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iccCounts: An R Package to Estimate the
Intraclass Correlation Coefficient for
Assessing Agreement with Count Data
by Josep L. Carrasco

Abstract The intraclass correlation coefficient (ICC) is a widely used index to assess agreement with
continuous data. The common approach for estimating the ICC involves estimating the variance
components of a linear mixed model under assumptions such as linearity and normality of effects.
However, if the outcomes are counts these assumptions are not met and the ICC estimates are biased
and inefficient. In this situation, it is necessary to use alternative approaches that are better suited for
count data. Here, the iccCounts R package is introduced for estimating the ICC under the Poisson,
Negative Binomial, Zero-Inflated Poisson and Zero-Inflated Negative Binomial distributions. The
utility of the iccCounts package is illustrated by three examples that involve the assessment of
repeatability and concordance with count data.

1 Introduction

Repeated measurements are often collected and hierarchically structured in clusters (commonly, in
subjects). These repeated measurements can be interchangeable within subjects (i.e. they are replicates).
This case is often known as the evaluation of repeatability (Nakagawa and Schielzeth 2010) or intra-
rater reliability (DeVet et al. 2011). Moreover, the repeated measurements may be structured (not
interchangeable) because they were obtained under different experimental conditions, involving
different methods or observers. In this case the analysis of agreement is often known as concordance
analysis, method comparison analysis (Choudhary and Nagaraja 2017) or inter-rater reliability (DeVet
et al. 2011).

Whatever the structure of the repeated measurements, the intraclass correlation coefficient (ICC) is
a common index used to assess agreement with continuous data (Fleiss 1986; Carrasco and Jover 2003).
The general definition of the ICC is the ratio of the between-clusters variance to the total variance.
However, the appropriate ICC has to be defined to afford the different variance components that
are involved in the total variance besides the between-clusters variance. These variance components
are typically estimated by means of a linear mixed model with common assumptions: that there is
linearity between the outcome expectation and the effects (cluster, method,. . . ); and that the random
effects and the random error follow normal distributions. Currently, there are several R packages that
estimate the ICC under the Normality assumption for assessing repeatability or concordance (Wolak,
Fairbairn, and Paulsen 2012; Carrasco et al. 2013; Stoffel, Nakagawa, and Schielzeth 2017).

However, if the outcomes are counts, such assumptions are not met and the ICC estimates are
biased and inefficient (Carrasco and Jover 2005). In this situation, it is necessary to use alternative
approaches that are better suited to the properties of count data. The methodology for estimating the
ICC for non-normal distributions using generalized linear mixed models (GLMM), and in particular
for count data, was developed in Carrasco (2010). The ICC is therefore estimated by the variance
components from the appropriate GLMM. The cluster random effect is still distributed as a Normal
distribution but the within-cluster variability is assumed to follow a probability distribution function
for counts. Stoffel, Nakagawa, and Schielzeth (2017) introduced the rptR package which can be used
to estimate the ICC assuming a Poisson model for the within-subjects variability.

In the iccCounts package introduced here, besides the Poisson distribution, other models as
the Negative Binomial, the Zero-Inflated Poisson and the Zero-Inflated Negative Binomial are also
considered. These models are useful when overdispersion arises in the Poisson model. Overdispersion
means that the variability assumed by the model is lower than that from the data. Therefore, the
within-subjects variability and, by extension, the total variance are underestimated and the ICC and
its standard error are biased. Thus, the validity of the ICC estimate is closely linked to the validity of
the model, so that a goodness-of-fit (GOF) analysis of the model must be performed.

The article is structured as follows: the Methodology background section introduces the definition
of the ICC, their expressions depending on the model GLLM chosen, some inferential aspects and the
validation approach of the GLMM; the issues of the package are described in Package description
section; in Examples section three examples are introduced. Two of them are cases of the repeata-
bility setting whereas the remaining one shows the case of a concordance setting. Finally, the main
contributions are summarized in the Conclusion section.
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2 Methodology background

Experimental design

As mentioned in the introduction, the experimental design depends on the aim of the study: concor-
dance or repeatability. In the case of a concordance study, a sample of n subjects are measured m times
by k methods. In this setting, the aim is to analyse the degree of concordance of the measurement
methods when assessing the subjects. Note that within-subjects repeated measurements are not inter-
changeable because they belong to one specific method. It is worthy to noting that the term “methods”
is the conventional way to describe the experimental condition of the repeated measurements across
subjects in this context, but it might be referred to differently name depending on the context. In this
setting, Yijk stands for the k-th reading made by the j-th method on the i-th subject, with i = 1, . . . , n,
j = 1, . . . , m and k = 1, . . . , s. Hence, there will be three variance components to consider when
assessing agreement among the repeated measurements: between-subjects, between-methods and
random error variabilities.

In a repeatability study, a sample of n subjects are measured m times. In this case the repeated
measurements share the same experimental condition across subjects, therefore they can be considered
as interchangeable. Thus, in this setting Yik stands for the k-th reading made on the i-th subject, with
i = 1, . . . , n, and k = 1, . . . , s. In this case, only two variance components are involved in the evaluation
of the agreement: between-subjects and random error variabilities.

Generalized linear mixed model

The estimation of the variance components is carried out by means of generalized linear mixed models
(GLMM). The GLMM for the concordance setting (considering subjects and methods effects) is defined
as follows:

• Let αi and β j be the subjects and methods random effects respectively, with i = 1, . . . , n,
j = 1, . . . , m, that follow Normal distributions with mean 0 and variance σ2

α and σ2
β. Although

the method effect could be a fixed effect by design, when defining the agreement index it is
convenient to consider it as a random effect to account for the systematic differences between
observers as a source of disagreement (Fleiss 1986; Carrasco and Jover 2003).

• The conditional distribution of Yijk given αi and β j, f
(

Yijk|αi, β j

)
, is a probability density

function from the exponential family.

• The conditional mean of Yijk given αi and β j is

µij = E
(

Yijk|αi, β j

)
= g−1

(
λi + αi + β j

)
. (1)

where g is called the link function. Here, λi is the linear combination of the mean modifying
covariates for the i-th subject. Furthermore, the conditional variance of Yijk given αi and β j is defined

as Var
(

Yijk|αi, β j

)
= ϕh

(
µij

)
where ϕ is the dispersion parameter and h () is variance function.

If the methods effect is removed, the GLMM for the repeatability setting is obtained. Thus,
depending on the nature of the data the appropriate conditional probability model and link function
must be chosen. When analysing count data, the logarithm is commonly used as a link function and
models such as Poisson or Negative Binomial are considered.

Intraclass correlation coefficient for count data

The intraclass correlation coefficient (ICC) is calculated as:

ICC =
Cov

(
Yijk, Yij′k′

)
Var

(
Yijk

) . (2)

where the Cov
(

Yijk, Yij′k′
)

is the marginal (over subjects and observers) covariance between any

pair of data from the same subject, whereas Var
(

Yijk

)
is the marginal variance of data.

Furthermore, the marginal variance and covariance can be developed as functions of the GLMM
parameters (Carrasco 2010):
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ICC =
Cov

(
µij, µij′

)
Var

(
µij

)
+ E

(
ϕh

(
µij

)) (3)

This result allows the ICC to be generalized to any distribution fitted with a GLMM.

Carrasco (2010) developed the ICC for Poisson and Negative Binomial distributions, the latter with

variance increasing quadratically with the mean (NegBin2), Var
(

Yijk|αi, β j

)
= µij

(
1 + rµij

)
(Table

1). A Negative Binomial model with variance increasing linearly with the mean is also considered

(NegBin1) (Brooks et al. 2017; Hardin and Hilbe 2007), Var
(

Yijk|αi, β j

)
= µij (1 + r). It is worth to

noting that NegBin1 does not belong to the exponential family (Hardin and Hilbe 2007), therefore this
model would not be a proper GLMM. However, it can still be useful to model count data that show
overdispersion in a Poisson model.

Additionally, it is possible to define the ICC for the cases of zero inflated models (Table 1). Let’s
define Bijk as a Bernoulli variable that takes a value of 1 if the reading k on subject i and method
j is a structural zero with probability π and 0 otherwise. The observed data, Xijk is the result of

Xijk = Yijk

(
1 − Bijk

)
, where Yijk is the count variable as defined before. The marginal covariance and

variance of Xijk are:

Cov
(

Xijk, Xij′k′
)
= Cov

(
Yijk, Yij′k′

)
(1 − π)2 (4)

Var
(

Xijk

)
= Var

(
Yijk

)
(1 − π) + E2

(
Yijk

)
π (1 − π) (5)

and the general expression of the ICC for zero-inflated data becomes:

ICC =
Cov

(
Yijk, Yij′k′

)
(1 − π)

Var
(

Yijk

)
+ E2

(
Yijk

)
π

(6)

where π stands for the probability of excess of zeros.

Notice that ICCs appearing in Table 1 are for the concordance setting where σ2
β stands for the

variability between methods. The ICCs for the repeatability setting are obtained just removing σ2
β from

the equations, i.e. by setting σ2
β = 0.

Model ICC θ Model ICC θ

Poisson
µ
(

eσ2
α −1

)
µ

(
e

σ2
α+σ2

β−1
)
+1

(
µ, σ2

α , σ2
β

)
ZIP

µ
(

eσ2
α −1

)
(1−π)

µ

(
e

σ2
α+σ2

β−1
)
+1+µπ

(
µ, σ2

α , σ2
β

)
NegBin1

µ
(

eσ2
α −1

)
µ

(
e

σ2
α+σ2

β−1
)
+r+1

(
µ, σ2

α , σ2
β, r

)
ZI-NegBin1

µ
(

eσ2
α −1

)
(1−π)

µ

(
e

σ2
α+σ2

β−1
)
+1+r+µπ

(
µ, σ2

α , σ2
β, r, π

)
NegBin2

µ
(

eσ2
α −1

)
µ

(
(r+1)e

σ2
α+σ2

β−1
)
+1

(
µ, σ2

α , σ2
β, r

)
ZI-NegBin2

µ
(

eσ2
α −1

)
(1−π)

µ

(
(r+1)e

σ2
α+σ2

β−1
)
+1+µπ

(
µ, σ2

α , σ2
β, r, π

)

Table 1: ICC expressions. NegBin1 and NegBin2 are the Negative Binomial models with variance increasing
linearly and quadratically with the mean respectively; ZI are the zero-inflated models. θ stand for parameters
involved in ICC: µ stands for the marginal mean; σ2

α is the between-subjects variance; σ2
β is the between-methods

variability; r is the Negative Binomial’s dispersion parameter; and π is the probability of excess of zeros.

Estimation of ICC

The estimation of the ICC involves estimating the GLMM parameters. However, maximum likelihood
approach is not straightforward because there is no closed analytical expression for the marginal
likelihood besides the Normal case (linear mixed model). Thus, it is necessary to apply numerical
methods to approximate the marginal likelihood and to obtain maximum likelihood estimates (Bolker
et al. 2009). With regards to the standard error of the ICC, let θ be the GLMM parameters involved in
the ICC expression (see Table 1) and Σ the variance-covariance matrix of θ. The asymptotic standard
error can be estimated by applying the delta method (Hoef 2012):
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Var (ICC) ≈ ∆′Σ∆ (7)

where ∆ stand for the vector containing the derivatives of ICC respect to θ. Confidence intervals
for the ICC are based on asymptotic Normal distribution using the inverse hyperbolic tangent function
or Fisher’s Z-transformation (Carrasco and Jover 2003).

Validation

The goodness-of-fit (GOF) analysis can be carried out by the computation of randomized quantile
residuals (RQR) (Dunn and Smyth 1996; C. Feng, Li, and Sadeghpour 2020). Briefly, the GOF analysis
involve the comparison of the RQR from the original data to those obtained by simulation under the
fitted model. Simulations of counts based on the fitted model are generated and the model is refitted
to each simulated dataset. Using the simulated RQR, envelopes are built as the appropriate quantiles
(in relation to the level of significance) of RQR from the refitted models. If the model fits correctly the
data it is expected that the original RQR will completely lie within the simulated envelopes.

Additionally, dispersion as well as zero-inflation can be checked by comparing the dispersion and
proportion of zeros from the simulated data to those from the original data. Thus, tests for dispersion
and zero inflation are carried out by comparing the RQR dispersion and the number of zeros from the
original model and data to those from the refitted models and simulated data.

3 Package description

The main function in the iccCounts package is icc_counts which estimates the ICC under different
models for count data. The argument data identifies the data set to be analysed. This data set has to
be a data.frame object with at at least two columns: outcome and subject identifier (arguments y and
id respectively).

In the case of estimating the ICC for the concordance setting, a third column with the method
identifier must be provided (the argument met ). The argument type is used to identify the setting in
which the ICC should be estimated. Valid values are: rep (default) for the repeatability setting; and
con for the concordance setting. The repeatability setting requires that repeated measurements are
interchangeable within subjects. This means the experimental conditions of the measurements are
the same (replicates), and they come from the same probability distribution function (conditioned
to subjects). On the other hand, in the concordance setting the repeated measurements are not
interchangeable because their experimental conditions are different, and therefore their probability
distribution function, conditioned to subjects, is different (commonly in the mean).

The argument fam is used to identify the within-subjects probability model. Valid options are:
poisson (default) for Poisson model; nbinom1 and nbinom2 for Negative Binomial model with
variance increasing linearly and quadratically with the mean respectively; zip for zero-inflated Poisson
model; zinb1 and zinb2 for zero-inflated Negative Binomial model with variance increasing linearly
and quadratically with the mean.

Once the appropriate setting and model have been chosen, the GLMM is estimated by maximum
likelihood via Laplace approximation using the glmmTMB package (Brooks et al. 2017). The output
of the icc_counts function is an object of class iccc which is a list with the following components:
model which contains the generalized linear mixed model estimates; ICC which includes the ICC
estimate and its standard error and confidence interval; and varcomp with the variance components
and parameters related to the ICC. Finally, the function GOF_check runs the goodness of fit (GOF)
analysis of the GLMM fitted to data. This function has three arguments: x to denote the iccc object to
apply the GOF analysis; the nsim argument that stands for the number of simulations to run which
default value is set to 100; and the α argument to set the level of significance.

The output of GOF_check is an object of class GOF which is a list with the following components:
plot_env, a plot of RQR envelopes with the original RQR; plot_var , a plot of the simulated RQR
dispersion; plot_zi , a plot of the count of zeros in the simulated datasets; res_var , the dispersion of
RQR from the original sample; pval_var , the proportion of simulated RQR dispersion that are greater
than the original dispersion that can be interpreted as a simulated P-value to check the goodness of
fit on dispersion; zero_count , the count of zeros in the original sample; and pval_zi , the proportion
of simulated zero count that are greater than that of the original sample. It can be interpreted as a
simulated P-value to check the hypothesis of zero-inflation. The plots in the list are objects of class
ggplot , hence users may change the plot themes or add modifications to the components.

Additionally, to describe the differences among the repeated measurements from the same subjects,
the function plot_BA draws the Bland-Altman plot (Bland and Altman 1995). The difference between
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each pair of data from the same subject is represented on the y-axis. The mean of data from the same
subject is represented on the x-axis. Additionally, a bar plot with the proportions of differences can
be drawn. This plot is a useful way to describe the differences when the range of observed values is
small relative to the number of observations (Smith, Ma, and Stafford 2010).

The arguments of plot_BA function are: data , a data frame containing at least the columns of the
outcome and subject’s identifier; y , a character string indicating the name of the outcome column in
the data set; id a character string indicating the name of the subjects column in the data set; rm , a
character string indicating the name of the column that stands for the repeated measurements in the
data set. This argument is only needed to identify the differences; type , argument used to choose the
plot to be drawn. Valid values are: BA (default) for the Bland-Altman plot; and bars for the bar plot of
the differences. Besides the plots, the function provides a dataframe object that contains the data used
to generate the plot.

4 Examples

The package includes three real data sets as examples that covers the repeatability and concordance
settings.

Sparrow fledglings paternity example

In the Sparrow fledglings paternity example, the incidence of extra-pair paternity (EPP) was monitored
over 3 breeding seasons in a sparrow colony in Lundy, an island off the southwest coast of England
(Schroeder et al. 2012). One of the aims of the study was to assess the repeatability of counts of
fledglings that a male had in every breeding season. Thus, the repeated measurements are assumed to
be exchangeable replicates. However, the means of the Social variable by year seem to differ:

library(iccCounts)
library(dplyr)
EPP %>% group_by(Year) %>% summarize(Mean=mean(Social),SD=sd(Social))

#> # A tibble: 3 x 3
#> Year Mean SD
#> <int> <dbl> <dbl>
#> 1 2003 3.19 3.10
#> 2 2004 2.53 2.21
#> 3 2005 4.5 2.79

In case these means were significantly different the repeated measurements could not be considered
as exchangeable, and consequently the differences among the means of the repeated measurements
should be included in the agreement index. This led us to the concordance setting considering Year as
the methods effect.

The first model to consider is the Poisson model. The default option in the icc_counts function is
the Poisson model, and so it is necessary to specify the name of the data set, the count variable (Social),
the subjects identifier (id), the methods variable (Year), and the concordance setting (type=“con”).

EPP_P<-icc_counts(EPP,y="Social",id="id",met="Year",type="con")
ICC(EPP_P)

#> ICC SE ICC 95% CI LL 95% CI UL
#> [1,] 0.5284404 0.0866857 0.3383706 0.6770822

VarComp(EPP_P)

#> mu BSVar BMVar
#> 3.172783 0.4002965 0.0798841

The function ICC applied to the iccc object shows that the ICC estimate is 0.53 (95% confidence
interval: 0.34 - 0.68). Moreover, the function VarComp gives the parameters involved in the ICC
estimator, which in this case are the overall mean, the between-subjects variance and the between-
methods variability (the two latter in log-scale).

However, as mentioned in the previous section, the validity of the ICC estimate is linked to the
validity of the model. The function GOF_check is applied to the iccc object to run the simulations and
to compute the RQR. The random seed is set for the sake of the reproducibility of the example.
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set.seed(100)
EPP_P.gof <- GOF_check(EPP_P)

plot(EPP_P.gof)

Figure 1a shows the plot of RQR with envelopes generated by simulation. Points on the plot
stand for the RQR from the original sample. Notice that a substantial number of points lie outside the
envelopes, indicating the fit of the model is unsuitable. The next plot (Figure 1c) shows the density of
the RQR variances computed in the simulated samples. The RQR variance from the initial sample is
2.15 (shown inside the square) which is extreme compared to those from the simulations. Indeed, the
proportion of simulated variances that are higher than that from the initial sample can be interpreted
as a p-value generated by Monte Carlo simulation. This p-value is shown by applying the function
DispersionTest to the GOF object.

DispersionTest(EPP_P.gof)

#> S P_value
#> 2.077549 0.00990099

Additionally, the Social variable has a considerable proportion of zero values (26.4%), and so
the excess of zeros could be the cause of the unsuitable fitting of the Poisson model. To check this
hypothesis, the third plot generated shows the proportion of zeros in the simulated data sets (Figure
1e). The count of zeros in the sample is 51, which exceeds the expected count under the Poisson model.
Again, the proportion of simulated zero counts that are higher than that from the initial sample can be
interpreted as a p-value generated by Monte Carlo simulation. This p-value is obtained by applying
the function ZeroTest to the GOF object.

ZeroTest(EPP_P.gof)

#> Count P_value
#> 51 0.00990099

Thus, it is necessary to use a model able to provide a proportion of zeros higher than that expected
under the Poisson assumption. This model could be the Zero-Inflated Poisson (ZIP) model.

EPP_ZIP<-icc_counts(EPP,y="Social",id="id",met="Year",type="con",fam="zip")
ICC(EPP_ZIP)

#> ICC SE ICC 95% CI LL 95% CI UL
#> [1,] 0.0477628 0.0362002 -0.02331 0.1183553

VarComp(EPP_ZIP)

#> mu BSVar BMVar Pi
#> 4.487117 0.033328 0.0328427 0.2446678

In this case, the ICC is much lower than in the Poisson model (0.05, 95% CI: -0.02, 0.12) indicating
a non-significant ICC. The ICC components are the same as those in the Poisson case (with different
values) plus the proportion of excess of zeros (0.24). Next step is to check whether the model correctly
fits the data.

set.seed(100)
EPP_ZIP.gof <- GOF_check(EPP_ZIP)

plot(EPP_ZIP.gof)

Figure 1b shows the model to be appropriate because all the RQR are within the envelopes.
Additionally, the dispersion and the proportion of zeros from the initial sample are within the values
expected under the ZIP model (Figures 1d and 1f). This fact can be also verified by verifying that
dispersion and excess of zeros tests are non significant.

DispersionTest(EPP_ZIP.gof)
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Figure 1: Goodness of fit for Sparrow fledglings paternity example. The Randomized Quantile
Residuals (RQR) and counts of zeros of original data are compared to those from simulated data under
the fitted model. The plots shown are RQR with envelopes, dispersion of RQR and count of zeros.
Left column shows results for Poisson model while the plots for Zero Inflated Poisson (ZIP) model are
on right column.
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#> S P_value
#> 3.214152 0.5643564

ZeroTest(EPP_ZIP.gof)

#> Count P_value
#> 51 0.4752475

Thus, the ZIP model fits the data appropriately. The next step is to check if the differences in means
between years are significant and the concordance setting is therefore justified. With this aim let us
apply the function icc_counts to the ZIP model but in the repeatability setting.

EPP_ZIP_0<-icc_counts(EPP,y="Social",id="id",fam="zip")

The component model in the iccc object is an object of class glmmTMB that contains the general-
ized linear mixed model fit. The anova method applied to the model objects gives a comparison of
deviances and a likelihood ratio test:

anova(EPP_ZIP$model,EPP_ZIP_0$model)

#> Data: data
#> Models:
#> EPP_ZIP_0$model: y ~ (1 | id), zi=~1, disp=~1
#> EPP_ZIP$model: y ~ met + (1 | id), zi=~1, disp=~1
#> Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
#> EPP_ZIP_0$model 3 847.63 857.42 -420.82 841.63
#> EPP_ZIP$model 5 836.35 852.67 -413.18 826.35 15.279 2 0.0004811 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The result of the comparison confirms a significant difference between the yearly means, and the
convenience of the concordance setting.

Next, let us apply the function plot_BA to generate the Bland-Altman plot and the bar plot of the
differences in EPP between years. The plots are shown in Figures 4a and 4b.

EPP.BA<-plot_BA(EPP,y="Social",id="id",rm="Year") # Bland-Altman plot

plot_BA(EPP,y="Social",id="id",type="bars") # Bar plot

It can be seen that the magnitude of the differences grows as the mean increases. This heteroscedas-
tic pattern is expected in counts because of the relation between the within-subjects variance and mean.
Furthermore, we can compute some descriptive statistics of the differences:

summary(EPP.BA$data$Diff)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -7.0000 -1.0000 1.0000 0.9737 3.0000 10.0000

quantile(EPP.BA$data$Diff,probs=c(0.05,0.95))

#> 5% 95%
#> -4 6

Briefly, the mean of the differences between years is 0.97 fledglings, and the median is 1 fledgling.
Ninety percent of the differences are between -4 and 6 fledglings between years.

CD34+ count cell example

The dataset AF includes data where a new method of flow cytometry for counting CD34+ cells is
compared to the readings obtained by a standard approach (Fornas et al., 2000). Both methods (coded
as 1 and 3 in the dataset) were applied to a sample of 20 subjects. The aim of the study is to assess
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the interchangeability between the methods so it is necessary to evaluate the degree of concordance.
Hence, the ICC used here concurs with the concordance correlation coefficient estimated by variance
components (Carrasco and Jover 2003).

Let’s firstly consider the Poisson model. As we are facing a concordance analysis, in the icc_counts
function the name of the method’s variable (met ) has to be provided along with the counts variable
(y) and subject’s identifier (id ). Additionally, it is necessary to specify the concordance analysis in the
type argument because the default is the repeatability analysis.

AF_P <- icc_counts(AF, y = "y", id = "id", met = "met", type = "con")
ICC(AF_P)

#> ICC SE ICC 95% CI LL 95% CI UL
#> [1,] 0.8472696 0.021989 0.7982025 0.8851678

VarComp(AF_P)

#> mu BSVar BMVar
#> 761.809 1.234619 0.1199439

The function ICC applied to the iccc object shows that the ICC estimate is 0.85 (95% confidence
interval: 0.80, 0.89). Moreover, the function VarComp gives the parameters involved in the ICC
estimator. In this case are the overall mean (mu), the between-subjects variance (BSVar) and the
between-methods variability (BMVar) (the two last in log-scale).

Next, let’s check the validity of the model by applying the function GOF_check to the iccc object.

set.seed(100)
AF_P.gof <- GOF_check(AF_P)

Figure 2a shows the plot of RQR with envelopes generated by simulation. Points on the plot
stand for the RQR from the original sample. Most of points lie outside of the envelopes indicating the
unsuitable fit of the model. Next plot (Figure 2b) shows the density of the RQR variances computed
at the simulated samples. The RQR variance from the initial sample is 32.2 which is much larger
than those from the simulations. The p-value to test overdispersion is obtained by applying the
function DispersionTest to the GOF . With regards the zero inflation, no zeros were found in data so it
is unnecessary to check this issue.

DispersionTest(AF_P.gof)

#> S P_value
#> 32.20049 0.00990099

Consequently, it is necessary to use a model able to afford the overdispersion as the Negative
Binomial distribution.

AF_NB2 <- icc_counts(AF, y = "y", id = "id", met = "met", type = "con", fam = "nbinom2")
ICC(AF_NB2)

#> ICC SE ICC 95% CI LL 95% CI UL
#> [1,] 0.834794 0.0454062 0.7212048 0.9046669

VarComp(AF_NB2)

#> mu BSVar BMVar r
#> 777.1946 1.188904 0.0809433 0.0488122

In this case, the ICC is quite similar to that from the Poisson model (0.83, 95% CI: 0.72, 0.90) but
the confidence interval is wider. The ICC components are the same as those from the Poisson case
(with different values) plus the Negative Binomial dispersion parameter (0.049). Concerning the fit of
the model,

set.seed(100)
AF_NB2.gof <- GOF_check(AF_NB2)
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Figure 2: Goodness of fit for CD34 cell count example. The Randomized Quantile Residuals (RQR)
of original data are compared to those from simulated data under the fitted model. The plots shown
are RQR with envelopes, and dispersion of RQR. First row shows results for Poisson model while the
plots for Negative Binomial model are on second row.
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plot(AF_NB2.gof)

in Figure 2c all the RQR are within the envelopes indicating the appropriateness of the model.
Additionally, the dispersion from the initial sample is within the expected values (Figure 2d). This
result is also confirmed by running the dispersion test:

DispersionTest(AF_NB2.gof)

#> S P_value
#> 0.8002765 0.4059406

Figures 4c and 4d show the Bland-Altman plot and the Bar plot of the differences between method
1 and 2 that are generated by the following commands:

AF.BA <- plot_BA(AF,y="y",id="id", rm="met") # Bland-Altman plot

plot_BA(AF,y="y",id="id", type="bars") # Bar plot

It can be seen that for values of the mean below 700 the within-subjects differences are very close
to 0. However, for larger values of the mean there is a trend in the differences in relation to the mean
values.

Tick counts example

In this study, the repeatability of line transects survey method to estimate tick abundance was assessed
(Kjellander et al. 2021) in the area of Grimso (Sweden). With this aim, sampling was performed by two
parallel transects separated by 1m-2m where the total count of ticks was recorded. Here, the transects
are the cluster variable and every pair of data from the same transect are considered as replicates. Data
is stored in the package as the Grimso object.

As seen before the first model to consider is the Poisson model. As it is a repeatability analysis, in
the icc_counts function we just need to provide the name of the counts variable (Tot ) and subject’s
identifier (TransectID ).

G_P <- icc_counts(Grimso, y = "Tot", id = "TransectID")
ICC(G_P)

#> ICC SE ICC 95% CI LL 95% CI UL
#> [1,] 0.3494333 0.1369518 0.0589753 0.5853431

VarComp(G_P)

#> mu BSVar
#> 0.2072297 1.278685

The function ICC applied to the iccc object shows that the ICC estimate is 0.35 (95% confidence
interval: 0.06, 0.59). The function VarComp gives the parameters involved in the ICC estimator: the
overall mean and the between-subjects variance (the latter in log-scale).

Let’s apply the function GOF_check to the iccc object to check the validity of the model.

set.seed(100)
G_P.gof <- GOF_check(G_P)

plot(G_P.gof)

Figure 3a shows the plot of RQR with envelopes generated by simulation. All points on the plot lie
within the envelopes indicating the fit of the model is correct. Additionally, Figure 3b shows the RQR
variance from the initial sample (1.84) is compatible with the dispersion observed in the simulated
samples. The overdispersion test is run by applying the function DispersionTest to the GOF object.

DispersionTest(G_P.gof)
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Figure 3: Goodness of fit for Tick counts example. The Randomized Quantile Residuals (RQR) of
original data are compared to those from simulated data under the fitted model. The plots shown are
RQR with envelopes, and dispersion of RQR for Poisson model.

#> S P_value
#> 1.83724 0.4158416

The p-value is 0.416 so the null hypothesis of no overdispersion is not rejected and no further
models have to be fitted.

The Bland-Altman plot and the Bar plot of the within-subjects differences are shown in Figures 4e
and 4f.

G.BA <- plot_BA(Grimso,y="Tot",id="TransectID",rm="Round") # Bland-Altman plot

plot_BA(Grimso,y="Tot",id="TransectID", type="bars") # Bar plot

As in the case of the sparrow fledgling paternity counts, we can observe a heteroscedastic pattern
with the variability of the differences increasing with the mean. Most of the differences are 0 (75%)
and 90% of the differences lie between -1 and 1.

quantile(G.BA$data$Diff, probs=c(0.05,0.95))

#> 5% 95%
#> -1 1

5 Conclusion

The statistical assessment of agreement is an issue that has received a considerable attention in recent
years. It is possible to find statistical software to carry out such analysis for qualitative or continuous
data (see for example Revelle (2021);Carrasco et al. (2013);D. Feng (2020)) . However, there is a lack
of tools when dealing with discrete data. Here, the iccCounts package have been introduced to
assess the agreement with such type of data considering both repeatability and concordance settings.
Furthermore, the iccCounts package provides the methodology to assess the validity of the model
fitted to data.

It is important to note that no factors or predictors other than subjects and methods have been
considered in the linear predictor of the GLMM. When fitting a GLMM, the inclusion of further
covariates allows controlling for confounding effects. In this case, the ICC computed after controlling
for confounding effects is referred to as adjusted repeatability (Nakagawa and Schielzeth 2010).
Including covariates in the linear predictor make sense when the aim is to estimate the magnitude of
an effect (difference in means, odds ratio or ratio of means, for instance) adjusted by the covariates.
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Figure 4: Bland-Altman and Bar plots. The first column shows the Bland-Altman plots where difference
between pairs of data from the same subject (Y-axis) is plotted against mean of data from the same
subject (X-axis). The second column contains the Bar plots of the differences between pairs of data
from the same subject. The plots for Sparrow fledglings paternity example are on the first row, the
CD34+ count cell example plots are on second row, and plots for Tick counts example are on third row.
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When estimating the ICC in a linear model, the inclusion of covariates will lead to a change in the
variance components estimates but they remain as common estimates for all subjects. However, when
facing the models for count data, the addition of covariates in the linear predictor leads to different
ICCs because the value of the marginal mean µ will be different for every level of the covariates. For
this reason, in the case of count data, it is preferable to segregate the data to estimate a different ICC
according to the covariates. In this way, both the variance components and the mean will be different.

Furthermore, in the Normal model setting the ICC takes values from 0 to 1. A value of 0 means
independence among the measures from the same cluster (no cluster effect) whilst a value of 1 implies
perfect agreement, i.e. all data from the same subject are equal. However, it is not possible to reach a
value of 1 in the counts setting. The reason for this is that some within-subject variability is unavoidable
because of the relation between the variance and the mean in these models. Thus, it i s not possible to
observe perfect agreement with count data but the interpretation remains the same: the proportion of
the total variance accounted for between-subjects variability.

6 Availability

The current stable version of the package requires R 4.0 and can be downloaded from CRAN .
Furthermore, iccCounts depends on the following R packages: glmmTMB (Brooks et al. 2017); ggplot2
(Wickham 2016); Deriv (Clausen and Sokol 2020); gridExtra (Auguie 2017); and dplyr (Wickham et al.
2020).
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