CONTRIBUTED RESEARCH ARTICLE

Introducing fastpos: A Fast R
Implementation to Find the Critical Point
of Stability for a Correlation

by Johannes Titz

Abstract The R package fastpos provides a fast algorithm to estimate the required sample size for a
Pearson correlation to stabilize (Schonbrodt and Perugini 2013). The stability approach is an innovative
alternative to other means of sample size planning, such as power analysis. Although the approach
is young, it has already attracted much interest in the research community. Still, to date, there exists
no easy way to use the stability approach because there is no analytical solution and a simulation
approach is computationally expensive with a quadratic time complexity. The presented package
overcomes this limitation by speeding up the calculation of correlations and achieving linear time
complexity. For typical parameters, the theoretical speedup is around a factor of 250, which was
empirically confirmed in a comparison with the original implementation corEvol. This speedup
allows practitioners to use the stability approach to plan for sample size and theoreticians to further
explore the method.

1 Sample size planning with the stability approach

Sample size planning is one of the most crucial steps before conducting an empirical study. The
approach-avoidance conflict lies in the desire for reliable conclusions, but the unwillingness to spend
resources for large samples. To balance benefit and cost there exist three more or less established paths:
power analysis (e.g. Cohen 1988), accuracy in parameter estimation [AIPE; e.g. Maxwell, Kelley, and
Rausch (2008)] and interval based accuracy methods (Algina and Olejnik 2003). Recently, a fourth
way was introduced: stability (Schonbrodt and Perugini 2013). The general idea of this approach is to
determine the sample size at which a certain percentage of studies will fall into an priori specified
interval and stay in this interval if the sample size is increased further. For instance, if the population
correlation is 0.5, one can define the limits to be 0.4 and 0.6. Given these constraints, what sample size
is required to guarantee, with a certain probability (e.g. 90%), that the correlation coefficient will not
drop below 0.4 or rise above 0.6 if more participants are added. This sample size is also referred to as
the critical point of stability for the specific parameters. The stability approach is promising because it
(1) focuses on the effect size instead of significance and (2) is fairly intuitive. Indeed, the interest in
the method is growing, evident in more than 1500 citations of the original publication. But a proper
software package for the stability approach is still missing.

When the concept was introduced, the authors presented a collection of R scripts (corEvol, avail-
able at a github repository: https://github.com/nicebread/corEvol) to derive a sample size table
for certain parameters. This implementation is too slow to plan the sample size for an individual
study as it can take hours to get reliable results. In this article a faster implementation of the stability
approach is introduced available in the R package fastpos with the function find_critical_pos.

2 Model and implementations

The general model can be shortly described as follows: Define a population correlation p, the corridor
of stability with lower limit [and upper limit # and a confidence 1 — a. Now, pairs of values from a
bivariate normal distribution with correlation p are drawn. In a first step n1y,i, pairs are drawn, to
which, repeatedly, one more pair is added so that the sample size 7 is sequentially increased by 1. For
every n the correlation 7, is calculated. The point of stability 1p0s can be described as:

fpos = min {n € N|l < ry, < u,Vm > n} (1)

Meaning that the corridor of stability is not left again after the point of stability has been crossed
and that the corridor of stability was just entered at the point of stability. Note that 11p0s is a random
variable that has to be evaluated with respect to the normal bivariate distribution. The critical point of
stability is the quantile 1 — « of the probability density function of rpos. It is possible to calculate the
transition probabilities of entering, leaving or staying in the corridor of stability for two neighboring
sample sizes n and n + 1. But, so far, no analytical solution to calculate the critical point of stability
has been proposed.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=fastpos
https://github.com/nicebread/corEvol
https://CRAN.R-project.org/package=fastpos

CONTRIBUTED RESEARCH ARTICLE

Instead, Schonbrodt and Perugini (2013) set up a Monte Carlo simulation to produce a sample
size table for some parameter combinations. In a simulation a maximum sample size 11max has to be
chosen. Then, for every #n from #pyj, t0 max the correlation can be calculated. The point of stability for
one simulation study can again be described by the above condition. From many of such studies, the
critical point of stability can be estimated for the desired confidence.

In the original implementation, the correlations were calculated from scratch for each n, using
the function cor from stats. This is slow as several millions of correlations have to be calculated for
a reliable estimate. The correlations at #n and n + 1 only differ by one pair of values, which can be
exploited for speed. Take the sum formula for the correlation coefficient at a specific sample size n:

ny i xiyi — L Xi i Yi
Vi 2 — (S x)?n Sy v — (T i)

Several sums are calculated, each consisting of adding up n terms. In corEvol this is done for
every sample size from the minimum to the maximum one. Thus, the total number of added terms for
one sum is:

'n =

@

n= — 3)

n n Mmin—1

max max min 1 =1 =1 1

2 - Zl "— Z Nmax (n;nax +1) (Mmin) (me +1)
n=

N=Nmin n=1

The variable ny;, can be ignored as it is usually a small value and could even be set to 2. Fur-
thermore, the number of sums in the correlation formula will be the same for every algorithm and is
a constant. Dropping constant factors and lower order terms, the time complexity of the described
algorithm is O (1n3,,y)-

In contrast, fastpos calculates the correlation for the maximum sample size first. This requires to
add nmax numbers for one sum. Then it subtracts one value from this sum to find the correlation for
the sample size 1max — 1, which happens repeatedly until the minimum sample size is reached (or the
corridor is left). In the worst case, the total number of terms for one sum amounts to:

fmax + Mmax — Mmin €y
Again, dropping constant factors and lower order terms, the time complexity of this algorithm is

O(max)- The ratio between the two approaches is:

Nmax (nmax + 1) - (”min - 1) Nmin
4Mmax — 2N min

©)

For the typically used nmax of 1,000 and np,, of 20, a speedup of about 250 can be expected. From
a theoretical perspective it is also interesting to study the stability approach with larger values of #max,
for which the difference becomes even more pronounced.

The theoretical speedup is only an approximation for several reasons. First, one can stop the
algorithm when the corridor is left the first time, which is done in fastpos but not in corEvol. Second,
the main function of fastpos was written in C++ (via Rcpp, Eddelbuettel et al. 2022), which is much
faster than normal R. At the same time, the algorithms contain many more steps than just calculating
correlations. For instance, setting up the population with a specific p takes some time since it usually
consists of a million value pairs. The interface functions to setup the simulations also play a role,
especially when the algorithm itself is very fast. Thus, it is necessary to study the speed benefit
empirically. But before running a benchmark it will be useful to show (1) how to use fastpos in general
and (2) that it produces the same estimates as corEvol.

3 How to use fastpos

For a simple illustration, imagine you plan an empirical study and believe the population correlation
is 0.6. You would be happy to find a stable correlation between 0.5 and 0.7 with a probability of 80%.
What this means is that there is an 80% chance of finding a correlation between 0.5 and 0.7 and by
adding more participants this corridor is not left again. In fastpos you can run:

library(fastpos)

set.seed(20200219)

find_critical_pos(rho = 0.6, precision_absolute = 0.1, confidence_levels .8,
sample_size_min = 20, sample_size_max = 1e3, n_studies = 1e4)

#> rho_pop pos.80% sample_size_min sample_size_max lower_limit upper_limit

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos

CONTRIBUTED RESEARCH ARTICLE

#> 1 0.6 104 20 1000 0.5 0.7
#> n_studies n_not_breached precision_absolute precision_relative
#> 1 10000 Q 0.1 NA

This loads the package, sets a seed for reproducibility, and runs the simulation with default
parameters (except for the ones specifically set). A progress bar is displayed if run in interactive mode.
The result is a critical point of stability of 104.

The main function of the package find_critical_pos will usually suffice for most use cases. Its
parameters are documented in detail in the package. The population correlation (rho) and the number
of simulation studies (n_studies) is self-explanatory. The chosen precision (precision_absolute)
of 0.1 (i.e. the half-width) will result in the desired corridor between 0.5 and 0.7. There is also
a convenience argument to set the precision as a relative value, precision_relative, which will
override precision_absolute. For instance, precision_relative = 0.1 produces an interval of
p £ p - 0.1. Alternatively, one can also provide the lower and upper limit of the corridor directly via
lower_limit and upper_limit. This is especially useful if the corridor is not symmetric. Notable,
most parameters can also take vectors so it is possible to run multiple simulations for different rho
values (and corresponding other parameters) at once.

The parameter confidence_levels defines the quantile corresponding to the critical point of
stability. This parameter can be a single value or a vector, but is fixed for all rho values. If different
confidence levels are of interest, providing them as a vector saves a lot of resources because one
simulation can be used to calculate the critical points of stability for all confidence levels.

The parameters sample_size_min and sample_size_max set the minimum and maximum sample
size of one simulation study. As in corkvol they default to 20 and 1,000. This means a sample of 20
observation pairs is drawn from the population and step by step one more observation is added until
the sample size of 1,000 is reached.

The output summarizes the individually set (and default) parameters as well as the critical point of
stability of about 104. The value will change slightly from run to run because only 10,000 simulations
are done here. In practice one can make a quick estimate with the default parameters and then increase
the number of simulation studies for a more robust estimate. Under GNU/Linux one can also take
advantage of the multicore support (parameter n_cores). This functionality is currently implemented
via the pbmcapply package (Kuang, Kong, and Napolitano 2022), which is based on parallel.’

For another illustration let us reproduce Schonbrodt and Perugini (2013)’s oft-cited table of the
critical points of stability for an absolute precision of 0.1 (meaning that the corridor will be p £ .1). We
take advantage of the vectorized input option by providing several p values at once. Furthermore, we
increase the number of studies to 100,000 to get accurate estimates. To cache the simulation results we
use simpleCache (Nagraj and Sheffield 2021):

library(simpleCache)

setCacheDir("titz_cache”)

simpleCache("sim2", {find_critical_pos(rho = seq(.1, .7, .1), n_studies = 1e5)})
sim2

#> rho_pop pos.80% pos.90% pos.95% sample_size_min sample_size_max lower_limit

#> 1 0.1 253 363 478 20 1000 0.0
#> 2 0.2 237 339 448 20 1000 0.1
#> 3 0.3 212 305 404 20 1000 0.2
#> 4 0.4 181 262 343 20 1000 0.3
#> 5 0.5 143 208 277 20 1000 0.4
#> 6 0.6 103 150 200 20 1000 0.5
#> 7 0.7 65 96 129 20 1000 0.6
#> upper_limit n_studies n_not_breached precision_absolute precision_relative
#> 1 0.2 1e+05 139 0.1 NA
#> 2 0.3 Te+05 102 0.1 NA
#> 3 0.4 Te+05 43 0.1 NA
#> 4 0.5 1e+05 15 0.1 NA
#> 5 0.6 Te+05 5 0.1 NA
#> 6 Q.7 Te+05 0 0.1 NA
#> 7 0.8 1e+05 %} 0.1 NA

The results are very close to the original publication (Schénbrodt and Perugini 2013). Note that a
warning is shown because in some simulations the point of stability was not found. This is not too

1The multicore support will not be demonstrated here because it is difficult to create reproducible examples
across different operating systems and number of cores.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=pbmcapply
https://CRAN.R-project.org/package=simpleCache

CONTRIBUTED RESEARCH ARTICLE

surprising as one can easily imagine an extreme outlier study that, for instance, starts at a negative
correlation with n = 20 and does not reach the specified corridor of stability at the maximum sample
size of n = 1,000. There are different ways to handle these outliers, which will affect the estimate.

4 Handling outliers

When comparing the table from above with the one in Schénbrodt and Perugini (2013), one should
notice that fastpos usually produces larger estimates. To illustrate this more reliably we need to
increase the number of studies, so that random fluctuations are minimized. Here we will run 100
simulations with 1,000,000 studies each.”

simpleCache("sim3", {find_critical_pos(rho = rep(0.1, 100),
sample_size_max = 1e3, n_studies = 1e6)})

A good summary of the data is the mean and the standard error of the distribution. Before
calculating these statistics, we select only the points of stability from the result:

sim3 <- sim3[, c("pos.80%", "pos.90%", "pos.95%")]
colMeans(sim3)

#> pos.80% pos.90% pos.95%
#> 253.2020 363.2100 477.5905

round(apply(sim3, 2, sd), 3)

#> pos.80% pos.90% pos.95%
#> 0.603 0.729 1.035

The average estimates are 253, 363 and 478 (with reasonably small standard errors), while in
Schonbrodt and Perugini (2013) they are 252, 362, 470 and in Schonbrodt and Perugini (2018) 252, 360
and 474. Note that in every case fastpos gives a slightly larger estimate, which is not just a random
fluctuation but related to the warning. In corEvol, if the corridor of stability is not reached, the
respective study is ignored when calculating the critical point of stability. This leads to a systematic
underestimation of the critical point of stability.

To illustrate this, we can use the lower level functions create_pop and simulate_pos to create a
distribution of points of stability. In the following, the first line creates a population with a specific
correlation and the second line produces several points of stability by drawing from this population.
In contrast to the main function of the package (find_critical_pos), the function simulate_pos does
not calculate quantiles, but only generates points of stability.

pop <- create_pop(rho = 0.1, size = 1e6)

simpleCache("sim4", {simulate_pos(x_pop = pop[, 11, y_pop = pop[, 21,
n_studies = 1e6, sample_size_min = 20,
sample_size_max = 1e3, replace = TRUE,
lower_limit = @, upper_limit = 0.2,
progress = FALSE)})

There are two ways to calculate the quantiles of interest:
quantile(sim4, c(.8, .9, .95), na.rm = TRUE)

#> 80% 90% 95%
#> 252 361 473

sim4b <- ifelse(is.na(sim4), 1e3, sim4)
quantile(sim4b, c(.8, .9, .95))

#> 80% 90% 95%
#> 253 363 478

%It is worth noting that (with a single core) this simulation would take several weeks to complete with corEvol
but only takes about 66 minutes with fastpos.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos

CONTRIBUTED RESEARCH ARTICLE

In the first calculation, the studies that did not reach the corridor of stability are ignored (like in
corEvol), while in the second calculation it is assumed that the point of stability was reached at the
maximum sample size. When repeating this simulation, the values will vary slightly but the second
method will never produce smaller estimates. That the second method is more accurate can be tested
by increasing the maximum sample size (to avoid studies that do not reach the corridor of stability).
Here, we will set the maximum sample size to 5,000:

simpleCache("sim5", {find_critical_pos(rho = rep(@.1, 100),
sample_size_max = 5e3,
n_studies = 1e6)3})

sim5 <- sim5[, c("pos.80%", "pos.90%", "pos.95%")]

colMeans(sim5)

#> pos.80% pos.90% pos.95%
#> 253.3100 363.5100 478.4305

round(apply(sim5, 2, sd), 3)

#> pos.80% pos.90% pos.95%
#> 0.631 0.870 1.266

If every study reaches the point of stability, the estimates are 253, 364 and 478. When the maximum
sample size is too small (as in the second to last simulation), fastpos is indeed closer to these estimates
than corEvol. While the difference to corEvol might seem practically negligible, corEvol’s estimates
are clearly biased. Furthermore, depending on the parameters, the problem can become more severe.
A very narrow corridor will lead to many studies not reaching the corridor, which corEvol will not
even notice. On the other hand, fastpos will throw a warning, which should be taken seriously.

But even fastpos might underestimate the critical point of stability if the maximum sample size is
too small: All estimates with a maximum sample size of 5,000 are slightly larger than the ones with a
maximum sample size of 1,000. With a larger maximum sample size, there are more opportunities to
leave the corridor again. At some point the probability of this event is very low because the corridor
limits are too far away, but the probability is not 0. Thus, increasing the maximum sample size even
further (here to 10,000) should lead to slightly larger estimates:

simpleCache("”sim6", {find_critical_pos(rho = rep(0.1, 100),
sample_size_max = le4,
n_studies = 1e6)3})

sim6 <- sim6[, c("pos.80%", "pos.90%", "pos.95%")]

colMeans(sim6)

#> pos.80% pos.90% pos.95%
#> 253.4000 363.7000 478.7005

round(apply(sim6, 2, sd), 3)

#> pos.80% pos.90% pos.95%
#> 0.667 0.937 1.234

Indeed, all estimates are slightly larger but after rounding to a whole number only for the con-
fidence of 95% the critical point of stability changes from 478 to 479. Furthermore, the randomness
of the simulations permits such fluctuations since the standard errors are about 1. But note that all
estimates increase when the maximum sample size changes from 1,000 to 5,000 and then to 10,000,
which is a clear hint for a bias. Nonetheless, it appears unlikely that the estimates would increase
much, when the maximum sample size grows further. The remaining problem is that the theoretical
idea of stability assumes an infinite maximum sample size or, at least, that the maximum sample size
is equal to the population size. It is therefore of some technical and practical interest to investigate
the relationship between the maximum sample size and the critical point of stability in a dedicated
simulation study with fastpos. Such a study would not be easy to approach with corEvol because
of the quadratic time complexity. In the next section the speed difference between both packages is
demonstrated empirically in a benchmark.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos

CONTRIBUTED RESEARCH ARTICLE

10

5 Benchmark

corEvol was written as a script for a simulation study and cannot be simply called via a function in a
package. Thus, a helper function will be used that sources the script files. To make the benchmark
reproducible, the original repository corEvol was forked and a benchmark branch created. With
git and a shell installed, the following tries to update the repository in the corEvol folder. If this is
unsuccessful (the folder does not exist), the repository is cloned.

git -C corEvol pull || git clone --single-branch --branch benchmark \
https://github.com/johannes-titz/corEvol

Alternatively, you can download the required files from the supplementary material of this article.

For corkvol, two files are sourced for the benchmark. The first file generates the simulations and
the second calculates the critical point of stability. In corEvol a simulation run takes a lot of time and
thus it is not practical to run it too many times. But since the expected speed difference between both
implementations is substantial, this should not be a concern. Here, ten repetitions were done with
the microbenchmark (Mersmann 2021) package. The code was run on a Dell Server 16515 with an
AMD EPYC 7302P CPU. Only one core was used to not confound the result with the specific parallel
implementation.

library(microbenchmark)

corevol <- function() {
setwd("corEvol")
source("@1-simdata.R")
source("@2-analyse.R")

setwd("../")
}
fastpos <- function() {
find_critical_pos(rho = .1, sample_size_max = 1e3, n_studies = 1e4,
progress = FALSE)
}

simpleCache("bm"”, {microbenchmark(corevol = corevol(), fastpos = fastpos(),
times = 10, unit = "s")})
summary (bm)

#> expr min 1q mean median uq max
#> 1 corevol 350.4551133 352.642384 355.7306834 355.221224 358.2854179 365.8751542
#> 2 fastpos 0.5692708 0.579922 0.6215005 0.596842 0.6066209 0.8496276
#> neval cld

#> 1 10 b

#> 2 10 a

For the chosen parameters, fastpos is about 572 times faster than cortvol, for which there are
two main reasons: (1) fastpos is built around a C++ function via Rcpp and (2) this function does not
calculate every calculation from scratch, but only calculates the difference between the correlation
at sample size n and n — 1 via the sum formula of the Pearson correlation (see Equation (2)). There

are some other factors that might play a role, but they cannot account for the large difference found.

For instance, setting up a population takes quite long in corEvol (about 17s), but compared to the 6
minutes required overall, this is only a small fraction. There are other parts of the corEvol code that
are fated to be slow, but again, a speedup by a factor of 572 cannot be achieved by improving these
parts. The presented benchmark is not comprehensive, but still demonstrates that fastpos can be used
with no significant waiting time for a typical scenario, while for corEvol this is not the case.

Another benchmark on a local i5-3320 2.6 GHz CPU from 2012 resulted in means of 1.5s for fastpos
and 603s for corEvol giving a speedup of around 400. Thus, even on older CPUs and single-cored
fastpos delivers almost instantly for default parameters.

6 Other effect sizes

The focus of fastpos is on the Pearson correlation as the effect size. In principle the stability approach
can be extended to all sorts of effect sizes or even other statistical parameters. Since the original
authors studied the Pearson correlation, it made sense to improve the algorithm for this specific use

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos

CONTRIBUTED RESEARCH ARTICLE

11

case. But mathematical shortcuts as in Equation (2) should also exist for other effect sizes and might
be implemented in the future.

A simple alternative for applying the method to other effect sizes is to convert these effects to the
Pearson correlation. Such conversions are very common in meta-analyses, where a consistent effect
size must be used across all studies to calculate a meaningful average effect. Standard approximate
conversion formulas can be found in text books on research methods (Borenstein et al. 2021; SedImeier
and Renkewitz 2018). Several packages in R also provide these conversions. For instance, effectsize
(Ben-Shachar, Liidecke, and Makowski 2020) includes the functions d_to_r and r_to_d. d_to_r is
based on the approximation r = ﬁ, which should only be used for equal group sizes. As an
example, consider d = 0.5 between two equally sized groups and a corridor with limits of 0.4 and 0.6.

r <- effectsize::d_to_r(0.5)

lower_limit <- effectsize::d_to_r(0.4)

upper_limit <- effectsize::d_to_r(0.6)

simpleCache("sim7", {find_critical_pos(rho = r, sample_size_max = 11e3,
n_studies = 1e5,
lower_limit = lower_limit,
upper_limit = upper_limit)})

sim7

#> rho_pop pos.80% pos.90% pos.95% sample_size_min sample_size_max lower_limit
#> 1 0.2425356 1119 1606 2108 20 11000 0.1961161
#> upper_limit n_studies n_not_breached precision_absolute precision_relative

#> 1 0.2873479 Te+05 Q NA NA

The corresponding Pearson correlation for d = 0.5 £ 0.1 is about 0.24, with very narrow and
slightly asymmetric limits (0.20 to 0.29). The critical point of stability is 2108 for a confidence level of
95%.

7 Summary

In this article, fastpos, a package for estimating the critical point of stability was introduced. The
package is much faster than the original implementation and can be conveniently used for sample
size planning as well as Monte Carlo simulation studies. While the original implementation ignores
studies that do not reach the corridor of stability, fastpos takes them into account and gives a more
conservative and more accurate estimate (i.e. a larger critical point of stability). From a practitioner’s
perspective, this detail might be negligible for typical parameters and relatively wide corridors. But
from a statistical perspective, this detail is of relevance and further simulation studies are required to
better understand the stability approach in general. Finally, a comparison to other methods of sample
size planning would be of much interest and could influence how empirical scientists plan for sample
size in the future. fastpos can be a useful tool to achieve these goals.

8 Acknowledgment

I want to thank Matthias Horr and Thomas Schifer for insightful discussions about the stability
approach. Furthermore, I want to thank an anonymous reviewer for many helpful suggestions on
how to improve the article and the package.

References

Algina, James, and Stephen Olejnik. 2003. “Sample Size Tables for Correlation Analysis with Applica-
tions in Partial Correlation and Multiple Regression Analysis.” Multivariate Behavioral Research 38:
309-23. https://doi.org/10.1207/515327906MBR3803_02.

Ben-Shachar, Mattan S., Daniel Liidecke, and Dominique Makowski. 2020. “effectsize: Estimation
of Effect Size Indices and Standardized Parameters.” Journal of Open Source Software 5 (56): 2815.
https://doi.org/10.21105/joss.02815.

Borenstein, Michael, Larry V Hedges, Julian PT Higgins, and Hannah R Rothstein. 2021. Introduction
to Meta-Analysis. John Wiley & Sons.

Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum
Associates.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=effectsize
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos
https://CRAN.R-project.org/package=fastpos
https://doi.org/10.1207/S15327906MBR3803_02
https://doi.org/10.21105/joss.02815

CONTRIBUTED RESEARCH ARTICLE

12

Eddelbuettel, Dirk, Romain Francois, JJ Allaire, Kevin Ushey, Qiang Kou, Nathan Russell, Inaki Ucar,
Douglas Bates, and John Chambers. 2022. Rcpp: Seamless r and c++ Integration. https://CRAN.R-
project.org/package=Rcpp.

Kuang, Kevin, Quyu Kong, and Francesco Napolitano. 2022. pbmcapply: Tracking the Progress of Mc*pply
with Progress Bar. https://CRAN.R-project.org/package=pbmcapply.

Maxwell, S. E., K. Kelley, and J. R. Rausch. 2008. “Sample Size Planning for Statistical Power and
Accuracy in Parameter Estimation.” Annual Review of Psychology 59: 537-63. https://doi.org/10.
1146/annurev.psych.59.103006.093735.

Mersmann, Olaf. 2021. microbenchmark: Accurate Timing Functions. https://CRAN.R-project.org/
package=microbenchmark.

Nagraj, VP, and Nathan Sheffield. 2021. simpleCache: Simply Caching r Objects. https://CRAN.R-
project.org/package=simpleCache.

Schonbrodt, E. D., and M. Perugini. 2013. “At What Sample Size Do Correlations Stabilize?” Journal of
Research in Personality 47: 609-12. https://doi.org/10.1016/3.jrp.2013.05.009.

. 2018. “Corrigendum to ‘At What Sample Size Do Correlations Stabilize?’ [J. Res. Pers. 47
(2013) 609-612].” Journal of Research in Personality 74: 194. https://doi.org/10.1016/j.jrp.2018.
02.010.

Sedlmeier, Peter, and Frank Renkewitz. 2018. Forschungsmethoden und Statistik fiir Psychologen und
Sozialwissenschaftler. 3rd ed. Hallbergmoos, Germany: Pearson Studium.

Johannes Titz

Chemnitz University of Technology

Department of Psychology

Chemnitz, Germany
https://johannestitz.com

ORCiD: 0000-0002-1102-5719
johannes.titz@psychologie.tu-chemnitz.de

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=pbmcapply
https://doi.org/10.1146/annurev.psych.59.103006.093735
https://doi.org/10.1146/annurev.psych.59.103006.093735
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=simpleCache
https://CRAN.R-project.org/package=simpleCache
https://doi.org/10.1016/j.jrp.2013.05.009
https://doi.org/10.1016/j.jrp.2018.02.010
https://doi.org/10.1016/j.jrp.2018.02.010
https://johannestitz.com
https://orcid.org/0000-0002-1102-5719
mailto:johannes.titz@psychologie.tu-chemnitz.de

	Introducing fastpos: A Fast R Implementation to Find the Critical Point of Stability for a Correlation
	Sample size planning with the stability approach
	Model and implementations
	How to use
	Handling outliers
	Benchmark
	Other effect sizes
	Summary
	Acknowledgment
	References

