761715 3.2736716
[3,] 4.9403824 5.1542246
$prob.content
[1] 0.5
$level

50%
0.2952482
$bw
[1] 64.62809
$hdr.lo

[,1] [,2]
[1,] 0.1226448 0.7327238
[2,] 2.6447241 3.3114085
[3,] 4.9089351 5.1793825
$level.lo

50%
0.2762859
$hdr.hi

[,1] [,2]
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[1,] 0.179250 0.6320922
[2,] 2.713908 3.2422243
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Figure 4: Theoretical (dark red colour) and estimated HDRs (left, bluish colours) from a random
sample of size 500 when τ = 0.8 using a cross-validation bandwidth and the specific bandwidth for
spherical HDR reconstruction (left). Estimated HDRs from a random sample of size 500 using the
specific bandwidth for spherical HDR reconstruction (center) and a cross-validation bandwidth (right)
when τ = 0.8.

[3,] 4.984409 5.1164877
$level.hi

50%
0.3142105

Specifically, hdr.lo and hdr.hi in the output list contain the matrices whose rows correspond to
the boundaries (in radians) of the connected components of lower and upper confidence regions,
respectively. For this example, both regions have three connected components. Additionally, level.lo
and level.hi contain the thresholds of both confidence sets.

The specific bandwidth for circular HDRs estimation described in Saavedra-Nieves and Crujeiras
(2021b) can be computed from function circ.boot.bw. As in the previous circular functions described,
the argument sample is a numeric vector of angles (in radians) representing Xn and tau corresponds
to the probability coverage 1-tau of the HDR to be reconstructed. The pilot smoothing parameter
used is bw. Default bw=bw.CV(circular(sample),upper = 100). As before, its value could be chosen
by using the classical functions bw.rt, bw.CV, bw.pi or bw.boot in NPCirc. The number of bootstrap
resamples is denoted by B (by default B=50) and upper is the numerical upper value for bounding
the optimization procedure (by default 1.5bw). The output of this function is a single numeric value
corresponding to the selected smoothing parameter.

The following code lines show how to determine both bandwidths for the circular sample previ-
ously generated. Output shows that cross-validation selector takes a larger value than the proposal in
Saavedra-Nieves and Crujeiras (2021b).

> bw.CV(sample, upper = 100); circ.boot.bw(sample, tau = 0.8, B = 2)
[1] 64.62809
[1] 37.06194

Function sphere.plugin.hdr is designed to estimate spherical HDRs or density level sets from
the kernel estimator described in (4). The arguments tau, level, plot.hdr, nborder, tol, mesh and
deg have the same description as for function sphere.hdr. The pilot smoothing parameter used is
bw that, by default, is bw="none" selecting a cross-validation bandwidth. Although other options are
possible. For instance, bw can be a numeric value o also bw="rot" allows to consider the rule of thumb
suggested by García-Portugués (2013). The value of bw could be also selected directly by the user. The
argument ngrid sets the resolution of the density calculation (by default ngrid=500).

If level is provided, the output is also a list with four components: levelset, a matrix of rows
of points ( on the HDR boundary; prob.content, the empirical probability coverage of the set 1-tau;
level, the level of the HDR and bw, the value of the smoothing parameter. If tau is an input, the output
of sphere.plugin.hdr is a list with the following components: hdr, a matrix of rows of points on the
HDR boundary; prob.content, probability coverage 1-tau and level, threshold or level associated
to the probability content 1-tau. The threshold fτ is computed through the algorithm proposed in
Hyndman (1996). Numerical integration is not considered here in order to reduce the computation
time.

The spherical HDRs estimators in Figure 2 can be reproduced through the next code lines:

> sample <- rspheremix(500, model = 9)
> sphere.plugin.hdr(sample, tau = 0.5, nborder = 2000)

The first specific bandwidth for spherical HDRs estimation described in Saavedra-Nieves and
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Crujeiras (2021b) can be computed from function sphere.boot.bw. As in the previous spherical
functions described, the argument sample is a matrix whose rows represent points on the unit sphere
(in Cartesian coordinates) and tau corresponds to the probability coverage 1-tau of the HDR to be
reconstructed. The pilot smoothing parameter bw (default bw="none") is chosen using cross-validation,
although it may be set to a numeric value or bw="rot", allowing to select the rule of thumb suggested
by García-Portugués (2013). The argument B denotes again the number of bootstrap resamples that
(default B=50) and upper is the numerical upper value for bounding the optimization procedure
(default 1.5bw). The output of this function is a single numeric value corresponding to the selected
smoothing parameter.

The following code lines contain a simulated example where the cross-validation bandwidth and
the proposal in Saavedra-Nieves and Crujeiras (2021b) provide HDR estimations which look quite
different for the spherical model 8 in HDiR. Figure 4 shows the graphical representations of the
theoretical HDR to be estimated when τ = 0.8 (dark red colour) and the corresponding reconstructions
(bluish colours) obtained from a random sample of size 500. In this case, the specific bandwidth for
spherical HDRs reconstruction takes the value 0.28 while the cross-validation bandwidth is equal to
0.20.

> sample <- rspheremix(500, model = 8)
> bw.boot <- sphere.boot.bw(sample, bw = "rot", tau = 0.8, B = 2)
> sphere.plugin.hdr(sample, bw = bw.boot, tau = 0.8)
> sphere.plugin.hdr(sample, bw = "none", tau = 0.8)

Finally, it is important to note that function sphere.plugin.hdr for reconstructing spherical HDR’s
calls vmf.kerncontour in package Directional to compute the density on a grid on the sphere. Most of
the computational work in this function is in estimating the density using vmf.kerncontour. Hence,
the speed of this function depends largely on the speed of vmf.kerncontour. A similar situation
occurs for function sphere.boot.bw where function sphere.plugin.hdr is called (B + 1) times where
B indicates the number of bootstrap resamples.

Plug-in estimation of HDRs and density level sets from an arbitrary density estimator

Density estimators different from the one introduced in (4) could be naturally considered for plug-in
estimation of HDRs or level sets. Functions circ.hdr and sphere.hdr in package HDiR allow to
consider this option in the circular and spherical settings, respectively.

Next, an example with the code lines in order to determine a spherical HDR plug-in reconstruction
(sixth line) from the kernel density estimator in Bai et al. (1989) with uniform kernel is shown.

> f <- function(x){
sample <- rspheremix(500, model = 3)
return(kde_dir(x, data = sample, h = 0.4,
L = function(x) dunif(x)))

}
> sphere.hdr(f, level = 0.3)
$levelset

[,1] [,2] [,3]
[1,] 0.3587511132 -0.159961736 0.9196249
[2,] -0.4523490796 0.077542650 0.8884635
[3,] -0.4588831000 0.060463844 0.8864369
[4,] 0.2455354599 -0.291602658 0.9244892

$level
[1] 0.3

An spherical density estimator with uniform kernel is available in package DirStats. Before level set
plug-in estimation, it is necessary to install this library in order to define the kernel estimator, in this
example, from a sample of size 500 of model 3 in HDiR (lines from 1 to 5). The output contains a
matrix of points on the boundary of the plug-in estimator in levelset. Note that only the first four
points are printed in the example. The value of the threshold 0.3 considered for reconstruction is also
shown in level.

Furthermore, if the considered density estimator for plug-in estimation is also a density function,
argument tau in circ.hdr and sphere.hdr could be used.
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Figure 5: In the first column, the black dotted line represents the Hausdorff distance between ∂L( fτ)
(blue colour) and ∂L̂( f̂τ) (red colour) for the circular density shown in Figure 1 when τ = 0.5. In
the second and third columns, scatterplots showing L̂( f̂τi ) (i = 1, 2, 3) for the circular and spherical
densities contained in Figure 1 when τ1 = 0.2, τ2 = 0.5 and τ3 = 0.8. The circular scatterplot was
computed from X100 and the spherical scatterplot from X1000.

Plug-in estimation of general level sets

A generalisation of the approach in Cuevas et al. (2006), for general level sets, to the directional setting
can be performed in practice with HDiR. Again, functions circ.hdr and sphere.hdr address this
problem for circular and sperical data, respectively.

Next, an example with the code lines in order to obtain the plug-in estimator of a regression
curve (eighth line) with circular explanatory (x) variable and linear response (y). In this case, the
regression curve is estimated through the Nadaraya-Watson estimator implemented in NPCirc. Here,
it is computed from a sample of size 100 of variables x and y (lines from 1 to 7).

> f <- function(t){
n <- 100
x <- runif(n, 0, 2*pi)
y <- sin(x)+0.5*rnorm(n)
return(kern.reg.circ.lin(circular(x), y, t, bw = 10, method = "NW")$y)
}

> circ.hdr(f, level = 0.5, plot.hdr = FALSE)
$levelset

[,1] [,2]
[1,] 0.4748553 2.757935
$level
[1] 0.5

Output in levelset contains the boundary (in radians) of the only connected component for the
reconstructed regression level set.

Exploring data with HDiR

This section introduces a brief background on the design of two exploratory tools included in HDiR:
distances between sets and circular/spherical scatterplots.

Distances between sets are a useful tool when the target is the reconstruction of a set. In particular,
the Hausdorff distance can be seen as a suitable error criterion also in the directional setting. Addi-
tionally, it could be also used for measuring the distances between modes or clusters of two different
populations. Figure 5 (first column) represents, through a black dashed line, the Hausdorff distance
between ∂L( fτ) (blue colour) and ∂L̂( f̂τ) (red colour) for the circular density shown in Figure 1 when
τ = 0.5. Note that the maximum value of this error criterion is 2, the diameter of the unit circle. In this
example, the Hausdorff estimation error that is equal to 1.38 is remarkably high.

Function circ.distances computes the Euclidean and Hausdorff distances between two sets of
points in S1. Its inputs are x and y, two numeric vectors of angles (in radians) determining both sets of
points. The output is a list with two components: dE, a numeric value corresponding to the Euclidean
distance, and dH, another numeric value corresponding to the Hausdorff distance.
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Specifically, if x and y correspond to two HDRs boundaries, this function returns the distances
between the circular HDRs frontiers. In particular, for the example in Figure 5 (left), the distances
between ∂L(τ) and ∂L̂( f̂τ) can be computed from the next code lines:

> sample <- rcircmix(100, 13)
> f <- function(x){return(dcircmix(x, 13))}
> circ.distances(as.numeric(circ.hdr(f, tau = 0.5)$hdr),

+ as.numeric(circ.plugin.hdr(sample, tau = 0.5)$hdr))
$dE
[1] 0.04402277
$dH
[1] 1.37933

The results obtained show that the Euclidean distance is considerably smaller than the Hausdorff
distance that, as we mention before, takes the value 1.38.

Function sphere.distances also determines the Euclidean and Hausdorff distances but, in this
case, between two sets of points on S2. Now, the inputs x and y are two matrices whose rows
represent points on the unit sphere (in Cartesian coordinates). The output of this function has the
same organization as the output of circ.distances and it also allows to compute distances between
spherical HDRs frontiers.

Distances between ∂L̂( f̂τ2 ) and ∂L̂( f̂τ3 ) represented in Figure 5 (right) can be computed from the
next code lines:

> sample = rspheremix(1000, model = 9)
> x <- sphere.plugin.hdr(sample, tau = 0.8, plot.hdr = FALSE)$hdr
> y <- sphere.plugin.hdr(sample, tau = 0.5, plot.hdr = FALSE)$hdr
> sphere.distances(x, y)
$dE
[1] 0.08600028
$dH
[1] 0.258705

The performance of the specific bandwidth for HDR estimation introduced in Saavedra-Nieves
and Crujeiras (2021b) can be also illustrated through the consideration of the Hausdorff distance
in the example shown in Figure 4. Specifically, the value of the Hausdorff distance between the
theoretical HDR and the reconstruction computed from the bandwidth proposed in Saavedra-Nieves
and Crujeiras (2021b) is 0.20. However, the Hausdorff distance increases considerably, taking the
value 0.36, when it measures the discrepancies between the theoretical HDR and the corresponding
estimator obtained from a cross-validation approach.

Additionally, scatterplots are useful to identify the estimated directional HDRs in which sample
points fall. This graphical tool is computed as follows. Given several values τ1, · · · , τk ∈ (0, 1) (k ≥ 1)
and a random sample of points Xn, the estimated HDRs L̂( f̂τ1 ), · · · , L̂( f̂τk ) are represented using
different colours jointly with the subset of sample points belonging to each of them. Figure 5 (second
and third columns) displays the scatterplots for τ1 = 0.2, τ2 = 0.5 and τ3 = 0.8 for the circular and the
spherical densities shown in Figure 1. They were calculated from random samples of sizes n = 100
and n = 1000, respectively.

Function circ.scatterplot produces a circular scatterplot with points coloured according to the
HDRs in which they fall. Apart from the argument tau that represents a numeric vector of probabilities
and plot.density that is a logical string indicating if the kernel density estimator is added to the
scatterplot (default plot.density=TRUE), the other inputs (sample, bw and tau.method) have the same
description for circular functions. The output is a scatterplot and also a list where the number of
components is equal to the number of estimated HDR or, equivalently, to the length of tau vector.
Each component contains the sample points in each HDR from the smallest value of tau to the largest
one.

Next code lines allow to obtain a circular scatterplot computed from a circular sample of size 100
as the shown in Figure 5 (second column).

> sample<- rcircmix(100, model = 13)
> circ.scatterplot(sample, tau = c(0.2, 0.5, 0.8))

Spherical scatterplots can be represented from function sphere.scatterplot. Again, apart from
tau that is a vector of probabilities, the description of the remaining parameters coincides with the
rest of spherical functions. The output provides a scatterplot and, as in the circular case, a list where
the number of components is equal to the number of estimated HDR containing the corresponding
sample points from the smallest value of tau to the biggest one.
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Figure 6: Plug-in estimations of HDRs (gray colour) with cross-validation bandwidth, when τ = 0.8,
for females (left) and males (center) of the species Talorchestia Brito when the orientation is registered
in morning during October. Plug-in estimation of HDR (gray colour) with specific bandwidth h∗,
when τ = 0.8, for males (right) of the species Talorchestia Brito when the orientation is registered in
morning during October.

As an illustration, the spherical scatterplot shown in Figure 5 (third column) could be computed
from the next code lines:

> sample <- rspheremix(1000, model = 9)
> sphere.scatterplot(sample, tau = c(0.2, 0.5, 0.8))

Real data analysis with HDiR

Datasets sandhoppers and earthquakes included in HDiR are used next to illustrate briefly the usage
of the set of functions previously described in the circular and spherical settings, respectively.

Figure 6 shows the estimated HDRs established in (3), when τ = 0.8, for female (left) and male
sandhoppers (right) of the species Talorchestia Brito when the orientation is registered in the morning
during October. The largest modes of both distributions are located in completely different directions,
indicating that variable sex is a factor with influence on the sandhoppers behavior. The code lines
used are presented:

> data(sandhoppers)
> attach(sandhoppers)
> britoF <- angle[(species == "brito")&(time == "morning")&(sex == "F")

+ &(month == "October")]
> circ.plugin.hdr(sample = britoF, tau = 0.8, plot.hdrconf = FALSE)
> britoM <- angle[(species == "brito")&(time == "morning")&(sex == "M")

+ &(month == "October")]
> circ.plugin.hdr(sample = britoM, tau = 0.8, plot.hdrconf = FALSE)

According to Figure 6, no remarkable differences exist between the HDRs reconstructions for males
using a cross-validation bandwidth (center) and the proposal h∗ in Saavedra-Nieves and Crujeiras
(2021b) (right). However, these smoothing parameters are quite different, taking values 33.86 and
19.47, respectively. For the subset of females, differences between smoothing parameters are smaller
(5.78 and 3.39, respectively). Next, code lines show how to determine both bandwidths for the group
of males (fist line) and females (second line).

> bw.CV(britoM); circ.boot.bw(britoM, tau = 0.8)
> bw.CV(britoF); circ.boot.bw(britoF, tau = 0.8)

As an example with the dataset earthquakes in Figure 7, we show the estimated HDR defined
in (3) for τ = 0.8. The largest mode of the earthquakes distribution is located in Southeast Europe.
Note that it is necessary to install the packages Directional, ggplot2, maps and mapproj previously to
obtain this figure.

> data(earthquakes)
> hdr <- as.data.frame(euclid.inv(sphere.plugin.hdr(euclid(earthquakes), tau = 0.8,

+ plot.hdr = FALSE)$hdr))
> world <- map_data("world")
> g.earthquakes <- ggplot()+
> geom_map(data = world, map = world, mapping = aes(map_id = region),

+ color = "grey90", fill = "grey80")+
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Figure 7: Contours of plug-in HDRs for τ = 0.8 obtained from the sample of world earthquakes
registered between October 2004 and April 2020 with cross-validation bandwidth (left) and with the
specific bandwidth for spherical HDRs reconstruction (right).

> geom_point(data = earthquakes, mapping = aes(x = Longitude,
+ y = Latitude), color = "red", alpha = 0.2, size = 0.75, stroke = 0)+

> geom_point(data = hdr, mapping = aes(x = Long, y = Lat),
+ color = "darkblue", size = 1)+

> scale_y_continuous(breaks = NULL, limits = c(-90, 90))+
> scale_x_continuous(breaks = NULL, limits = c(-180, 180))+
> coord_map("mercator")
> g.earthquakes

The value of the bandwidth proposed in Saavedra-Nieves and Crujeiras (2021b) for earthquakes
dataset with tau=0.8 and B=5 bootstrap resamples is 0.09 and it can be obtained from the next
code line. In this particular case, Figure 7 shows that there is not a large differences between the
HDRs reconstructed from cross-validation bandwidth (left) and the proposal in Saavedra-Nieves and
Crujeiras (2021b) (right).

> sphere.boot.bw(euclid(earthquakes), tau = 0.8, B = 5)

Once the HDRs estimation has been performed for different values of τ, Euclidean and Hausdorff
distances between the blue and red contours in Figure 7 are useful to analyse differences between
them. For the previous example, distances can be computed from the following code lines. Note that
the value of the bandwidth in Saavedra-Nieves and Crujeiras (2021b) has been directly inserted as an
argument in the fourth line. Values obtained for Euclidean and Hausdorff distances are 0 and 0.02,
respectively.

> hdr1 <- sphere.plugin.hdr(euclid(earthquakes), tau = 0.8, plot.hdr = FALSE)$hdr
> hdr2 <- sphere.plugin.hdr(euclid(earthquakes), bw = 0.09, tau = 0.8,

+ plot.hdr = FALSE)$hdr
> sphere.distances(hdr1, hdr2)

Apart from distances between HDRs, scatterplots are another powerful exploratory tool imple-
mented in HDiR. For the sandhoppers dataset, Figure 8 shows the circular scatterplots for τ = 0.2, 0.5
and 0.8 for females (left) and males (center) of the species Talorchestia Brito when the orientation is
registered in the morning during October when τ = 0.2, 0.5 and 0.8. They can be obtained from the
following code:

> circ.scatterplot(britoF, tau = c(0.2, 0.5, 0.8))
> circ.scatterplot(britoM, tau = c(0.2, 0.5, 0.8))

Spherical scatterplots for earthquakes dataset when τ = 0.2, τ = 0.5 and τ = 0.8 can be computed
from the following code line. The function euclid allows to transforms the data to geographical
coordinates (longitude and latitude) on Cartesian coordinates. Remark that the smoothing parameter
is selected by using the rule of thumb proposed in García-Portugués (2013).

> sphere.scatterplot(euclid(earthquakes), tau = c(0.2, 0.5, 0.8), bw = "rot",
+ nborder = 1500)

4 Discussion

HDiR has been mainly developed for facilitating the reconstruction of directional (circular and
spherical) HDRs and density level sets, following a nonparametric plug-in approach. However, it
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Figure 8: Circular scatterplots computed for τ = 0.2, 0.5 and 0.8 from samples of females (left) and
males (center) of the species Talorchestia Brito when the orientation is registered in morning during
October.

also allows to solve the computation and the plug-in estimation of level sets for general real-valued
functions, such as a regression curve. As consequence, plug-in reconstruction of HDRs could be
performed by considering a different density estimator than the one implemented by default in HDiR.

The implemented tools are accessible for the scientific community, enabling their usage in practical
problems such as the exploration of modes or the approximation of the distribution effective support.
As previously noted, level set computation is also useful for determining distribution clusters, a task
that can be accomplished by the identification of the connected components from a plug-in level set
estimator.

Up to the authors’ knowledge, HDiR is the only statistical package that allows to estimate (circular
and spherical) HDRs and general level sets. For HDRs reconstruction, HDiR also implements the
first specific selector for HDRs estimation in this context, proposed in Saavedra-Nieves and Crujeiras
(2021b). Additionally, it offers graphical exploratory tools such as HDRs scatterplots that allow to
visualize HDRs of a distribution taking into account different probability contents. Similarities or
discrepancies between them could be measured through the Hausdorff distance also implemented in
HDiR.

Future extensions of the HDiR package could include the estimation of level sets and HDRs in other
supports, involving a circular or a spherical component, such as the torus or the cylinder. In addition,
new specific bandwidths for HDR estimation could be implemented. A variety of bandwidths selectors
emerge from the consideration of different distances in (5). Finally, cluster definition in Hartigan
(1975) deserves to be exploited in the directional setting, for instance, by implementing cluster trees
for hyperspherical data.
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