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The R Package HDSpatialScan for the
Detection of Clusters of Multivariate and
Functional Data using Spatial Scan
Statistics
by Camille Frévent, Mohamed-Salem Ahmed, Julien Soula, Zaineb Smida, Lionel Cucala, Sophie
Dabo-Niang and Michaël Genin

Abstract This paper introduces the R package HDSpatialScan. This package allows users to easily
apply spatial scan statistics to real-valued multivariate data or both univariate and multivariate
functional data. It also permits plotting the detected clusters and to summarize them. In this article the
methods are presented and the use of the package is illustrated through examples on environmental
data provided in the package.

1 Introduction

Spatial cluster detection methods are useful tools for objective detection and localization of statistically
significant aggregation of events indexed in space. Examples of the applications of these methods are
numerous: in the field of epidemiology, these methods allow epidemiologists to detect spatial clusters
of disease cases and to formulate etiological hypotheses; in the environmental sciences, researchers
can be led to search for particularly polluted geographical areas, either by one pollutant in particular
or by several pollutants simultaneously. In astronomy, researchers may want to identify star clusters
from telescope image data.

Several cluster detection methods have been proposed in the literature. In particular, spatial scan
statistics (originally proposed by Kulldorff and Nagarwalla (1995) and Kulldorff (1997) for Bernoulli
and Poisson models) are powerful methods for detecting statistically significant spatial clusters, which
can be defined by an aggregation of sites presenting an abnormal concentration (mean, etc) of an
observed variable, with a variable scanning window and in the absence of pre-selection bias (objective
detection of the cluster). Following on from Kulldorff’s initial work, several researchers have adapted
spatial scan statistics to other spatial data distributions: exponential (Huang et al., 2007), ordinal
(Jung et al., 2007), normal (Kulldorff et al., 2009), Weibull (Bhatt and Tiwari, 2014), etc. Others use
nonparametric approaches such as Jung and Cho (2015) and Cucala (2016) who respectively extend
the Wilcoxon-Mann-Whitney test for spatial scan statistics and for temporal or spatial scan statistics.
Note that in the case of spatial data the two approaches are equivalent by generalizing the method of
Jung and Cho (2015) to detect either high or low clusters.

The applications of scan statistics are numerous. In the field of epidemiology, Khan et al. (2021)
detected significant clusters of diabetes incidence in Florida between 2007 and 2010, which will help
guide local health policies. Marciano et al. (2018) sought to detect spatial clusters of leprosy incidence
in a hyperendemic Brazilian municipality between 2000 and 2005 and 2006 and 2010. The study
showed a high percentage of contact between people which facilitates the transmission of the disease.
Genin et al. (2020) detected high-risk clusters of Crohn’s disease in France over the period 2007-2014.
As the causes of this disease are still poorly understood, the detection of spatial clusters of Crohn’s dis-
ease allows the researchers to make hypotheses on possible risk factors, such as high-social deprivation
or high urbanization. In the context of environmental science, the detection of clusters of symptomatic
exposure to pesticides in rural areas (Sudakin et al., 2002) would allow the monitoring and prevention
of pesticide-related diseases. Gao et al. (2014) focused on the presence of iodine in drinking water
in Shandong Province, China. The detection of spatial clusters of iodine presence in drinking water
allows an improvement of the monitoring of drinking water quality in these geographical areas. Finally
in the context of pollution data, Wan et al. (2020) and Shi et al. (2021) respectively detected clusters
of high concentrations of PM2.5 in America and China. Such results may allow local authorities to
specifically monitor these areas and make decisions to reduce pollution.

When multiple variables are observed simultaneously at each spatial location, researchers may be
interested in detecting spatial clusters with anomalous values of all measured variables. In this context,
Kulldorff et al. (2007) proposed a multivariate spatial scan statistic using a combination of independent
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univariate scan statistics. However it fails to take into account the potential correlations between the
variables. A first spatial scan statistic for multivariate data taking into account the correlations was
proposed by Cucala et al. (2017). Their method is based on a multivariate normal probability model
and a likelihood ratio. Later, Cucala et al. (2019) proposed a nonparametric spatial scan statistic for
multivariate data based on a multivariate Wilcoxon-Mann-Whitney test.

Technological developments in measurement tools and data storage capacity have yielded to the
increasing use of sensors, cell phones and more generally connected devices that collect data continu-
ously or almost continuously over time. This has led to the introduction of new analysis methods for
functional data (Ramsay and Silverman, 2005), as well as the adaptation of classical statistical methods
such as principal component analysis (Boente and Fraiman, 2000; Berrendero et al., 2011) or regression
(Cuevas et al., 2002; Ferraty and Vieu, 2002; Chiou and Müller, 2007).
In the field of spatial scan statistics, Frévent et al. (2021a) and Smida et al. (2022) proposed new
methods for univariate processes. However for example, in environmental surveillance, numerous
variables are simultaneously measured, making a multivariate functional approach necessary to detect
environmental black-spots. These can be defined as geographical areas characterized by elevated
concentrations of multiple pollutants. Although Smida et al. (2022) only studied their approach in
the univariate functional framework, they suggest that it could also be adapted for multivariate
processes. Frévent et al. (2021b) studied this adaptation and also developed new efficient methods for
multivariate functional spatial scan statistics.

In R several packages provide spatial scan statistics implementations. The best known is certainly the
rsatscan (Kleinman, 2015) package which provides functions to interface R and the SaTScan software
(Kulldorff, 2021), allowing the latter to be launched from R. It implements lots of univariate methods
(ordinal, Bernoulli, Poisson, . . . ) but also the space-time spatial scan statistic (Kulldorff et al., 1998) and
the multivariate extensions proposed by Kulldorff et al. (2007). The function kulldorff implemented
in the R package SpatialEpi (Chen et al., 2018) also performs the spatial scan statistics based on the
Poisson and the Bernoulli models. Other softwares were created to detect clusters such as ClusterSeer
(Greiling et al., 2012; Durbeck et al., 2012) which performs spatial, temporal and space-time clustering,
and TreeScan (Kulldorff, 2018) which implements the tree-based scan statistic (Kulldorff et al., 2003).
We should also mention the R package DCluster (Gómez-Rubio et al., 2015) which implements the
spatial scan statistics for Poisson or Bernoulli models. The R package DClusterm (Gómez-Rubio et al.,
2019; Gomez-Rubio et al., 2020) also implements a cluster detection method. Briefly, it consists in
considering a large number of generalized linear models by including potential cluster indicators one
by one, and then to use a model selection procedure. The Shiny application SpatialEpiApp (Moraga,
2017b) and the R package SpatialEpiApp (Moraga, 2017a) allow the detection and visualization of
clusters by using the scan statistics implemented in SaTScan. Finally the software FlexScan (Takahashi
et al., 2010) and the R package rflexscan (Otani and Takahashi, 2021) implement the spatial scan
statistic using a scan window with a non pre-defined shape, defined by Takahashi and Tango (2005).
Other R packages also allow clusters detection such as graphscan (Loche et al., 2016) (the cluster
function), SPATCLUS (Dematteï et al., 2006) or scanstatistics (Allévius, 2018b,a) for spatial or space-
time data. It should be noted that these last two packages are no longer available on the CRAN
(The Comprehensive R Archive Network) repository. Although existing packages implement a large
number of statistical spatial scan models, none of them propose multivariate scan models taking into
account the potential correlations between variables or scan models for functional data. Thus, we
have developed the R package HDSpatialScan for high-dimensional spatial scan statistics. The latter
allows on the one hand the detection of spatial clusters in multivariate or functional data, and on the
other hand, their display on a map and the description of their characteristics.

This paper is organized as follows: The following section presents the different models implemented
in the R package HDSpatialScan. Then, the implementation of the methods is described and examples
of use of the package are given. The last section concludes the paper.

2 Models

Let s1, . . . , sn be n different locations of an observation domain S ⊂ R2 and X1, . . . , Xn be the ob-
servations of a variable X in s1, . . . , sn. Hereafter all observations are considered to be independent,
which is a classical assumption in scan statistics. Three types of spatial data can be considered: either
lattice data (the data are aggregated at the spatial level, e.g.: county), geostatistical data (the variable
is defined on a continuous area and each individual measure corresponds to a unique fixed spatial
location, e.g.: pollutant concentration measured by sensors over a region), or marked point data (each
individual measure corresponds to a unique random spatial location, e.g.: height of the trees in a
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forest, the location of the trees is random).

Spatial scan statistics aim at detecting spatial clusters and testing their statistical significance. Hence,
one tests a null hypothesis H0 (the absence of a cluster) against a composite alternative hypothesis
H1 (the presence of at least one cluster w ⊂ S presenting abnormal values of X). For this purpose, a
spatial scan statistic consists of two steps. The first one is a detection phase using a scanning window
of variable size and shape. We will focus here on the approach of Kulldorff and Nagarwalla (1995)
which use a circular scanning window of variable center and radius, however it should be noted that
other shapes can be considered (Kulldorff et al., 2006; Cucala et al., 2013). An approach often advised
is to limit the maximum size to half of the studied region since otherwise it would be like detecting a
“negative cluster” in the areas outside the clusters covering almost all the studied region (Kulldorff
and Nagarwalla, 1995). Then the scanning window allows to define a set of potential clusters W by

W = {wi,j / 1 ≤ |wi,j| ≤
n
2

, 1 ≤ i, j ≤ n}, (1)

where wi,j is the disc centered on si that passes through sj and |wi,j| corresponds to the number of sites
in wi,j. Figure 1 illustrates the set of potential clusters defined with a circular scanning window with
Equation 1 on a set of eight administrative areas in France.

Figure 1: Set of potential clusters defined with a circular scanning window of variable center and
radius with Equation 1 on a set of eight administrative areas in France. Each potential cluster is
represented with a red circle.

Then the spatial scan statistic can be defined as the maximum of a concentration index over the set of
potential clusters W . The second step is the determination of the statistical significance of the spatial
scan statistic. For this, since the distribution of the scan statistic is intractable under H0 due to the
overlapping nature of W , a common approach, which will be considered here, is to use a Monte-Carlo
method (see Section Computing the statistical significance of the MLC for more details).

Spatial scan statistics for multivariate data

Here we consider the case where several continuous variables are simultaneously observed in each
spatial location: X = (X(1), . . . , X(p))⊤ is a p-dimensional variable (p ≥ 2). In this context the objective
is to identify multivariate spatial clusters that are aggregations of sites in which X takes higher or
lower values (in terms of mean, median, etc.) than elsewhere. For example one could observe the
average concentrations of several pollutants over a day: a vector can be associated with each site, each
element of which corresponds to the average concentration of one pollutant. In this context a spatial
cluster corresponds to a set of sites under or overexposed to multiple pollutants. Different approaches
will be presented: a parametric method based on a Gaussian model and a nonparametric one.
Figure 2 summarizes the different types of multivariate data with examples, and provides guidelines
on the spatial scan statistics methods to be used for these data (and the argument to use in the scan
function of the package). More precisely, we distinguish three types of spatial data: lattice data
which are aggregated data for example at the scale of the regions of a country, geostatistical data
which are defined on a continuous space (typically temperature, sunshine, or atmospheric pressure)
although they are observed only at discrete sites, and marked point data for which the location is
random (for example the distribution of trees in a forest) and we observe at each location the circum-
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ference and height of the tree for example. To detect spatial clusters, in the case of Gaussian data we
will prefer the Gaussian approach (MG) and otherwise we will use the nonparametric approach (MNP).

Data

Application

Lattice data:

� Unemployment rate and
fraction of the popula-
tion that has not gradu-
ated from high school

Xi

Xi = (X
(1)
i , X

(2)
i , . . . , X

(p)
i )>

Xi = (X
(1)
i , X

(2)
i , . . . , X

(p)
i )>

Geostatistical data:

� Temperature and air
pressure

Point pattern:

� Circumference and
height of trees

Question

Methods

Interpretation

Is there a statistically sig-
nificant cluster of high un-
employment rates and high
fraction of the population
with a low level of educa-
tion?

Is there a statistically signif-
icant cluster of high temper-
atures and low air pressure?

Is there a statistically sig-
nificant cluster of trees with
larger circumferences and
heights?

Gaussian data:

� Multivariate Gaussian spatial scan statistic

� “MG” argument in the scan function of the package

Non-Gaussian data:

� Multivariate Nonparametric spatial scan statistic

� “MNP” argument in the scan function of the package

There is a statistically significant cluster and by describing the mean or median of each
variable, we can get an indication of which variables are dominant in the cluster, and which
variables are higher or lower in that cluster.

example

Figure 2: Summary of spatial scan statistics for multivariate data. The table indicates the question that
can be asked for the detection of clusters. It then indicates the methods to be used according to the
distribution of the data as well as the ways to interpret the detected clusters. Spatial scan statistics for
multivariate data can be used to detect spatial clusters on any type of spatial data (lattice, geostatistical,
point data) modeled by vectors. The detected clusters can be characterized by computing the mean or
median of each variable inside and outside each cluster.

Cucala et al. (2017) proposed a parametric spatial scan statistic for multivariate data based on a
multivariate normal model taking into account the correlations between the variables.
The null hypothesis H0, corresponding to the absence of any cluster in the data, is the following:

∀i ∈ J1; nK, Xi ∼ Np(µ, Σ) and the alternative hypothesis H(w)
1 associated with a potential cluster w

can be defined as: ∀i ∈ J1; nK, Xi ∼
{

Np(µw, Σw,wc ) if si ∈ w
Np(µwc , Σw,wc ) otherwise .

Then we can compute the MLE estimates of µ, µw, µwc , Σ and Σw,wc : µ̂, µ̂w, µ̂wc , Σ̂ and Σ̂w,wc , and we
can show that the log-likelihood ratio between these two hypotheses is

L̂LRw =− n
2

ln
[

det
(

∑
i

si∈w

(Xi − µ̂w) (Xi − µ̂w)
⊤ + ∑

i
si∈wc

(Xi − µ̂wc ) (Xi − µ̂wc )⊤
)]

+
n
2

ln
[

det
( n

∑
i=1

(Xi − µ̂) (Xi − µ̂)⊤
)]

,

where µ̂g =
1
|g| ∑

i,si∈g
Xi for g ∈ {w, wc} and µ̂ =

1
n

n

∑
i=1

Xi.

Finally the log-likelihood ratio is used as a concentration index and maximised over the set of potential
clusters W .
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Thus we can show that the multivariate Gaussian (MG) scan statistic is

λMG = min
w∈W

det
(

∑
i

si∈w

(Xi − µ̂w) (Xi − µ̂w)
⊤ + ∑

i
si∈wc

(Xi − µ̂wc ) (Xi − µ̂wc )⊤
)

.

This test performs very well against Gaussian alternatives but faces problems when the data is not
normal, which is often the case when dealing with environmental data exhibiting extreme values. For
that reason Cucala et al. (2019) developed a nonparametric spatial scan statistic for multivariate data
based on a multivariate extension of the Wilcoxon-Mann-Whitney test for multivariate data (Oja and
Randles, 2004).
In this context the null hypothesis H0 can be rewritten as H0 : X1, . . . , Xn are identically distributed,
whatever the associated location.
Let

sgn : Rp → Rp

x 7→
{

||x||−1
2 x if x ̸= 0

0 otherwise
,

then the multivariate ranks Ri are defined by Ri =
1
n

n

∑
j=1

sgn(AX(Xi − Xj)) where the matrix AX

makes the ranks such that
p
n

n

∑
i=1

RiR⊤
i =

1
n

n

∑
i=1

R⊤
i Ri Ip. Note that this matrix can be easily computed

using an iterative procedure. Then the multivariate extension of the Wilcoxon-Mann-Whitney statistic
proposed by Oja and Randles (2004) is

U2(w) =
p

c2
X

[
|w| ||R̄w||22 + |wc| ||R̄wc ||22

]
, where c2

X =
1
n

n

∑
i=1

R⊤
i Ri.

Cucala et al. (2019) used U2(w) as a concentration index to build the spatial scan statistic: the
multivariate nonparametric (MNP) scan statistic is λMNP = max

w∈W
U2(w).

It should be noted that in the case p = 1, these statistics are respectively equivalent to the ones
introduced by Kulldorff et al. (2009) (which is equivalent to the scan statistic developed by Cucala
(2014), UG), and Jung and Cho (2015) (UNP).

Spatial scan statistics for univariate functional data

Here we consider the case where a continuous variable is observed in each spatial location over
time: {X(t), t ∈ T } is a real-valued stochastic process where T is an interval of R. In this con-
text the objective is to identify functional spatial clusters that are aggregations of sites in which the
curves are higher or lower than elsewhere. For example, one can observe the concentration of an
air pollutant over time in different geographical areas. Then a cluster corresponds to an aggregation
of sites in which the concentration of the air pollutant is higher or lower over the time than in the
other spatial units. Several methods will be considered: a parametric method based on a functional
ANOVA, a nonparametric approach using a Wilcoxon-Mann-Whitney test for high-dimensional data,
a distribution-free approach based on a pointwise Student’s t-test and finally a pointwise rank-based
method. On Gaussian data, for non localized clusters in time all approaches show high power and
high true positive rates. However the performances of the ANOVA-based method strongly decrease
on non-normal data. For localized clusters in time (that are aggregations of sites that take higher or
lower values for X only in a small interval of time (an interval of five days over a study period of one
month for example)) the pointwise approaches should be favored.
Figure 3 summarizes the different types of univariate functional data with examples, and provides
recommendations on the spatial scan statistics methods to be used for these data (and the argument
to use in the scan function of the package). More precisely, we distinguish lattice functional data
which are aggregated functional data for example at the scale of the administrative areas of a country
(unemployment rate, percentage of the population over 65, etc), geostatistical functional data which
are defined on a continuous space (typically temperature, sunshine, or atmospheric pressure over
time) although they are observed only at discrete sites, and marked point data for which the location
is random (for example the distribution of trees in a forest) and we observe at each location the
circumference of the tree over time for example. To detect spatial clusters, as mentioned before, in the
case of Gaussian data we will prefer the pointwise distribution-free functional approach (DFFSS) and
otherwise we will use the pointwise rank-based approach (URBFSS).

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 100

Data

Application
Lattice data:

� Unemployment rate over time

Xi

Xi

Geostatistical data:

� Temperature over time

Point pattern:

� Circumference of trees
over time

Question

Methods

Interpretation

Is there a statistically significant cluster
of high or low unemployment rate curves?

Is there a statistically signif-
icant cluster of high or low
temperature curves?

Is there a statistically sig-
nificant cluster of trees with
high or low circumference
curves?

Gaussian data:

� Distribution-free functional spatial scan statistic

� “DFFSS” argument

Non-Gaussian data:

� Univariate rank-based functional spatial scan statistic

� “URBFSS” argument

There is a statistically significant cluster and by describing the mean or median curve of the variable,
we can get an indication of the characteristics of the cluster.

example

Figure 3: Summary of spatial scan statistics for univariate functional data. The table indicates the
question that can be asked for the detection of clusters on a set of curves. It then indicates the methods
to be used according to the distribution of the data as well as the ways to interpret the detected clusters.
Spatial scan statistics for univariate functional data can be used to detect spatial clusters on any type
of spatial data (lattice, geostatistical, point data) observed over a period of time. The detected clusters
can be characterized by computing the mean or median curve inside and outside each cluster.

The parametric spatial scan statistic for univariate functional data

Frévent et al. (2021a) supposed that the process X takes values in a semi-metric space, in particular in
L2(T , R) and proposed a parametric spatial scan statistic for functional data, based on a functional
ANOVA. Here the null hypothesis H0 can be rewritten: H0 : ∀w ∈ W , µw = µwc = µS, and

the alternative hypothesis H(w)
1 associated with a potential cluster w can be defined as follows:

H(w)
1 : µw ̸= µwc , where µw, µwc and µS stand for the mean functions in w, outside w and over S,

respectively. Cuevas et al. (2004) and Górecki and Smaga (2015) proposed the following ANOVA test
statistic:

F(w)
n =

|w| ||X̄w − X̄||22 + |wc| ||X̄wc − X̄||22
1

n − 2

[
∑j,sj∈w ||Xj − X̄w||22 + ∑j,sj∈wc ||Xj − X̄wc ||22

] ,

where X̄g(t) =
1
|g| ∑

i,si∈g
Xi(t) are empirical estimators of µg (g ∈ {w, wc}), X̄(t) =

1
n

n

∑
i=1

Xi(t) is the

empirical estimator of µS and ||x||22 =
∫
T

x2(t) dt.

Thus, Frévent et al. (2021a) proposed to use F(w)
n as a concentration index and the proposed parametric

functional spatial scan statistic (PFSS) is ΛPFSS = max
w∈W

F(w)
n .

This method gives high powers and F-measures on normal data but as in the multivariate framework
the parametric method faces problems when the data is not normal. Smida et al. (2022) proposed a
nonparametric spatial scan statistic for functional data based on a functional Wilcoxon-Mann-Whitney
test (Chakraborty and Chaudhuri, 2014).
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A nonparametric spatial scan statistic for functional data

Here X is a process of a smooth Banach space χ, with a Gâteaux differentiable norm ||.||χ. Let
denote Pw and Pwc the probability measures of X in w and in wc respectively, then H0 corresponds to:
H0 : ∀w ∈ W , Pw = Pwc and the alternative hypothesis associated with a potential cluster w can be

rewritten as H(w)
1 : Pw(X) = Pwc (X − ∆), ∆ ∈ χ\{0}.

Chakraborty and Chaudhuri (2014) defined the sign function in the functional framework as

∀h ∈ χ, SgnX(h) =

 lim
v→0+

||X + vh||χ − ||X||χ
v

if X ̸= 0

0 if X = 0
.

Then they proposed the following test statistic:

TWMW(w) =
1

|w||wc| ∑
i,si∈w

∑
j,sj∈wc

SgnXj−Xi
.

Under H0, if
|w|
n

→ γ ∈ [0; 1] as |w|, |wc| → ∞,

√
|w||wc|

n
TWMW(w) converges weakly to a distribu-

tion that does not depend on |w|. Thus Smida et al. (2022) proposed to use U(w) =

∣∣∣∣∣∣∣∣
√

|w||wc|
n

TWMW(w)

∣∣∣∣∣∣∣∣
as a concentration index: the nonparametric functional scan statistic (NPFSS) is ΛNPFSS = max

w∈W
U(w).

It should be noticed that although Smida et al. (2022) only studied the performances of the NPFSS in
the univariate functional framework, their method is also applicable on multivariate functional data
as shown by Frévent et al. (2021b).

A distribution-free spatial scan statistic for univariate functional data

Frévent et al. (2021a) also proposed to combine the distribution-free spatial scan statistic for univariate
data proposed by Cucala (2014) and the max statistic of Lin et al. (2021). They supposed that for each
time t, V[Xi(t)] = σ2(t) for all i ∈ J1; nK. Then for each t, the concentration index proposed by Cucala
(2014) to test H0 : ∀w ∈ W , µw(t) = µwc (t) = µS(t) was

I(w)(t) =
|X̄w(t)− X̄wc (t)|√
V̂[X̄w(t)− X̄wc (t)]

,

where V̂[X̄w(t)− X̄wc (t)] = σ̂2(t)
[

1
|w| +

1
|wc|

]
,

σ̂2(t) =
1

n − 2

[
∑

i,si∈w
(Xi(t)− X̄w(t))2 + ∑

i,si∈wc

(Xi(t)− X̄wc (t))2

]
.

Then the idea is to globalize the information by maximizing the previous quantity over the time for
each potential cluster w, as suggested by Lin et al. (2021):

I(w) = sup
t∈T

I(w)(t).

For cluster detection, as for the PFSS, the null hypothesis H0 (the absence of cluster) is defined as

follows: H0 : ∀w ∈ W , µw = µwc = µS. And the alternative hypothesis H(w)
1 associated with a

potential cluster w can be defined as follows: H(w)
1 : µw ̸= µwc .

Frévent et al. (2021a) considered I(w) as a concentration index and maximized it over the set of
potential clusters W yielding to the following distribution-free functional spatial scan statistic (DFFSS):
ΛDFFSS = max

w∈W
I(w).

A new rank-based spatial scan statistic for univariate functional data

A pointwise approach based on ranks and on the nonparametric scan statistic for univariate data (Jung
and Cho, 2015) can be proposed in the univariate functional framework by adapting the approach of
Frévent et al. (2021b).
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For a time t, Jung and Cho (2015) proposed to test H0 : ∀w ∈ W , Fw,t = Fwc,t where Fw,t and Fwc,t
are the cumulative distribution functions of X(t) in w and outside w, by using the Wilcoxon rank-
sum test statistic. For a time t and a potential cluster w, the Wilcoxon rank-sum test statistic is
W(t)(w) = ∑

i,si∈w
Ri(t) where Ri(t) is the rank of Xi(t) in {X1(t), . . . , Xn(t)}, using the average rank in

the case of tied observations.
Then the standardized version of this statistic is

T(t)(w) =
W(t)(w) − E[W(t)(w)]√

V[W(t)(w)]

where E[W(t)(w)] =
|w|(n + 1)

2
and V[W(t)(w)] =

|w||wc|(n + 1)
12

are the expected value and the

variance of W(t)(w) under H0.
Jung and Cho (2015) proposed to minimize the p-value associated with T(t)(w) on the set of potential
clusters W . We propose to adapt their approach by simply using |T(t)(w)| as a pointwise statistic.

In the context of cluster detection, the null hypothesis is defined as H0: ∀w ∈ W , ∀t ∈ T , Fw,t = Fwc,t.

The alternative hypothesis H(w)
1 associated with a potential cluster w is H(w)

1 : ∃t ∈ T , Fw,t(x) =
Fwc,t(x − ∆t), ∆t ̸= 0.

As before, we propose to globalize the information over the time with T(w) = sup
t∈T

|T(t)(w)| and to

use this quantity as a concentration index, yielding to the following univariate rank-based functional
spatial scan statistic (URBFSS): ΛURBFSS = max

w∈W
T(w).

Spatial scan statistics for multivariate functional data

Here we consider the case where several continuous variables are observed simultaneously in each
spatial unit over time: {X(t), t ∈ T } is a p-dimensional vector-valued stochastic process (p ≥ 2)
where T is an interval of R. The objective is to detect multivariate functional spatial clusters that are
aggregations of sites in which the curves are higher or lower than elsewhere. For example we can
observe the concentration of several pollutants over time in different locations. Thus at each location
we observe several processes (air pollutant concentrations) and these processes can be correlated. In
this context a cluster is an aggregation of sites overexposed or underexposed to multiple pollutants
over time. Several methods will be presented: a parametric method based on a functional MANOVA,
a distribution-free approach based on a pointwise Hotelling T2-test and finally a pointwise rank-based
method. On normal data, all approaches show high power and high true positive rates for non
localized clusters in time. However the performances of the methods based on the MANOVA and the
Hotelling T2-test decrease on non-normal data. For localized clusters in time the pointwise approaches
should be favored, especially the pointwise rank-based method on non-Gaussian data. By localized
clusters in time we mean aggregations of sites that take higher or lower values for X only in a small
interval of time (an interval of five days over a study period of one month for example).
Figure 4 summarizes the different types of multivariate functional data with examples, and provides
guidelines on the spatial scan statistics methods to be used for these data (and the argument to use
in the scan function of the package). To be more precise, we can distinguish lattice functional data
which are aggregated data for example at the scale of the regions of a country (unemployment rate
and fraction of the population that has not graduated from high school, over time, for example),
geostatistical functional data which are defined on a continuous space (temperature, sunshine, and
atmospheric pressure over time) although they are observed only at discrete sites, and marked point
data for which the location is random (for example the distribution of trees in a forest) and we ob-
serve at each location the circumference and height of the tree over time for example. As previously
mentioned, to detect spatial clusters, in the case of Gaussian data we will prefer the multivariate
distribution-free functional spatial scan statistic (MDFFSS) and for non-Gaussian data we will use the
pointwise rank-based approach (MRBFSS).

A parametric spatial scan statistic for multivariate functional data

Here, the process X is supposed to take values in a semi-metric space, in particular the Hilbert space
L2(T , Rp) of p-dimensional vector-valued square-integrable functions on T , equipped with the inner
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Data

Application
Lattice data:

� Unemployment rate and fraction of
the population that has not gradu-
ated from high school over time

Xi Xi = (X
(1)
i , X

(2)
i , . . . , X

(p)
i )>

Geostatistical data:

� Temperature and air
pressure over time

Point pattern:

� Circumference and
height of trees over time

Question

Methods

Interpretation

Is there a statistically significant cluster
of high unemployment rate curves and
high fraction of the population with a low
level of education over time?

Is there a statistically signif-
icant cluster of high temper-
ature and low air pressure
curves?

Is there a statistically sig-
nificant cluster of trees with
high circumference and
height curves?

Gaussian data:

� Multivariate distribution-free functional spatial scan statistic

� “MDFFSS” argument in the scan function of the package

Non-Gaussian data:

� Multivariate rank-based functional spatial scan statistic

� “MRBFSS” argument in the scan function of the package

There is a statistically significant cluster and by describing the mean or median curve of each variable,
we can get an indication of which variables are dominant in the cluster, and which variables present
higher or lower curves in that cluster.

Xi = (X
(1)
i , X

(2)
i , . . . , X

(p)
i )>

example

(p=2)

(p=2)

Figure 4: Summary of spatial scan statistics for multivariate functional data. The table indicates
the question that can be asked for the detection of clusters of multivariate curves. It then indicates
the methods to be used according to the distribution of the data as well as the ways to interpret the
detected clusters. Spatial scan statistics for multivariate functional data can be used to detect spatial
clusters on any type of spatial data (lattice, geostatistical, point data) composed of multivariate curves

Xi (in the table example, Xi = (X(1)
i , X(2)

i )⊤ is composed of two curves). Then, the detected clusters
can be characterized by computing the mean or median curve of each variable inside and outside each
cluster.

product ⟨X, Y⟩ =
∫
T

X(t)⊤Y(t) dt.

Frévent et al. (2021b) proposed a parametric scan statistic for multivariate functional data based on a
functional MANOVA Lawley–Hotelling trace test (Górecki and Smaga, 2017).

In this context, the null hypothesis H0 is H0 : ∀w ∈ W , µw = µwc = µS, where µw, µwc and µS stand

for the mean functions in w, outside w and over S, respectively. And the alternative hypothesis H(w)
1

associated with a potential cluster w is H(w)
1 : µw ̸= µwc . Górecki and Smaga (2017) presented the

following adaptation of the Lawley-Hotelling trace test statistic:

LH(w) = Trace(HwE−1
w )

where Hw = |w|
∫
T
[X̄w(t)− X̄(t)] [X̄w(t)− X̄(t)]⊤ dt + |wc|

∫
T
[X̄wc (t)− X̄(t)] [X̄wc (t)− X̄(t)]⊤ dt

and Ew = ∑
j,sj∈w

∫
T

[
Xj(t)− X̄w(t)

] [
Xj(t)− X̄w(t)

]⊤
dt + ∑

j,sj∈wc

∫
T

[
Xj(t)− X̄wc (t)

] [
Xj(t)− X̄wc (t)

]⊤
dt

with X̄g(t) =
1
|g| ∑

i,si∈g
Xi(t) the empirical estimators of µg(t) for g ∈ {w, wc} and X̄(t) =

1
n

n

∑
i=1

Xi(t)

the empirical estimator of µS(t).

Then Frévent et al. (2021b) considered LH(w) as a concentration index and proposed the parametric
multivariate functional spatial scan statistic (MPFSS): ΛMPFSS = max

w∈W
LH(w).

In fact Górecki and Smaga (2017) proposed four test statistics using the matrices Hw and Ew to compare
the mean functions in w and wc: (1) the Lawley–Hotelling trace test statistic LH(w) = Trace(HwE−1

w ),
(2) the Pillai trace test statistic P(w) = Trace(Hw(Hw + Ew)−1), (3) the Roy’s largest root test statistic
R(w) = λmax(HwE−1

w ) where λmax(HwE−1
w ) is the maximum eigenvalue of HwE−1

w and (4) the Wilks
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lambda test statistic W(w) =
det(Ew)

det(Hw + Ew)
.

Thus each of these quantities (or the opposite for the Wilks lambda test statistic) can be considered as
a concentration index and maximized over W which results in the following parametric multivariate
functional spatial scan statistics:

ΛLH = max
w∈W

LH(w), ΛP = max
w∈W

P(w), ΛR = max
w∈W

R(w), ΛW = min
w∈W

W(w).

These four approaches are implemented in the package HDSpatialScan.

A distribution-free spatial scan statistic for multivariate functional data

Frévent et al. (2021b) proposed a distribution-free spatial scan statistic for multivariate functional data
which is the counterpart of the distribution-free spatial scan statistic for univariate functional data
developed by Frévent et al. (2021a). They supposed that for each time t, V[Xi(t)] = Σ(t, t) for all
i ∈ J1; nK, where Σ is a p × p covariance matrix function.

Thus, as previously, in the context of cluster detection, the null hypothesis H0 can be defined as
follows: H0 : ∀w ∈ W , µw = µwc = µS, where µw, µwc and µS stand for the mean functions in w,

outside w and over S, respectively. And the alternative hypothesis H(w)
1 associated with a potential

cluster w can be defined as follows: H(w)
1 : µw ̸= µwc . Next, Qiu et al. (2021) proposed to compare the

mean function µw in w with the mean function µwc in wc by using the following statistic:

T(w)
n,max = sup

t∈T
Tn(t)(w)

where Tn(t) is a pointwise statistic defined by the Hotelling T2-test statistic

Tn(t)(w) =
|w||wc|

n
(X̄w(t)− X̄wc (t))⊤ Σ̂(t, t)−1 (X̄w(t)− X̄wc (t)) .

X̄w(t) and X̄wc (t) are the empirical estimators of the mean functions defined previously, and

Σ̂(s, t) =
1

n − 2

[
∑

i,si∈w
(Xi(s)− X̄w(s)) (Xi(t)− X̄w(t))

⊤ + ∑
i,si∈wc

(Xi(s)− X̄wc (s)) (Xi(t)− X̄wc (t))⊤
]

is the pooled sample covariance matrix function.

Then Frévent et al. (2021b) proposed to use T(w)
n,max as a concentration index and to maximize it over the

set of potential clusters W : the multivariate distribution-free functional spatial scan statistic (MDFFSS)

is ΛMDFFSS = max
w∈W

T(w)
n,max.

A rank-based spatial scan statistic for multivariate functional data

Finally Frévent et al. (2021b) also proposed to consider as a pointwise test statistic the multivariate
extension of the Wilcoxon rank-sum test statistic developed by Oja and Randles (2004) and detailed in
Section Spatial scan statistics for multivariate data. They defined the pointwise multivariate ranks as

Ri(t) =
1
n

n

∑
j=1

sgn(AX(t)(Xi(t)− Xj(t))) where the pointwise transformation matrix AX(t) is so that

p
n

n

∑
i=1

Ri(t)Ri(t)⊤ =
1
n

n

∑
i=1

Ri(t)⊤Ri(t)Ip, and the sgn function is the same as in Section Spatial scan

statistics for multivariate data.

Then for each time t, the pointwise multivariate extension of the Wilcoxon rank-sum test statistic is

defined as W(t)(w) =
pn

∑n
i=1 Ri(t)⊤Ri(t)

[
|w| ||R̄w(t)||22 + |wc| ||R̄wc (t)||22

]
where

R̄g(t) =
1
|g| ∑

i,si∈g
Ri(t) (g ∈ {w, wc}) .

In the context of cluster detection, the null hypothesis is defined as H0: ∀w ∈ W , ∀t ∈ T , Fw,t = Fwc,t
where Fw,t and Fwc,t correspond respectively to the cumulative distribution functions of X(t) in

w and outside w. The alternative hypothesis H(w)
1 associated with a potential cluster w is H(w)

1 :
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∃t ∈ T , Fw,t(x) = Fwc,t(x − ∆t), ∆t ̸= 0.

Finally Frévent et al. (2021b) proposed to globalize the information over the time with the quantity
W(w) = sup

t∈T
W(t)(w) and to use it as a concentration index to be maximized over the set of potential

clusters W . The multivariate rank-based functional spatial scan statistic (MRBFSS) is then ΛMRBFSS =

max
w∈W

W(w).

Computing the statistical significance of the MLC

Once the most likely cluster (MLC) is detected, its statistical significance must be evaluated. The
distribution of the scan statistic S (S = λMG, λMNP, ΛPFSS, ΛNPFSS, ΛDFFSS, ΛURBFSS, ΛMPFSS, ΛMDFFSS
or ΛMRBFSS) is intractable under H0 due to the overlapping nature of W . Then we choose to obtain a
large set of simulated datasets by randomly permuting the observations Xi in the spatial locations.
This technique was already used in spatial scan statistics (Kulldorff et al., 2009; Cucala et al., 2017).

Let M denote the number of random permutations of the original dataset and S (1), . . . ,S (M) be the
observed scan statistics on the simulated datasets. According to Dwass (1957) the p-value for S
observed in the real data is estimated by

p̂ =
1 + ∑M

m=1 1S (m)≥S
M + 1

. (2)

Finally, the MLC is considered to be statistically significant if the associated p̂ is less than the type I
error.

How to choose the method to apply to the data?

According to Cucala et al. (2019) the MNP method tends to present a better power and higher true
positive rates for non-Gaussian data than the MG one. Although the false positive rates are often
higher for this approach than the MG one, it remains moderate. The same conclusions are true for the
UG (Kulldorff et al., 2009) and the UNP (Jung and Cho, 2015) which are their particular counterparts
in the case of a single variable. In the functional framework, the approaches that present the best
results are the DFFSS and the URBFSS in the univariate context and the MDFFSS and the MRBFSS
in the multivariate one (Frévent et al., 2021a,b). The URBFSS and the MRBFSS tend to show higher
powers and higher true positive rates although they detect more false positives than the DFFSS and
the MDFFSS respectively. Table 1 summarizes the methods and their performances. The symbols ✓
and X indicate respectively a high and a low performance on the criterion. If there is no symbol it
means that for this criterion the approach offers medium performances. The terminology “localized
clusters in time” in the functional cases refers to aggregations of sites that take higher or lower values
for the process only in a small interval of time (an interval of five days over a study period of one
month for example). Table 2 gives an idea of the computation time of the different scanning methods
proposed by the package. It should be noted that the computation time of the different spatial scan
statistics methods is dependent on the size of the datasets, and in particular a function of the number
of sites, the number of observation times and the number of variables considered.

3 Software

Computing the spatial scan statistic

The package HDSpatialScan provides a function SpatialScan to compute all the spatial scan statistics.
The user chooses the method to apply by specifying the method argument: "MG" and "MNP" apply
respectively the parametric and nonparametric spatial scan statistics approaches on multivariate
data. Their univariate counterparts (when p = 1) can be computed with "UG" and "UNP" respectively.
Then "PFSS", "DFFSS" and "URBFSS" apply the parametric, the distribution-free and the new rank-
based functional approaches on univariate functional data, and "MPFSS", "MDFFSS", and "MRBFSS" are
their multivariate counterparts. Finally "NPFSS" applies the nonparametric spatial scan statistic for
functional data developed by Smida et al. (2022) on both univariate and multivariate functional data.
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Table 1: Performance in terms of power, true positive rate and false positive rate of spatial scan
statistics for multivariate data (MG and MNP), univariate functional data (PFSS, DFFSS, NPFSS and
URBFSS) and multivariate functional data (MPFSS, MDFFSS, NPFSS and MRBFSS)

Gaussian distribution Non-Gaussian distribution
Method Power True positive rate False positive rate Power True positive rate False positive rate

Univariate data Univariate data

UGa ✓ ✓ ✓ X X ✓
UNPa ✓ ✓ ✓ ✓

Multivariate data Multivariate data

MGb ✓ ✓ ✓ X X ✓
MNPb ✓ ✓ ✓ ✓

Functional univariate data Functional univariate data

Non localized clusters in time Non localized clusters in time
PFSSc ✓ X ✓

DFFSSd ✓ ✓ ✓ ✓ ✓ ✓
NPFSSe ✓ ✓

URBFSS f ✓ ✓ ✓ ✓

Localized clusters in time Localized clusters in time
PFSSc X X X X

DFFSSd ✓ ✓ ✓ ✓ ✓ ✓
NPFSSe X X

URBFSS f ✓ ✓ ✓ ✓ ✓ ✓

Functional multivariate data Functional multivariate data

Non localized clusters in time Non localized clusters in time
MPFSSc ✓ X X ✓

MDFFSSd ✓ ✓ ✓ ✓
NPFSSe ✓ ✓ ✓

MRBFSS f ✓ ✓ ✓ ✓

Localized clusters in time Localized clusters in time
MPFSSc X X X X ✓

MDFFSSd ✓ ✓ ✓ ✓
NPFSSe X X

MRBFSS f ✓ ✓ ✓ ✓ ✓ ✓
a The Univariate Gaussian (UG) and the Univariate Nonparametric (UNP) spatial scan statistics

b The Multivariate Gaussian (MG) and the Multivariate Nonparametric (MNP) spatial scan statistics
c The Parametric Functional (PFSS) and the Multivariate Parametric Functional (MPFSS) spatial scan statistics

d The Distribution-free Functional (DFFSS) and the Multivariate Distribution-free Functional (MDFFSS) spatial Scan Statistics
e The Nonparametric Functional (NPFSS) spatial Scan Statistic

f The Univariate Rank-based Functional (URBFSS) and the Multivariate Rank-based Functional (MRBFSS) spatial Scan Statistics
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Table 2: Estimation of the computation time (over 100 repetitions) for the different scan statistics
methods among 169 sites with a priori clusters comprising between 1 and 50% of the sites (default
parameters) and 99 permutations for the estimation of the associated p-values (the default parameter
of 999 permutations multiplies the computation time by about 10). Parallelization by running seven
tasks in parallel was used (except for UG and UNP since these two methods are optimized to have
a very low computation time without using CPUs) on two hexacores of type Intel(R) Xeon(R) CPU
E5-2620 v2. For multivariate data (functional or not) 4 variables are considered and for functional data
(univariate or multivariate) 56 observation times are considered.

Method Computation time (in s)
Mean Standard deviation Minimum Maximum

Univariate data

UGa 4.31 0.18 4.01 4.77
UNPa 3.07 0.12 2.77 3.5

Multivariate data

MGb 253.04 32.93 231.34 310.91
MNPb 14.6 1.44 13.48 17.77

Functional univariate data

PFSSc 113.51 8.08 109.47 132.58
DFFSSd 55.99 4.93 52.52 66.76
NPFSSe 12.91 1.23 11.74 15.6

URBFSS f 17.93 1.37 16.93 22.53

Functional multivariate data

MPFSSc 72.52 9.21 65.23 100.17
MDFFSSd 182.95 21.54 166.27 227.84
NPFSSe 22.95 1.7 21.77 28

MRBFSS f 244.04 21.83 234.05 305.56
a The Univariate Gaussian (UG) and the Univariate Nonparametric (UNP) spatial scan statistics

b The Multivariate Gaussian (MG) and the Multivariate Nonparametric (MNP) spatial scan statistics
c The Parametric Functional (PFSS) and the Multivariate Parametric Functional (MPFSS) spatial scan statistics

d The Distribution-free Functional (DFFSS) and the Multivariate Distribution-free Functional (MDFFSS) spatial Scan Statistics
e The Nonparametric Functional (NPFSS) spatial Scan Statistic

f The Univariate Rank-based Functional (URBFSS) and the Multivariate Rank-based Functional (MRBFSS) spatial Scan Statistics
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Type of the data

Depending on the type of approach (univariate, multivariate, functional univariate or functional
multivariate), the data must be formatted in a specific way. For univariate approaches, the data must
be a vector in which each element corresponds to a site. If the data is individual and many individuals
share the same site, the data can remain in an individual format with one element of the vector per
individual. Then for real-valued multivariate methods or functional univariate methods, the data must
be a matrix in which each row corresponds to a site (or an individual) and each column corresponds
to a variable or an observation time in the functional framework. For multivariate functional methods
the data must be a list in which each element is a matrix corresponding to a site (or an individual). In
the matrices, the rows correspond to the variables and the columns to the observation times. Note that
the observation times must be the same for each site or individual and they must be equally spaced
for the methods "NPFSS", "PFSS" and "MPFSS". However if it is not the case of the raw data, they can
be easily transformed by smoothing the data (Ramsay and Silverman, 2005), by using for example the
R package fda (Ramsay et al., 2020).

Parameters of the scan function

The most important parameter is the method argument which has already been presented previously
and allows to choose the spatial scan statistics to be applied. Note that you can choose one or more
methods. Supplying "MPFSS" automatically computes the four strategies for the multivariate para-
metric functional spatial scan statistic (the Lawley-Hotelling trace (LH), the Roy’s largest root (R), the
Pillai’s trace (P) and the Wilks’ lambda (W)). If you only want the Lawley-Hotelling trace for example,
you can simply supply "MPFSS-LH". Although the Lawley-Hotelling trace test is the most used statistic
(Oja and Randles, 2004), it should be noted that all these methods usually provide very similar results.
The other arguments are data, sites_coord, system, mini, maxi, type_minimaxi, mini_post, maxi_post,
type_minimaxi_post, sites_areas, MC, typeI, nbCPU, variable_names and times. Note that nbCPU will
be ignored for the methods "UG" and "UNP", variable_names is ignored for the univariate and univari-
ate functional scan statistics and times is ignored for non-functional scan statistics.

The argument data, is the data vector, matrix or list on which the approaches must be applied. MC
and typeI correspond respectively to the number of permutations of the data while computing the
statistical significance of the clusters and the type I error i.e. a cluster is declared significant if its
estimated p-value is below this threshold.
The arguments sites_coord and system are respectively a matrix of two columns corresponding to
the coordinates of each site or individual, and to the system of coordinates (“Euclidean” or “WGS84”).
The sites_areas argument is optional and corresponds to the areas of the sites (or the site of each
individual if the data is individual).
The argument nbCPU permits to do parallelization and the arguments mini, maxi, type_minimaxi,
mini_post, maxi_post, type_minimaxi_post are described further below.
variable_names is simply the names of the variables (in the same order as in the data) for multivariate
or multivariate functional scan statistics and times corresponds to the times of observation, they must
be numeric.

A priori filtering The clusters are computed automatically as circular clusters, so we need to define
a minimum and a maximum size for these clusters. That is what we call “a priori filtering” and
this allows to control the computation time. Three types of a priori filtering are possible through the
argument type_minimaxi: "sites/indiv" (the filtering is applied on the number of sites or individuals
in the potential clusters, it is the default value), "area" (it is applied on the area of the clusters and is
available only if sites_areas is provided), or "radius" (the radius of the clusters).
The arguments mini and maxi are then respectively the minimum number of sites/individuals, or the
minimal area or radius and the maximum number of sites/individuals, or the maximal area or radius.
For the radius it is specified in km if system is "WGS84" or in the user units if system is "Euclidean".
It should be noted that this filtering can bias the p-values obtained for the clusters. In order to perform
a correct statistical inference, Kulldorff and Nagarwalla (1995) recommended to consider a maximum
size of half the study region. Thus the default setting is to consider potential clusters comprising at
least one site and at most 50% of the sites (Equation 1). If you want to select clusters according to
size (number of sites or individuals), area or radius, it is better to select them a posteriori among the
detected clusters and if you really want to decrease the computation time we recommend to increase
the number of CPU (with the argument nb_CPU). Changing the default settings can allow the user to
investigate whether there appear to be clusters in a relatively quick first step, although the inference is
biased, before applying the scan procedure with the default settings for the a priori filtering (50% of
the studied region).
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A posteriori filtering Sometimes after that the p-value of each potential cluster has been computing,
the user may want to retrieve only the significant clusters that satisfy a certain size, area, or radius crite-
ria. That is what we call a posteriori filtering. The corresponding arguments are mini_post, maxi_post
and type_minimaxi_post and their definitions are the same as mini, maxi and type_minimaxi. If the
user only wants to obtain clusters meeting size criteria, this a posteriori approach must be prioritized
over the a priori approach which gives biased results and must therefore be used with great care.

Output of the scan function

The function SpatialScan returns a list of object of class "ResScanOutput" which is composed of many
elements. The element sites_clusters is a list in which each element corresponds to a significant
cluster and contains the index of the sites (or the individuals) included in this cluster. The clusters
are listed in their order of detection. The secondary clusters are defined according to Kulldorff (1997):
they correspond to potential clusters that also present large values for the concentration index. Their
p-values are calculated as if they were the most likely cluster themselves which is a bit conservative
since the secondary clusters are compared with the most likely cluster of the permutations (Kulldorff,
1997). Finally, only clusters that are significant at the typeI threshold and that do not overlap with
a more likely cluster are returned, and pval_clusters corresponds to the associated p-values. The
element centres_clusters corresponds to the coordinates of the centres of each detected cluster and
radius_clusters is the radius of the clusters in km if system is “WGS84” or in the user units otherwise.
areas_clusters corresponds to the areas of the clusters (in the same units as sites_areas). Finally
the system of coordinates, the coordinates of the sites, the data and the name of the scan procedure are
recalled respectively in the elements system, sites_coord, data and method.

Depending on the type of the method (univariate, multivariate, univariate functional or multivariate
functional) the objects of class "ResScanOutput" are also of class "ResScanOutputUni", "ResScanOutputMulti",
"ResScanOutputUniFunct" or "ResScanOutputMultiFunct". The objects of class "ResScanOutputMulti"
and "ResScanOutputMultiFunct" also include the element variable_names, and the objects of class
"ResScanOutputUniFunct" and "ResScanOutputMultiFunct" include the element time.

Plot or summarize the results

It is possible to plot the detected clusters by using the classical plot function. Depending on the type
parameter, the package HDSpatialScan provides three different types of plot.

The first one, "map", allows the user to plot a map of the sites and draws the circles corresponding to
the circular clusters. The second one, "map2", plots the clusters in colors. For these two types of plot
the argument spobject which is the spatial object corresponding to the sites, must be provided. If you
do not have this object you can use the third type "schema" which simply draws a schema of the sites
and the clusters, with the argument system_conv which allows to correctly project the coordinates. It
must be entered as in the PROJ documentation (PROJ contributors, 2021).

One may also want to get some features of one’s clusters.
The function summary allows to get a summary of the clusters, either the mean and the standard devia-
tion of each of the variables (if many) if the argument type_summ is "param", or the 25th percentiles, the
medians and the 75th percentiles if the argument type_summ is "nparam". This function also provides
the p-values, the radius and the area if available (only if sites_areas is provided) for each cluster
detected.
Other interesting functions are plotCurves that allows to display cluster curves (only in the functional
case), and plotSummary which displays the average (if type = "mean") or the median (if type =
"median") curves in the clusters, outside and the global mean or median curves in the functional case.
For the multivariate non-functional framework it displays a spider chart of means or medians for each
variable inside the cluster, outside, or in all the area. Note that all these functions take an argument
only.MLC which allows to only plot or summarize the most likely cluster (by setting only.MLC = TRUE).
Finally the print function shows the scan procedure used as well as the number of clusters detected
and their p-value.

4 Illustrations

To show the simplicity of use of the package, we will apply the different approaches on the envi-
ronmental data provided in the package. It should be noted that the codes presented in this section
represent a total computation time of about one hour on a regular laptop, using 7 cores.
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Air pollution in northern France

We considered data provided by the French national air quality forecasting platform PREV’AIR which
is available in the package HDSpatialScan. This lattice data consists in the daily concentrations (from
May 1, 2020 to June 25, 2020) in µg.m−3 of four pollutants for each of the 169 cantons (administrative
subdivisions of France) of the Nord-Pas-de-Calais (a region in northern France) characterized by spatial
polygons and located by their center of gravity s1, . . . , s169: nitrogen dioxide (NO2), ozone (O3) and
fine particles PM10 and PM2.5 corresponding respectively to particles whose diameter is less than 10µm
and 2.5µm. The package HDSpatialScan provides the full data: fmulti_data but also some reduced
data for the univariate functional case which consists in considering only the NO2 concentrations
(funi_data), and for the multivariate non-functional framework (multi_data) which corresponds to
the temporal mean concentrations of the four pollutants over the study period.

The first step is to load the data:

library(HDSpatialScan)
data("map_sites")
data("multi_data")
data("funi_data")
data("fmulti_data")

The second step is to visualize the pollutants daily concentration curves in each canton and the spatial
distributions of the temporal mean concentrations for each pollutant over the studied time period
(Figures 5 and 6). This step allows us to see if sites seem to aggregate and therefore if launching a
cluster detection is relevant, and if a temporal variation of the concentrations is visible, in which case a
functional method will be more relevant than a multivariate approach summarizing each curve by its
mean.
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Figure 5: Daily concentration curves of NO2, O3, PM10 and PM2.5 (from May 1, 2020 to June 25, 2020)
in each of the 169 cantons of Nord-Pas-de-Calais (a region in northern France). A marked temporal
variability in the concentrations of the four pollutants is observed over the study period.

The maps in Figure 6 show a spatial heterogeneity of the average concentration for each pollutant. Thus
spatial scan statistics seem to be suitable to highlight the presence of cantons-level spatial clusters of
pollutants concentrations. Moreover since the curves in Figure 5 show a marked temporal variability
during the period from May 1, 2020 to June 25, 2020 a functional approach is more appropriate.
However for sake of completeness we will also perform a multivariate spatial scan statistic approach
anyway. Since small clusters of pollution are more relevant for interpretation because the sources of
the pollutants are very localized, we will consider an a posteriori filtering of maximum radius equal to
10 km.

A multivariate spatial scan statistic

First we will investigate a multivariate spatial scan statistic. In this example the temporal component
of the multivariate functional data was suppressed by averaging the components over the time and
we looked for spatial clusters of the combination of the different air pollutants. This will pick up areas
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Figure 6: Spatial distributions of the average concentrations of NO2, O3, PM10 and PM2.5 over the
period from May 1, 2020 to June 25, 2020. A spatial heterogeneity of the average concentration
(over the study period) is observed for the four pollutants. The spatial distributions of the average
concentrations of PM10 and PM2.5 are also observed to be similar.

of multiple exposure to pollutants or, on the contrary, areas with little pollution. We first checked
the normality of each variable, which has been done by using a histogram and a qqplot. Since the
distribution of the pollutants temporal mean concentrations is non-normal we decide to apply the
MNP scan procedure. Here the system of coordinates is “WGS84”, it must be filled with the argument
system. As explained in Section Computing the spatial scan statistic, Kulldorff and Nagarwalla
(1995) recommended to consider a maximum size of half the study region for the potential clusters
so we use this a priori filtering with the parameters mini, maxi and type_minimaxi: the potential
clusters are circular and they contain between 1 and 50% of the sites. Then as noticed in Section Air
pollution in northern France, we will apply an a posteriori filtering of maximum radius equal to 10
km (arguments mini_post, maxi_post and type_minimaxi_post). Here we only want to consider the
significant clusters at the 5% threshold. Thus we leave the typeI parameter at its default value (0.05).
However it should be noted that it is possible to obtain all the clusters (the MLC and the secondary
clusters (Kulldorff, 1997)) by setting the typeI value at 1.

library(sp)
coords <- coordinates(map_sites)
res_mnp <- SpatialScan(method = "MNP", data = multi_data, sites_coord = coords,
+ system = "WGS84", mini = 1, maxi = nrow(coords)/2, type_minimaxi = "sites/indiv",
+ mini_post = 0, maxi_post = 10, type_minimaxi_post = "radius",
+ nbCPU = 7, MC = 99, variable_names = c("NO2", "O3", "PM10", "PM2.5"))$MNP

Once the scan procedure is completed, the plot function can be used. For brevity, we only focus on the
MLC and for the sake of completeness we will show the use of the three possible visualizations of the
clusters. Since we have a spatial object map_sites we can use the types "map" and "map2". However for
sake of completeness we also show the use of "schema" which allows to display the clusters otherwise
(Figure 7). For the latter, since the system of the coordinates is “WGS84”, the plot function requires to
complete the parameter system_conv which allows to correctly project the points. Here we choose the
EPSG code 2154 corresponding to the Lambert 93 projection since the data is located in metropolitan
France.

plot(x = res_mnp, type = "map", spobject = map_sites, only.MLC = TRUE)
plot(x = res_mnp, type = "map2", spobject = map_sites, only.MLC = TRUE)
plot(x = res_mnp, type = "schema", system_conv = "+init=epsg:2154", only.MLC = TRUE)

Finally users may want to get some summarized characteristics, such as the quantiles of the variables.
This can be achieved by using the function summary with the argument type_summ equal to "nparam"
(for the quantiles):

summary(res_mnp, type_summ = "nparam", only.MLC = TRUE)

## $basic_summary
## Cluster 1
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Figure 7: Visualization of the most likely cluster with the function plot with the types "map" (panel
a), "map2" (panel b) and "schema" (panel c) for the MNP scan procedure computed with the function
SpatialScan on the average concentrations of NO2, O3, PM10 and PM2.5. The first two types of
visualization require a spatial object corresponding to the spatial units (here the 169 cantons of the Nord-
Pas-de-Calais region of northern France). The visualization option "schema" allows in the other case to
draw a schema of the spatial units and the detected clusters. Here we focus the cluster visualization
on the most likely cluster which is located in the urban area of Lille.

## p-value 0.001
## Radius 9.999
##
## $complete_summary
## Overall Inside cluster 1 Outside cluster 1
## Number of sites 169.000 12.000 157.000
## Q25 NO2 8.673 11.327 8.635
## Median NO2 9.183 11.721 9.075
## Q75 NO2 9.848 12.382 9.692
## Q25 O3 66.778 67.527 66.721
## Median O3 67.895 67.609 67.961
## Q75 O3 68.564 67.922 68.658
## Q25 PM10 16.397 17.483 16.205
## Median PM10 16.970 17.877 16.933
## Q75 PM10 17.372 17.962 17.266
## Q25 PM2.5 9.132 10.584 9.113
## Median PM2.5 9.833 10.678 9.790
## Q75 PM2.5 10.213 10.919 10.107

The user can also use the function plotSummary to display the spider chart corresponding to the
detected cluster (Figure 8).

plotSummary(res_mnp, type = "median", only.MLC = TRUE)

The MLC is located in the area of Lille. The summary and Figure 8 show that it is a cluster of overpol-
lution (except for the pollutant O3). This cluster is especially characterized by high concentrations of
NO2 and PM2.5 which indicates pollution from road traffic and from the residential sector (auxiliary
heating in particular). As the adverse health effects of air pollution (and their potential synergistic ef-
fect) are well established, such a result could inform local stakeholders about immediate interventions
around the area of Lille to reduce the air pollution levels.

We have obtained some first results however the curves on Figure 5 present a marked temporal
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Figure 8: Spider chart obtained with the function plotSummary for the most likely cluster detected
on the average concentrations of NO2, O3, PM10 and PM2.5 by the MNP scan procedure in northern
France. The most likely cluster is characterized by larger median concentrations of NO2, PM10 and
PM2.5 than outside the cluster.

variability during the study period. Thus it could be interesting to apply functional spatial scan
statistics.

A univariate functional spatial scan statistic

Here we only consider the pollutant NO2. Applying a spatial scan statistic for univariate functional
data will thus allow to highlight areas where the NO2 concentration curves are abnormally high or,
on the contrary abnormally low. We choose to use the URBFSS scan procedure since it often presents
higher powers and true positive rates than the other univariate functional methods as its multivariate
counterpart MRBFSS (Frévent et al., 2021b). As mentioned in Section A multivariate spatial scan
statistic we decide to use the set of potential clusters a priori in the Equation 1 which corresponds
to the recommended approach of Kulldorff and Nagarwalla (1995), and to the default values of the
parameters mini, maxi and type_minimaxi in the scan functions. We also set a maximum radius equal
to 10 km a posteriori.

res_urbfss <- SpatialScan(method = "URBFSS", data = funi_data, sites_coord = coords,
+ system = "WGS84", mini = 1, maxi = nrow(coords)/2, type_minimaxi = "sites/indiv",
+ mini_post = 0, maxi_post = 10, type_minimaxi_post = "radius",
+ nbCPU = 7, MC = 99)$URBFSS
plot(res_urbfss, type = "map2", spobject = map_sites, only.MLC = TRUE)

11111111111111111111111111111111111111111111111111111111111111111

Figure 9: Visualization of the detected clusters with the function plot with type = "map2" for the
URBFSS scan procedure computed using the concentrations of NO2 in the 169 cantons of the Nord-Pas-
de-Calais region of northern France over the period from May 1, 2020 to June 25, 2020. Here we focus
the cluster visualization on the most likely cluster which is located in the urban area of Lille.

Again the MLC is located in the area of Lille (Figure 9).

For functional data another function is provided to give some characteristics of the clusters: we
can visualize the curves in the cluster by adding the curve of the global median with the function
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plotCurves. The function plotSummary allows to visualize the median curves inside and outside the
cluster (Figure 10): this is a cluster of overexposure to NO2, which indicates traffic-related air pollution.
Since exposure to pollution impacts health negatively, these results can be used to intervene to reduce
air pollution.

plotCurves(res_urbfss, add_median = TRUE, only.MLC = TRUE)
plotSummary(res_urbfss, type = "median", only.MLC = TRUE)
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Figure 10: Characterization of the most likely cluster detected by the URBFSS scan approach in the
context of univariate functional data consisting of the NO2 concentrations in northern France over the
period from May 1, 2020 to June 25, 2020 with the functions plotCurves (left panel) and plotSummary
(right panel). The most likely cluster is characterized by high concentration curves with a median
concentration curve higher than outside the cluster.

A functional multivariate spatial scan statistic

Now we consider the four pollutants together. To detect spatial clusters of the combination of the
four pollutants considering all available information on the time period, we apply a spatial scan
statistic for multivariate functional data. It will identify geographical areas in which one or more of
the pollutant concentration curves are abnormally high or abnormally low. For the same reason that
we have previously chosen to apply the URBFSS scan procedure, we use the MRBFSS in this context,
with the same restrictions a priori and a posteriori as for the MNP and the URBFSS scan approaches.

res_mrbfss <- SpatialScan(method = "MRBFSS", data = fmulti_data, sites_coord = coords,
+ system = "WGS84", mini = 1, maxi = nrow(coords)/2, type_minimaxi = "sites/indiv",
+ mini_post = 0, maxi_post = 10, type_minimaxi_post = "radius",
+ nbCPU = 7, MC = 99, variable_names = c("NO2", "O3", "PM10", "PM2.5"))$MRBFSS
plot(res_mrbfss, type = "map2", spobject = map_sites, only.MLC = TRUE)

11111111111111111111111111111111111111111111111111111111111111111

Figure 11: Visualization of the most likely cluster with the function plot with type = "map2" for the
MRBFSS scan procedure computed using the concentrations of NO2, O3, PM10 and PM2.5 in the 169
cantons of the Nord-Pas-de-Calais region of northern France over the period from May 1, 2020 to June
25, 2020. The most likely cluster is located in the urban area of Lille.

The detected cluster is exactly the same as before and is therefore located in the urban area of Lille
(Figure 11).
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Again we will display the curves in the cluster by adding the curve of the global median (Figure 12),
as well as the median curves inside and outside the cluster which show that this is a cluster of high
concentrations of NO2, PM10 and PM2.5 (Figure 13). As mentioned in Section A multivariate spatial
scan statistic, in environmental science it is well-known that NO2 and PM2.5 are more frequent in
urban areas due to road traffic and population density so this is consistent with the cluster observed
here. As the adverse health effects of air pollution and the combined effects of air pollutants are well
established, this result could enable interventions by local authorities around the Lille area to reduce
air pollution.

plotCurves(res_mrbfss, add_median = TRUE, only.MLC = TRUE)
plotSummary(res_mrbfss, type = "median", only.MLC = TRUE)
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Figure 12: Characterization of the most likely cluster detected by the MRBFSS scan approach in the
context of multivariate functional data consisting of the NO2, O3, PM10 and PM2.5 concentrations in
northern France over the period from May 1, 2020 to June 25, 2020 with the function plotCurves. The
most likely cluster is characterized by high concentration curves of NO2, PM10 and PM2.5.

5 Summary

In this article we presented the HDSpatialScan package. It makes it very easy to apply the existing
scan statistics developed for multivariate data or functional data (univariate or multivariate), and
the new rank-based scan statistic for univariate functional data presented in the Section Models.
The potential clusters considered are of variable size and circular. In further updates of the package
HDSpatialScan other shapes of scanning window such as elliptical or rectangular shapes will be
implemented. Our package also allows to easily plot and summarize the detected clusters. Then
examples of applications of the functions of the package have been shown. HDSpatialScan presents
the advantage that all the scan procedures are applied using the same function SpatialScan and it
uses the classical R functions plot, print and summary which makes it very quick to get started.
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Figure 13: Characterization of the most likely cluster detected by the MRBFSS scan approach in the
context of multivariate functional data consisting of the NO2, O3, PM10 and PM2.5 concentrations in
northern France over the period from May 1, 2020 to June 25, 2020 with the function plotSummary. The
most likely cluster is characterized by median concentration curves of NO2, PM10 and PM2.5 higher
than outside the cluster.
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