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An Open-Source Implementation of the
CMPS Algorithm for Assessing Similarity
of Bullets
by Wangqian Ju and Heike Hofmann

Abstract In this paper, we introduce the R package cmpsR, an open-source implementation of the
Congruent Matching Profile Segments (CMPS) method developed at the National Institute of Standards
and Technology (NIST) for objective comparison of striated tool marks. The functionality of the
package is showcased by examples of bullet signatures that come with the package. Graphing tools
are implemented in the package as well for users to assess and understand the CMPS results. Initial
tests were performed on bullet signatures generated from two sets of 3D scans in the Hamby study
under the framework suggested by the R package bulletxtrctr. New metrics based on CMPS scores
are introduced and compared with existing metrics. A measure called sum of squares ratio is included,
and how it can be used for evaluating different scans, metrics, or parameters is showcased with the
Hamby study data sets. An open-source implementation of the CMPS algorithm makes the algorithm
more accessible, generates reproducible results, and facilitates further studies of the algorithm such as
method comparisons.

Introduction

In this paper, we present an open-source implementation of the algorithm of the Congruent Matching
Profile Segments (CMPS) method. Chen et al. (2019) developed the CMPS method for “objective
comparison of striated tool marks” and demonstrated its use in some examples of comparing bullet
signature correlations. Although Chen et al. (2019) conceptually describe the CMPS algorithm in
their paper, the authors did not release an implementation of their method. Thus, our effort here is
to introduce the CMPS method to the R community and provide an open-source, publicly available
implementation of the algorithm to use, review, and improve. Our implementation is made available
as part of the R package cmpsR on CRAN.

According to the Uniform Crime Reporting Program of the FBI (Federal Bureau of Investigation),
“more than 76 percent (76.7) of the homicides for which the FBI received weapons data in 2020 involved
the use of firearms” (United States Department of Justice, Federal Bureau of Investigation., n.d.a). At
the same time, the number of murder victims jumped between 2019 and 2020 by more than 23 percent
(23.4) to 17754 (United States Department of Justice, Federal Bureau of Investigation., n.d.b). This
increase is unprecedented and highlights the important role that firearm examination plays in all these
cases. An important task of firearm examination is to answer the question of whether two pieces of
evidence come from the same source or whether a piece of evidence matches a sample obtained from a
specific firearm. Here, in particular, we are interested to determine whether two bullets were fired from
the same gun barrel. Assessing the similarity between two bullets is based on a comparison of striation
marks acquired during the firing process as bullets are propelled through the barrel. The current state
of the art sees firearms examiners make an assessment of similarity based on a visual comparison,
generally, using a comparison microscope (AFTE Criteria for Identification Committee 1992). This
practice has been criticized for its lack of objectivity and the associated problem of determining valid
error rates (President’s Council of Advisors on Science and Technology 2016).

A report published by the Committee on Identifying the Needs of the Forensic Sciences of the
National Research Council (2009) states that “[m]uch forensic evidence-including, for example, bite
marks and firearm and toolmark identification—is introduced in criminal trials without any mean-
ingful scientific validation, determination of error rates, or reliability testing to explain the limits of
the discipline.” To overcome those criticisms and concerns, researchers have been making an effort
to build databases and develop frameworks and algorithms that bring an objective and quantitative
assessment into the field. The database of Zheng (2016) with digital 3D topographic scans from
various studies by Brundage (1998), Hamby, Brundage, and Thorpe (2009), Hamby et al. (2019) and
others, provides a great resource for researchers. Algorithms that can be validated and tested and
generate quantitative results are developed for 2D and 3D surface texture (Song et al. 2005), tool marks
(Chumbley et al. 2010), and striae on Land Engraved Areas (LEAs) of bullets Chen et al. (2019). The
notion of bullet signatures is one of the results of these efforts, and we will use it to explain the CMPS
algorithm and showcase the cmpsR implementation. Bullet signatures can be extracted from bullet
LEAs, typically one for each land engraved area, and how those bullet signatures are extracted from
scans will be discussed in the Background section. Bullet signatures capture striation marks on the
bullet in a numeric format and therefore serve as the foundation for algorithms. These scans played
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an important role in bringing objectivity into the field. In the following sections, we will: review the
background of bullet signature comparisons, discuss how we followed the idea described by Chen et
al. (2019) for the implementation of the CMPS algorithm, propose new metrics based on the CMPS
score and a principled evaluation framework for algorithmic results comparison, and present results
of applying our implementation to real data.

Background

Hamby data set

The datasets we worked with come from the James Hamby Consecutively Rifled Ruger Barrel
Study (Brundage 1998; Hamby, Brundage, and Thorpe 2009; Hamby et al. 2019), in particular, Hamby
set 252 and Hamby set 44. For each Hamby set, a total of 35 bullets is fired from (the same) ten
consecutively manufactured Ruger P-85 pistol barrels. Two bullets are fired from each barrel, making
up a set of 20 reference bullets. An additional 15 bullets are fired from these ten barrels in a fashion
unknown to the study participant. The aim of the Hamby Study was to have firearms examiners
identify which barrel each of the 15 questioned bullets was fired from. The Ruger P-85 barrels are
traditionally rifled barrels with six grooves and lands as shown in Figure 1. During the firing process,
grooves and lands are engraved on a bullet. Firearms examiners use striation marks on land engraved
areas (LEAs) for their visual comparison. For algorithmic purposes, 3D topographical images of
land engraved areas were obtained and stored in x3p format (XML 3-D Surface Profile). The x3p
format provides a standard way of exchanging 2D and 3D profile data. It conforms to the ISO5436-
2 standard adopted by the OpenFMC (Open Forensic Metrology Consortium), a group of firearm
forensics researchers who contributes to the establishment of best practices of using metrology in
forensic science. Hamby set 252 was scanned using a NanoFocus lens at 20x magnification with the
scan resolution being 1.5625 µm × 1.5625 µm per pixel. Hamby set 44 was scanned at the Roy J Carver
High-Resolution microscopy lab at Iowa State. These scans were acquired with a Sensofar Confocal
Light Microscope at 20x magnification for a nominal resolution of 0.645 µm × 0.645 µm per pixel.
Both Hamby set 252 and Hamby set 44 are publicly available from the NIST Ballistics Database Project
(Zheng 2016).

Extracting signatures from LEA scans

The automated framework for extracting signatures from x3p files used in this paper was proposed
by Hare, Hofmann, and Carriquiry (2017) and is implemented in the R packages x3ptools (Hofmann
et al. 2020) and bulletxtrctr (Hofmann, Vanderplas, and Krishnan 2019). x3ptools is a package to
read, write, and generally, process x3p files. The bulletxtrctr package implements a pipeline for
extracting and comparing signatures from scans of land-engraved areas.

Figure 2 gives an overview of all of the steps in the process from scan to signatures. Figure 2(a)
shows a rendering of a 3D scan of a bullet land engraved area. The raised portion of the surface on
the left and right of the scan are parts of the adjacent groove engraved areas (GEAs), the middle area
shows a land engraved area with well expressed striation marks. The first step of obtaining the bullet
signature is to extract a cross-section at a fixed height on the land engraving.

The thin white horizontal line in Figure 2(a) indicates which cross-section was identified by the
algorithm to represent the LEA; Figure 2(b) shows the corresponding cross-sectional view. Groove
engraved areas are removed from the analysis as indicated by the vertical blue lines in Figure 2(c)
and Figure 2(d). A non-parametric LOESS smooth (Cleveland, Grosse, and Shyu 1991) is fitted to
capture the bullet curvature (Figure 2(e)) and, finally, the bullet signature (Figure 2(f)) is obtained as
residuals of the cross-section and the fitted smooth. Note that in Chen et al. (2019) bullet signatures
are referred to as bullet profiles. However, to avoid confusion, we distinguish the notion of bullet
signatures from bullet profiles. Bullet profiles are shown in panels (b), (c), and (d) of Figure 2, while
Figure 2(f) shows the corresponding bullet signature. Identifying the groove engraved areas correctly
is fundamental for a correct downstream analysis of the signatures. We have provided an interactive
web application to allow for a human-in-the-middle inspection and intervention. It is implemented as
an R Shiny App (Chang et al. 2021) named bulletinspectR for identifying and correcting those errors.
An example of the extraction process with corresponding code and parameter settings can be found in
the “Supplementary materials”. Note that the process of extracting signatures might be different from
the one used in Chen et al. (2019) because no code or parameter settings are made available publicly.

Conceptual idea of CMPS

Most algorithms for comparing striation marks are based on the digitized signatures and produce
a similarity score Krishnan and Hofmann (2019). The congruent matching profile segments (CMPS)
algorithm, developed by Chen et al. (2019) for “objective comparison of striated tool marks”, is one
such algorithm. The algorithm’s main idea is to take a set of consecutive and non-overlapping basis
segments from the comparison and for each segment find the “best” registration position on the
reference (the other bullet signature) with respect to their cross-correlation values. From a comparison
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Figure 1: Photo of a traditionally rifled gun barrel (left) and a fired bullet (right).

Figure 2: A framework of obtaining a bullet signature. (a) rendering from the 3D topographic scan of
a land engraved area (LEA). The selected crosscut location is indicated by a thin white horizontal line.
(b) view of the cross-section of the land engraved area at the white line in (a). (c) the crosscut data
plotted in 2D; blue vertical lines indicate the position of the left and right grooves. (d) the crosscut
data after chopping the left and right grooves. (e) the fitted curvature using LOESS. (f) after removing
the curvature from the crosscut data, the bullet signature is obtained.
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of these registration positions, a congruent registration position is identified, and the number of
basis segments taking the congruent registration position is the CMPS score. Note that researchers in
Chen et al. (2019) refer to the origin of basis segments as the reference, but in this paper we refer to it
as the comparison signature. High CMPS scores are achieved between more similar signatures and
are therefore indicative of a same-source pair. Low scores between pairs of signatures are attributed
to different source pairs. However, a specific threshold of the CMPS score to distinguish between
same-source and different-source comparisons is not provided in Chen et al. (2019), instead the
threshold depends on the underlying structure of the data and the choice of parameters. In a legal
setting this variability is problematic because it allows for situations in which experts could choose
parameters based on whether they are witnesses for the defense or the prosecution. Further research
is needed to understand how to determine optimal threshold settings. The CMPS algorithm can assist
firearms examiners with drawing a conclusion about the source of a comparison pair. Thus, in this
paper we present an open-source implementation of the CMPS algorithm in the R package cmpsR
available from both CRAN and Github. This publicly available implementation calculates the CMPS
score of a comparison using the following code:

# install.packages("cmpsR")

library(cmpsR)
data(bullets)

sig1 <- bullets$sigs[[2]]$sig
sig2 <- bullets$sigs[[9]]$sig
sig3 <- bullets$sigs[[10]]$sig

cmps_result_KM <- extract_feature_cmps(sig1, sig2)
cmps_result_KNM <- extract_feature_cmps(sig1, sig3)

In this example, the comparison between sig1 and sig2, two signatures coming from the same
source (a known-match comparison), gets a CMPS score of 17; the comparison between sig1 and sig3,
two signatures coming from different sources (a known non-match comparison), gets a CMPS score of
1.

We also implemented graphing tools for users to better understand these results as well as the
algorithm itself.

The section “Implementation” will go through the algorithm and show how to use the cmpsR
package. A further example that illustrates the main points is also included. In the section on
“Evaluation metrics”, we introduce new CMPS metrics that summarize land-level CMPS scores and a
sum of squares ratio that can be used to evaluate algorithmic results. The section “Results” presents
the results of evaluating the cmpsR package using Hamby set 252 and Hamby set 44. The results
from Hamby set 252 are used to verify that our implementation is, at least qualitatively, comparable
to the algorithm described in Chen et al. (2019). Results from Hamby 44 show the need for a further
investigation of the parameter choices even in the case of bullets fired from the same barrels. The last
section covers some final discussion and conclusions.

Implementation

Algorithm

Conceptually, the CMPS algorithm consists of three main steps:

1. cut the comparison signature into consecutive, non-overlapping, and equal-length basis
segments: The command get_segs(x, len=50) implements this step: it takes bullet signature x
in the format of a numeric vector and cuts it into consecutive, non-overlapping and equal-length
segments of length len, which are referred to as “basis segments”. Note that the parameter len
determines the length of a basis segment and thus affects the total number of basis segments,
which is the upper limit of the CMPS score of a comparison. The default value of len is 50,
which will result in about 25 basis segments for the example data of the package.

2. identify candidate positions: For each basis segment a set of candidate registration positions
on the comparison signature is identified based on the segment’s similarity to the reference
signature. In the first step, the cross-correlation function of the segment to the reference is
calculated, then a number of positions with high correlation values are identified as candidate
positions. In case multiple segment lengths are considered, the length of each basis segment
is expanded (by default it is doubled) and these two steps are repeated. Only when candidate
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positions coincide (or are similar enough), they are considered further. Figure 5 and Figure 6
illustrate these ideas.

• Calculate the cross-correlation curve: Calculate the cross-correlation curve between a
basis segment x and the reference signature y using the function get_ccf4(x, y, ...) as
shown in Figure 5(b). The position indicates the lag by which a basis segment is moved
with respect to its original placement. A position is considered “good” if it results in a
peak in the cross-correlation between the basis segment and the reference.

• Correlation peaks: Two strategies referred to as “multi-peak inspection” and “multi-peak
inspection at different segment lengths” in Chen et al. (2019) are used for identifying
positions of correlation peaks as candidate positions. The latter is also called the “multi-
segment lengths strategy”. The parameter npeaks_set in extract_feature_cmps(...)
determines which strategy to use and the number of candidate positions:

– If npeaks_set is an integer vector of length 1, for example, npeaks_set = 5, the
positions of the top five peaks in the cross-correlation curve are identified as candidate
positions for registration.

– If npeaks_set is an integer vector of length more than 1, for example, npeaks_set
= c(5, 3, 1), the multi-segment lengths strategy will be used: calculate the cross-
correlation function between a basis segment and the reference and identify positions
of the top five peaks; double the segment length to a specified value, re-calculate the
cross-correlation function, and identify three peaks; repeat this process and identify
a single peak in the newly computed cross-correlation function. Figure 6 shows an
example of three levels of basis segment 6 and their corresponding cross-correlation
curves and identified peaks. Note that in Chen et al. (2019) the segment length is
doubled at each level of a basis segment, but in the present implementation users are
allowed to choose the segment length at each level.

– get_ccr_peaks(comp, segments, seg_outlength, nseg = 1, npeaks = 5) computes
the cross-correlation curve between a basis or increased segment and the reference sig-
nature and finds peaks in the cross-correlation curve. The number of peaks detected
is equal to npeaks, which is an integer. segments, seg_outlength, and nseg deter-
mine the segment in the cross-correlation computation, and comp gives the reference
signature. If the multi-segment lengths strategy is used, then get_ccr_peaks(...) is
called in a lapply() for each level of the basis segment. The resulting list is called
ccr_list.

• multi-segment lengths strategy: with the multi-segment lengths strategy being used, a
position is identified as a candidate position for registration and is called a “consistent
correlation peak” if it results in a top peak in the cross-correlation curve with a tolerance
zone determined by Tx in all segment levels. Note that in Chen et al. (2019), a segment
at its largest scale (highest level) always identifies one peak, but we do not have this
requirement in our implementation.

– the function get_seg_scale(segments, nseg, out_length) is used to obtain the
(potentially increased) version of a basis segment. segments, which is a list containing
all basis segments generated by the function get_segs(...) in step 1, and nseg are
used to determine the basis segment to be increased. out_length specifies the length
of the output segment.

– get_ccp(ccr_list, Tx = 25) tries to identify the “consistent correlation peak”.
ccr_list is the result of lapply() and get_ccr_peaks(...), and Tx determines
the size of a tolerance zone used in identifying the consistent correlation peak.
get_ccp(...) returns NULL if there is no consistent correlation peak.

3. determine the congruent registration position: A candidate position “receives” votes from
basis segments that identify it or a close position within a tolerance zone of Tx as a candidate
position in step 2. Votes for all candidate positions are tallied, and the position with the highest
number of votes gets chosen as the congruent registration position, indicating that most of the
basis segments find their highly similar counterpart in the reference signature in terms of
correlation at this registration position. In the case of ties, the middle position is taken as
the congruent registration position. Basis segments with a congruent registration position are
called “congruent matching profile segments” (CMPS). The total number of CMPS is the CMPS
score of the comparison. get_CMPS(input_ccp, Tx = 25) is the function that tallies the votes
and determines the congruent registration position and congruent matching profile segments
(CMPS).

Note that there are several parameters in the CMPS algorithm that will affect the final results and
are left to the users to decide, such as the length of basis segments seg_length in step 1, the number of
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peaks npeaks_set identified on each level in step 2, and the length of the tolerance zone Tx in both
step 2 and 3. In our implementation of the CMPS algorithm, we used the parameters given in the
original CMPS paper (Chen et al. 2019) as the default values for these parameters. However, the
authors state that no cross-validation has been done - there might also be issues with respect to the
resolution of the scans. Further research is needed, until then users are advised to think of default
values as starting values and consider alternatives. However, the evaluation framework based on
the sum of squares ratio introduced in the later section could be used to evaluate the choices of these
parameters. The main function that combines all steps in the CMPS algorithm described above is
called extract_feature_cmps(...). Here we present it with its default parameters.

extract_feature_cmps(
x,
y,
seg_length = 50,
Tx = 25,
npeaks_set = c(5, 3, 1),
include = NULL,
outlength = NULL

)

The function extract_feature_cmps allows for the following input from users besides the previ-
ously discussed parameters seg_length, npeaks_set, and Tx:

• x and y are two signatures: x serves as the comparison signature (which will be divided into
basis segments) and y is the reference signature;

• include determines the format of the function result. Besides the CMPS_score, other aspects of
the comparison help in understanding how the CMPS_score is computed. By default include
is set to NULL and only the CMPS_score is returned; further results are included when include
is (an abbreviation of) one of or a vector of the following strings: "nseg", "congruent_pos",
"congruent_seg_idx", "segments", "parameters", and "full_result". If include is specified
as "full_result" (or its abbreviation), the output includes everything listed below.

– nseg: the number of basis segments from the comparison signature; this is also the highest
possible CMPS score of the comparison;

– congruent_pos: the congruent registration position;
– congruent_seg_idx: the indices of all congruent matching profile segments;
– ccp_list: a list showing identified candidate positions of all basis segments;
– pos_df: a data frame containing all candidate positions and their respective number of

votes;
– segments: a list containing all basis segments;
– parameters: a list containing all input arguments of extract_feature_cmps;

• outlength specifies the segment length of a basis segment at each level under the multi-segment
lengths strategy. By default outlength is set to NULL, indicating that a basis segment should
double its segment length at the next level and conforming to the description in Chen et al.
(2019) .

In the remainder of the paper, we showcase the use of the cmpsR functionality on some examples
and present the results of applying it to two datasets.

Installation

The cmpsR package is publicly available from CRAN and can be installed by

install.packages("cmpsR")

Moreover, its development version is also available from Github and can be installed by

# install.packages("remotes")
remotes::install_github("willju-wangqian/cmpsR")

An example

The cmpsR package contains a simple example to illustrate the basic usage of the package. The
data in this example are twelve bullet signatures obtained from two bullets in Hamby set 252 (Hamby,
Brundage, and Thorpe 2009). The procedure for generating signatures from high-resolution 3D
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Figure 3: Signatures of all lands of bullet 1 in the top row, and of bullet 2 in the bottom row. Signatures
in the second row are ordered to be in phase with the signatures above, i.e. matching signatures are
displayed on top of each other. On the x-axis is the length of the scan in millimeter, and on the y-axis
is the relative height in micron.

topographic scans of bullet lands used here follows the methodology described in Hare, Hofmann,
and Carriquiry (2017) (as discussed above). The two bullets under consideration are known to have
been fired from the same gun barrel, so for the 36 pairwise land-by-land comparisons, six comparisons
are from same-source pairs (known matches) while thirty are from different-source pairs (known
non-matches). To access the example data, we use

library(cmpsR)
data(bullets)

bullets$sigs is a list of twelve numeric vectors corresponding to the twelve bullet signatures
shown in Figure 3. bullets$source contains the URLs to the corresponding x3p file containing the
topographic scan from the NIST Ballistics Toolmark Research Database (Zheng 2016).

The signatures of Land 4 of Bullet 1 and Land 5 of Bullet 2 are stored in objects sigs2 and sigs1,
respectively. This comparison consists of a pair of signatures that are known to be a match – a KM
(known match) comparison. We compute the CMPS score using two versions of the CMPS algorithm:

sigs1 <- bullets$sigs[bullets$bulletland == "2-5"][[1]]
sigs2 <- bullets$sigs[bullets$bulletland == "1-4"][[1]]

# compute cmps

# algorithm with multi-peak insepction at three different segment levels
cmps_with_multi_scale <-
extract_feature_cmps(sigs1$sig, sigs2$sig,
npeaks_set = c(5, 3, 1), include = "full_result"

)

# algorithm with multi-peak inspection at the basis scale only
cmps_without_multi_scale <-
extract_feature_cmps(sigs1$sig, sigs2$sig,
npeaks_set = 5, include = "full_result"

)
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In the first example, npeaks_set is a vector of three integers, i.e. the algorithm uses the multi-
segment lengths strategy to create the result object cmps_with_multi_scale. For cmps_without_multi_scale
each basis segment is linked to the top 5 candidate positions. We use include = "full_result" to
capture all results. In this example, the CMPS is 9 when using multiple segments, and 12 when using
a single segment. As discussed in Chen et al. (2019), using multi-segment lengths strategy can reduce
the number of false positives when identifying candidate positions; however, any score-based method
is walking the line between false positives and false negatives. As the number of false positives is
reduced the number of false negatives might rise. More discussion and comparisons between the
two versions of the CMPS algorithm will be presented in later sections. Note that the multi-segment
lengths method is slower because the algorithm is run once for each segment length.

Visualize and understand CMPS results

We also implemented graphing tools for visualizing the results of the CMPS algorithm. The goal
is to provide users with tools to inspect each of the basis segments and to help them have a better
understanding of how the algorithm works. Figure 4 shows the plots generated by the first graphing
function, cmps_signature_plot(), and continues with the example above. cmps_signature_plot()
takes the output of extract_feature_cmps(..., include = "full_result") and returns a list of 5
elements. It creates an overall impression of how the comparison signature aligns with the reference
signature at the congruent registration position.

• The first element is a plot called segment_shift_plot, shown in Figure 4(a). On this plot the
reference signature is drawn as a black line, congruent matching profile segments from the
comparison signature are overlaid in red at the congruent registration position.

sig_plot <- cmps_signature_plot(
cmps_with_multi_scale

)

# (a)
sig_plot$segment_shift_plot

• The second plot is called signature_shift_plot, shown in Figure 4(b). This visual presents
both the comparison signature and the reference signature. The comparison signature is aligned
with the reference signature based on the congruent registration position. Congruent matching
profile segments are highlighted by solid red lines.

# (b)
sig_plot$signature_shift_plot

• Other elements of this list are seg_shift and sig_shift. sig_shift gives the congruent reg-
istration position, while seg_shift is a data frame showing the congruent matching profile
segments and their identified candidate position closest to the congruent registration position.

sig_plot$seg_shift
#> seg_idx seg_shift
#> 7 7 0
#> 8 8 -1
#> 14 14 5
#> 16 16 8
#> 17 17 8
#> 18 18 8
#> 19 19 9
#> 20 20 9
#> 22 22 12

While cmps_signature_plot() focuses on the signature level, cmps_segment_plot() focuses on
the segment level. It provides the “full result” of extract_feature_cmps(), but also takes an argument,
seg_idx, indicating which segment should be inspected. When checking sig_plot$seg_shift we
notice that segment number 6 is not one of the congruent matching profile segments. We can therefore
set seg_idx = 6 in cmps_segment_plot() and investigate the reason why this segment disagrees with
the congruent registration position.

For each segment scale, we have two plots: segment_plot and scale_ccf_plot, as shown in Figure
5 for the example of segment number 6:

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 275

−1

0

1

2

3

0 300 600 900
x

si
g

(a)

−2

−1

0

1

2

3

0 300 600 900 1200
x

si
g

cmps non−cmps reference sig

(b)

Figure 4: In (a) the black line shows the comparison signature; each red line segment shows one
congruent matching profile segment. Each grey rectangle highlights one congruent matching profile
segment. In (b) the black line shows the reference signature; the red line shows the comparison
signature. Solid part shows the congruent matching profile segments, and the dashed part shows
segments that do not agree with the congruent registration position.

• Figure 5(a) is the segment_plot for basis segment 6 at level one (in its original length). We
used npeaks_set = c(5, 3, 1) in extract_feature_cmps() when calculating the CMPS score.
Therefore the top five peaks are identified in the cross-correlation curve at level one. Segment
6 is plotted at the positions where these five peaks are identified with dashed lines in the
segment_plot. The solid thick black line shows the segment at its original position (which in
this example is very close to the actual registration position).

seg_plot <- cmps_segment_plot(
cmps_with_multi_scale,
seg_idx = 6

)

# (a)
seg_plot[[1]]$segment_plot

• Figure 5(b) is the scale_ccf_plot of basis segment 6 at level one. It shows the cross-correlation
curve computed by the reference signature and the level-one basis segment 6. The five highest
peaks are marked by dots on the curve.

# (b)
seg_plot[[1]]$scale_ccf_plot

Additionally, users can have more insights about why segment 6 is not a congruent matching
profile segment if we put the segment_plot and scale_ccf_plot of all three segment levels together,
as shown in Figure 6 with the help of ggpubr::ggarrange().

library(ggpubr)

ggarrange(
plotlist =
unlist(seg_plot,
recursive = FALSE

),
ncol = 2,
nrow = 3

)
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Figure 5: Plot (a) shows segment_plot for segment 6 at level one. The original position of segment 6 is
indicated by the solid black line. Positions, where the segment achieves the 5 highest cross-correlations,
are indicated by the dashed line segments. The scale_ccf_plot in plot (b) shows the cross-correlation
curve between the reference signature and segment 6 at level one. The five highest peaks are marked
by dots. The vertical red dashed line indicates the congruent registration position; the green dashed
line shows a peak position in the highest segment level; the blue dashed lines show the tolerance
zone around the green dashed line. We can see that none of the five highest peaks at level one falls
within the tolerance zone, indicating that there is no consistent correlation peak or a candidate position
identified by basis segment 6 under the multi-segment lengths strategy. Thus, the basis segment 6
doesn’t vote for the congruent registration position and is not a cmps.

−1

0

1

2

0 300 600 900
Position

P
ro

fil
e 

H
ei

gh
t

Plotting for scale level 1 of segment 6

−1.0

−0.5

0.0

0.5

1.0

−300 0 300 600 900
Shift Position

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t Plotting for scale level 1 of segment 6

−1

0

1

2

0 300 600 900
Position

P
ro

fil
e 

H
ei

gh
t

Plotting for scale level 2 of segment 6

−1.0

−0.5

0.0

0.5

1.0

−300 0 300 600 900
Shift Position

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t Plotting for scale level 2 of segment 6

−2

−1

0

1

2

0 300 600 900
Position

P
ro

fil
e 

H
ei

gh
t

Plotting for scale level 3 of segment 6

−0.5

0.0

0.5

−300 0 300 600 900
Shift Position

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t Plotting for scale level 3 of segment 6

Figure 6: Put segment_plot and scale_ccf_plot of all three levels together. We are identifying the five
highest peaks at level one, three peaks at level two, and one peak at level three since npeaks_set = c(5,
3, 1). The highest peak position at level three is marked by the green dashed line across all segment
levels. However, the highest peak on level three does not coincide with any of the top five highest
peaks at level one. This indicates that there is no consistent correlation peak or a candidate position
for basis segment 6 under the multi-segment lengths strategy.
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In Figure 6, the red vertical dashed line indicates the congruent registration position. We can see
that the basis segment 6 does obtain a peak near the congruent registration position at level two and
level three, respectively; however, this position doesn’t give one of the five highest peaks at level one.
As a result, segment 6 fails to identify the consistent correlation peak (ccp) and fails to become one
of the congruent matching profile segments according to the multi-segment lengths strategy. The
identified top five peaks at level one are also examples of “false positive” peaks. The “true positive”
peak (the peak within the tolerance zone of the congruent registration position) is identified at level
two and three by increasing the segment length, which justifies the usage of the multi-segment lengths
strategy.

Evaluation metrics

Metrics based on CMPS scores

The CMPS algorithm measures the similarity between two signatures resulting in a similarity
score of a land-to-level comparison. Bullets fired from traditionally rifled barrels have multiple land
and groove engraved areas. Here, we are working with bullets fired from Ruger P85 barrels with six
lands and grooves. A comparison of two bullets, therefore, involves 36 land-to-land comparisons,
resulting in 36 CMPS scores (as shown in Figure 7). In order to obtain a single similarity score of a
bullet-level comparison, we need to summarize these 36 CMPS scores. Two similarity metrics for
bullet-level comparisons have been introduced in the literature (Chen et al. 2019): CMPSmax and
CMPSmax. CMPSmax is the highest CMPS score obtained among all land-level comparisons, while
CMPSmax is the highest possible mean CMPS score of land-level comparisons that are in the same
phase:

In general, we assume each bullet has n land engravings (in our case n = 6). Let cij denote the
CMPS score of a comparison between bullet 1 land i and bullet 2 land j, for i, j = 1, . . . , n. Let Pk
denote bullet land pairs in phase k for k = 0, . . . , n − 1, and

Pk = {(i, j) : i = 1, . . . , n; j = (i + k) mod n} (1)

, where mod denotes the modulo operation. For example, P1 = {(1, 2) , (2, 3) , (3, 4) , (4, 5) , (5, 6) , (6, 1)}
when n = 6. Let k∗ denote the index of the highest phase.

With that, the two measures to evaluate accuracy used in Chen et al. (2019) are defined as

CMPSmax = max
i,j

cij , and (2)

CMPSmax =
1
n ∑

(i,j)∈Pk∗

cij , where (3)

k∗ = arg max
k

 1
n ∑

(i,j)∈Pk

cij

 (4)

We can continue with the example used in previous sections. bullets contains bullet signatures of
two bullets, bullet1 and bullet2. As mentioned before, each bullet has six land engravings, resulting
in six bullet signatures. Thus, there are 36 pairwise bullet signature comparisons, resulting in 36 cij
values in total. We use multi-segment lengths strategy with default parameters to compute these
CMPS scores, and the result is shown in Figure 7. We can see that in this example,

CMPSmax = max
i,j

cij = 17

and since bullet lands in phase P1 gives the highest mean CMPS score (k∗ = 1), we have

CMPSmax =
1
6 ∑
(i,j)∈P1

cij

=
1
6
(c12 + c23 + c34 + c45 + c56 + c61)

=
1
6
(3 + 17 + 14 + 10 + 15 + 16)

= 12.5
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Figure 7: CMPS scores of all 36 pairwise bullet signature comparisons for two bullets. Land engraving
pairs generated by the same land (KM comparisons) are highlighted. Note that in this example the
axis along Bullet 2 starts with Land 2. This corresponds to Phase 1 in equation (1).

However, both CMPSmax and CMPSmax consider only relatively high CMPS scores and ignore the
rest. So we introduce a new metric based on CMPS scores called CMPSdiff, which is the difference
between CMPSmax and the mean of all other CMPS scores. With our notation above, we have:

CMPSdiff =

 1
n ∑

(i,j)∈Pk∗

cij

−

 1
n (n − 1) ∑

(i,j)/∈Pk∗

cij

 (5)

CMPSdiff highlights the difference between CMPS scores of matching and non-matching compar-
isons. If two bullets are non-matching, all 36 CMPS scores are expected to be small with relatively the
same values, resulting in a CMPSdiff value close to 0. For the example above, CMPSdiff = 12.5− 1.53 =
10.97

Scaled CMPS scores

Another issue with the CMPS score is that the highest possible CMPS score (the total number of
basis segments) might differ across comparisons (as shown in Figure 8(a)) due to different lengths of
bullet signatures and different lengths of basis segments specified by the parameter. A CMPS score
of 5 might indicate a non-match if the highest possible CMPS score is 30 but indicate a match if the
highest possible CMPS score is 6. Thus, we introduce the scaled CMPS score, denoted as c∗ij. Let sij
denote the highest possible CMPS score or the total number of basis segments, then the scaled CMPS
score c∗ij is defined as the ratio of raw score and maximum score:

c∗ij =
cij

sij
(6)

The scaled CMPS scores of the above example are shown in Figure 8(b). Compared to the original
CMPS scores, scaled scores have values within the interval [0, 1] regardless of the length of the basis
segments and therefore make a comparison of values possible across different parameter choices.
Similar to the original CMPS scores, we will denote the scaled CMPS scores adjusted for out-of-phase
background values by CMPS∗diff. For example, CMPS∗diff = 0.498 for Figure 8(b)

Sum of squares ratio

The “sum of squares ratio” quantifies how well two groups of values separate. Let nT denote the
total number of observations, nk denote the number of observations in group k, and ykl denote the l-th
observation in group k, for k = 1, 2 and l = 1, . . . , nk. Let ȳk. =

1
nk

∑nk
l=1 ykl denote the mean value in

group k and ȳ.. =
1

nT

(
∑k ∑nk

l=1 ykl
)

denote the mean value of all observations. Consider the following
model:
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Figure 8: Plot (a) shows the highest possible CMPS scores (the total number of basis segments) for the
36 comparisons. (b) shows the scaled CMPS scores for the 36 comparisons.

ykl = µk + ekl (7)

where µk is the true mean of group k and ekl is a random effect of different observations. Then we
can define the sum of squares ratio V as:

V =
∑k nk (ȳk. − ȳ..)

2

∑k ∑nk
l (ykl − ȳk.)

2 . (8)

The numerator of the sum of squares ratio V quantifies the variation between the two groups,
while the denominator quantifies the variation within each group. The sum of squares ratio V can be
used as an index for evaluating scans, metrics, and different sets of parameters if the same data set is
being used. Some examples will be presented in the following section. If we impose the normality and
independence assumptions on the random effects ekl , the sum of squares ratio V becomes a scaled
F-statistic with degrees of freedom of k− 1 and nT − k and F = nT−k

k−1 V. If we want to compare different
data sets, stating that a certain setup can achieve better separation on one data set than another, we
can scale the sum of squares ratio V and obtain the F-statistic and obtain the corresponding p-value as
an index for comparison.

Using the sum of squares ratio V as an evaluation metric, we are able to construct a pipeline that
aims to find the optimal parameter values for the CMPS algorithm by maximizing the sum of squares
ratio. Note that other measures of an algorithm, such as the accuracy and the AUC (Area Under
the Curve), are also important and useful. But when algorithms achieve 100 percent accuracy and
AUC value of 1, we need other measures such as the sum of squares ratio to further distinguish the
performance of algorithms. In the following section, we will use the sum of squares ratio to compare
the CMPS metrics introduced earlier and investigate the effects of different parameter settings.

Results

As presented in the work of Chen et al. (2019), researchers applied the CMPS method to scans of one
of the Hamby sets. While it is not explicitly stated in the paper, we presume this to be Hamby 252,
as only those scans were publicly available at the time. In order to show that our implementation
of the CMPS algorithm is able to reproduce the results in Chen et al. (2019) and be used for other
data sets, we applied our implementation to both Hamby set 252 and Hamby set 44. Here we present
how we obtained bullet signatures from the Hamby set data: for both Hamby 252 and Hamby 44, we
started with scans in the form of x3p files in the database. Following the framework proposed by Hare,
Hofmann, and Carriquiry (2017), we used the same set of parameters, removed damaged bullet scans,
obtained bullet signatures for each bullet land engraving, and removed outliers in bullet signatures.
Note that researchers of Chen et al. (2019) applied the CMPS algorithm to bullet signatures as well but
used a framework different from ours. However, since their work is not open-source, we were not able
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Figure 9: Distribution of CMPSmax and CMPSmax for Hamby 252; outliers are removed in bullet
signatures; seg_length = 50, Tx = 25, npeaks_set = c(5,3,1); instead of showing the counts on the y-axis,
we present the observed proportions conditioned on KM group and KNM group to enhance the
visibility of the bars.

to follow their framework and were only able to reproduce the results for Hamby set 252 qualitatively.

Hamby 252

Figure 9 shows the distribution of CMPSmax and CMPSmax after we applied the CMPS algo-
rithm to Hamby set 252 with the multi-segment lengths strategy. The parameters we used in
extract_feature_cmps for the CMPS algorithm are:

extract_feature_cmps(
x, y,
seg_length = 50,
Tx = 25,
npeaks_set = c(5, 3, 1),
include = "nseg"

)

As noted above, the CMPS scores we found here are not exactly the same as those presented in
Chen et al. (2019) since we were not able to follow their framework, but the results presented in Figure
9 are qualitatively equivalent to those presented in Chen et al. (2019), showing a clear separation
between scores based on comparisons from known matches (KM) and scores from comparisons of
known non-matches (KNM) for both CMPSmax and CMPSmax.

Additionally, to mimic the parameters used in Chen et al. (2019), we set seg_length = 50 and
Tx = 25 to make sure that each basis segment has a length of 78.125 µm and the tolerance zone is
±39.0625 µm (one unit represents 1.5625 µm for Hamby set 252).

The sum of squares ratios are 20.64 and 28.96 for CMPSmax and CMPSmax, respectively. This
indicates that even though scores from CMPSmax for known-match comparisons are larger than scores
from the averaged version of CMPSmax, these scores achieve a better separation between the two
groups of comparisons.

Hamby 44

Similar procedures are applied to Hamby set 44, and Figure 10 shows the distribution of CMPSmax
and CMPSmax, respectively. The parameters used in extract_feature_cmps are:

extract_feature_cmps(
x, y,
seg_length = 61,
Tx = 30,
npeaks_set = c(5, 3, 1),
include = "nseg"

)

Since the resolution of Hamby 44 is set to 1.29 µm per unit, we make seg_length = 61 and Tx
= 30 to ensure that the setup of Hamby set 44 is similar to that of Hamby set 252, resulting in basis
segments of 78.69 µm and the tolerance zone of ±38.7 µm.
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Figure 10: Distribution of CMPSmax and CMPSmax for Hamby 44; outliers are removed in bullet
signatures; seg_length = 61, Tx = 30, npeaks_set = c(5,3,1); instead of showing the counts on the y-axis,
we present the observed proportions conditioned on KM group and KNM group to enhance the
visibility of the bars.
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Figure 11: Comparison of results from the CMPS algorithm based on different basis segment lengths
(parameter seg_length). Only the CMPSmax metric suggests that the default values for the basis
segment length result in the best separation. Better separation is achieved based on the modified
CMPS metrics, including the newly suggested ones. For Hamby 252 these metrics agree on a segment
length of 75, and a segment length of 122 for Hamby 44 yields better results.

As shown in Figure 10, again, we are able to see a clear separation between the known match
comparisons and the known non-match comparisons, even though the separation is relatively small
compared with that of Hamby set 252, which is also indicated by the sum of squares ratios. For this
specific set of parameters, the sum of squares ratios are 8.87 and 10.64 for CMPSmax and CMPSmax,
respectively. This might suggest that we could enlarge the separation in terms of the sum of squares
ratio by using other CMPS metrics and other sets of parameters.

Comparing CMPS metrics and parameters

We investigated the effects of different sets of parameters in the example of both Hamby sets 252
and 44. More specifically, we investigated the separation achieved using the cmpsR implementation
under various segment lengths (controlled by the parameter seg_length). Specifically, we fixed the
parameter npeaks_set that controls the number of peaks at each segment level to be npeaks_set =
c(5, 3, 1) and modified the parameter seg_length. Figure 11 shows that the default values of
seg_length for Hamby 252 and Hamby 44 (50 for Hamby 252 and 61 for Hamby 44, which represent
78.125 µm and 78.69 µm, respectively) result in high values of the sum of squares ratio, no matter
which CMPS metrics are used for an evaluation. However, we also see, that for Hamby set 252 a basis
segment length of 75 is a better choice than the default segment length; a basis segment length of 122
results in a higher value of the sum of squares ratio for Hamby 44.

Figure 12 shows the results of the CMPS algorithm using different strategies for identifying peaks
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Figure 12: Comparison of CMPS results based on different strategies of number of peak selections.
Starred results compare CMPS performance with results published in the literature. Results for the
random forest score are represented with circles because the metrics are computed not based on the
CMPS scores, but on the random forest scores with the same logic. Since random forest scores lie
within the interval [0, 1], scaling the random forest scores will not change the results.

in the correlation structure between signatures. Basis segment length is fixed to the default level for
this evaluation. As can be seen in Figure 12, the default value of npeaks_set (npeaks_set = c(5,
3, 1)) leads to promising results in terms of the sum of squares ratio; however, other choices of
npeaks_set match and exceed this sum of squares ratio value.

As seen before, the results suggest that the CMPSmax metric produces the least amount of separa-
tion compared with the other three CMPS metrics. They also suggest that the two newly proposed
metrics, CMPSdiff and CMPS∗diff, lead to equally good or even better results as CMPSmax. Because
CMPS∗diff relies on a scaled version of CMPS scores, it is more comparable to other similarity scores
and summarizes the out-of-phase background CMPS scores, making it superior to the other CMPS
metrics.

What we can also observe in Figure 11 and Figure 12 is that the values of the sum of squares ratio
for Hamby 44 is lower than those for Hamby 252. This might be because determining the source is a
harder task for Hamby 44 than for Hamby 252, but also suggests that the choice of parameters also
depends on the resolution or the scanning process of the data set. The same set of parameters might
work for one data set, but not work equally well for another.

The purpose of the results shown in Figure 11 and Figure 12 is not to determine the “best”
parameters for the CMPS algorithm, but to show that the sum of squares ratio can be used as an
evaluation measure to compare different parameters, metrics, or scans. A pipeline that maximizes the
sum of squares ratio might help researchers determine the set of parameters that work best for their
data. But a large database that is representative is what we really need in order to fully understand
and cross-validate the parameters of the CMPS algorithm.

Comparing with original results and the random forest model

Chen et al. (2019) present histograms of CMPSmax and CMPSmax for npeaks_set = 5 and
npeaks_set = c(5, 3, 1) with (presumably) Hamby 252. The values in these histograms allow us to
calculate the sum of squares ratios and include the results in Figure 12 as well. They are marked by an
asterisk at the top right corner in Figure 12. The sum of squares ratios we obtained for npeaks_set = 5
and npeaks_set = c(5, 3, 1) is slightly higher than those obtained from the histograms of Chen et al.
(2019). It’s curious to see that for the Hamby 252 results published in Chen et al. (2019) the CMPSmax
metric achieves values of the sum of squares ratio higher than those achieved by the CMPSmax metric.

Since the researchers of Chen et al. (2019) did not use CMPSdiff or CMPS∗diff, and they did not
apply the CMPS algorithm to the Hamby set 44, we were not able to compare those results.

In Figure 12, we also included the sum of squares ratios computed from the random forest scores
(Hare, Hofmann, and Carriquiry 2017) for different metrics. The random forest model presented
in Hare, Hofmann, and Carriquiry (2017) was trained at the Center for Statistics and Applications
in Forensic Evidence (CSAFE) and is publicly available in the R package bulletxtrctr (Hofmann,
Vanderplas, and Krishnan 2019). Similar to the CMPS algorithm, this random forest model produces
a score to quantify the similarity of a land-by-land comparison. The RF scores lie in an interval of
[0,1] making them most comparable to the scaled CMPS scores. We applied the logic of CMPSmax,
CMPSmax, and CMPSdiff to the random forest scores and obtained results of the random forest model
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for different metrics. As shown in Figure 12, the random forest model does not achieve the sum of
squares ratio as high as those achieved by the top CMPS algorithms for Hamby 252, but it does achieve
better results for Hamby 44. This might suggest that inclusion of the CMPS score as an additional
feature in the random forest model training might be beneficial for an overall separation to determine
the source.

For details about the implementation, examples, and results, please refer to the “Supplementary
materials”.

Conclusion

In this paper, we present the cmpsR package, an open-source implementation of the Congruent
Matching Profile Segments (CMPS) algorithm (Chen et al. 2019), and apply it to two datasets in
Hamby study (Hamby, Brundage, and Thorpe 2009) to show its potential for further research. The
CMPS algorithm was proposed by NIST in 2019 and was made for objective tool marks comparisons.
We introduce the basic logic of the CMPS algorithm and layout its implementation in the cmpsR
package. We also showcase the functionality of the cmpsR package with a small dataset example that
is included in the package. In the cmpsR package we implement some graphing tools for users to
visualize results and to gain a better understanding of both the algorithm and the results.

Additionally, we propose two new metrics based on the CMPS scores and compare the new
metrics with the existing metrics. We also introduce a principled evaluation framework of algorithmic
results using a measure based on the sum of squares ratio. We showcase the implementation with two
datasets in the Hamby study (Hamby set 252 and Hamby set 44) and compare the CMPS algorithm
using different sets of parameters and different metrics, following the evaluation framework based
on the sum of squares ratio. The results obtained are promising: we were both able to reproduce the
results in Chen et al. (2019) qualitatively and achieve a clear separation between the known match
(KM) comparisons and known non-match (KNM) comparisons in another bullet study. However, the
comparisons among different sets of parameters suggest that the optimal choice for parameter settings
varies between different datasets.

Note, that the main difference between Hamby sets 44 and 252 is that they were taken with
different resolution scanning devices. The bullets for Hamby 44 and Hamby 252 are fired from the
same ten consecutively rifled P-85 Ruger barrels. The difference in parameter settings for optimal
differentiation between same-source comparisons and different-source comparisons is therefore quite
surprising. In the next steps, we need validation studies similar to Vanderplas et al. (2020) - trying
out the CMPS algorithm on different firearms and ammunition combinations to test the limits of the
algorithm. The evaluation framework we proposed based on the sum of squares ratio will facilitate
such studies and other validation of the algorithm.

Comparisons of the R implementation of the CMPS algorithm with the random forest model
proposed by Hare, Hofmann, and Carriquiry (2017) suggest that adding the CMPS score as an
additional feature in the random forest model might add further separation between known match
(KM) comparisons and known non-match (KNM) comparisons.

The open-source implementation of the CMPS algorithm provided by the cmpsR package is
just one step towards to the framework of open science. Open science is particularly important to
fields like forensic science where transparency and accuracy are critical to fair justice. Open-source
implementations not only allow a peer-review but also facilitate further research, such as parameter
cross-validations, method comparisons, and the development of statistical methods for modeling
KM and KNM CMPS score distributions, which can then be used for error-rate estimations and fair
applications that were called for by the PCAST (President’s Council of Advisors on Science and
Technology 2016) report. However, having open-source implementations is not enough for open
science. In order to actually build the world of open science, many other efforts, such as open
evaluation, open access publication, open educational resources, etc., are still needed. The database
built and maintained by the National Institute of Standards and Technology is a good example of
open data. What we are aiming for is an open system that is able to collect open results, compare
multiple algorithms using multiple datasets, and evaluate algorithmic variation and accuracy. The
evaluation metric we proposed in this paper can be used to compare different algorithms or even
different datasets and is a snippet of this open system. But the core of this open system is the open
science culture and contributions of the community.
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Supplementary materials

The zip file “supplementary-files.zip” contains R scripts for reproducing all aspects of this paper.

Data not included in “supplementary-files.zip”

The processed data of Hamby set 252 and Hamby set 44 are stored in two .rds files:

• BulletSignatures252.rds
• BulletSignatures44.rds

And the ground truth of Hamby set 252 is provided in StudyInfo.xlsx

Due to the size of the file, these processed data are not included in the “supplementary-files.zip”,
but the links are provided for download.

In order to reproduce the results in the paper, please download “BulletSignatures252.rds”, “Bul-
letSignatures44.rds”, and “StudyInfo.xlsx” and save them in a folder named “bullet_signatures_etc”.
And place the folder “bullet_signatures_etc” into the folder of all the R scripts of “supplementary-
files.zip”.

Please check out the folder structure of the reproducible folder for reference.

File description

• hamby*_result_generator.R: these R scripts take the processed data of Hamby set 252 and
Hamby set 44, generate preliminary results used in the paper, and save the results in the .csv
format in the folder data-csv. Please make sure that the package versions of bulletxtrctr and
cmpsR meet the requirements.

• rds_generator.R: this R script takes the generated .csv files and produce CMPSpaper_results.rds.
CMPSpaper_results.rds is identical to data/CMPSpaper_results.rds and is used generate fig-
ures and other results presented in the paper.

Data included in “supplementary-files.zip”

• data-csv: this folder contains .csv files we generated using R scripts hamby*_result_generator.R
• CMPSpaper_results.rds: this is the .rds file we generated using R script rds_generator.R

These data can be used as reference or example results of the reproducible codes

• csafe_rf2.rds: this .rds file contains the random forest model used in this paper
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