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ClusTorus: An R Package for Prediction
and Clustering on the Torus by Conformal
Prediction
by Seungki Hong and Sungkyu Jung

Abstract Protein structure data consist of several dihedral angles, lying on a multidimensional torus.
Analyzing such data has been and continues to be key in understanding functional properties of
proteins. However, most of the existing statistical methods assume that data are on Euclidean spaces,
and thus they are improper to deal with angular data. In this paper, we introduce the package
ClusTorus specialized to analyzing multivariate angular data. The package collects some tools and
routines to perform algorithmic clustering and model-based clustering for data on the torus. In
particular, the package enables the construction of conformal prediction sets and predictive clustering,
based on kernel density estimates and mixture model estimates. A novel hyperparameter selection
strategy for predictive clustering is also implemented, with improved stability and computational
efficiency. We demonstrate the use of the package in clustering protein dihedral angles from two real
data sets.

1 Introduction

Multivariate angular or circular data have found applications in some research domains including
geology (e.g., paleomagnetic directions) and bioinformatics (e.g., protein dihedral angles). Due to the
cyclic nature of angles, usual vector-based statistical methods are not directly applicable to such data.
A p-variate angle θ = (θ1, · · · , θp)T lies on the p-dimensional torus Tp = [0, 2π)p in which the angles
0 and 2π are identified as the same point. Likewise, angles θ and θ ± 2π are the same data point on
the torus. Thus, statistical models and predictions on the torus should reflect this geometric constraint.

A prominent example in which multivariate angular data appear is the analysis of protein struc-
tures. As described in Branden and Tooze (1999), the functional properties of proteins are determined
by the ordered sequences of amino acids and their spatial structures. These structures are determined
by several dihedral angles, and thus, protein structures are commonly described on multidimensional
tori. The p-dimensional torus Tp is the sample space we consider in this paper. Especially, for the
2-dimensional case, the backbone chain angles ϕ, ψ of a protein are commonly visualized by the Ra-
machandran plot, a scatter plot of dihedral angles in a 2-dimensional flattened torus T2 (Lovell et al.,
2003; Oberholser, 2010). In Figure 1, several clustering results are visualized on the Ramachandran
plot for the protein angles of SARS-CoV-2 virus, which caused the 2020-2021 pandemic (Coronaviridae
Study Group of the International Committee on Taxonomy of Viruses. et al., 2020). Since the structures
in protein angles are related to functions of the protein, it is of interest to analyze the scatter of the
angles through, for example, density estimation and clustering. Note that the protein structure data
are routinely collected and publicly available at Protein Data Bank (Berman et al., 2003) and importing
such data into R is made easy by the package bio3d (Grant et al., 2006, 2021).

We introduce the R package ClusTorus (Jung and Hong, 2021) which provides various tools
for handling and clustering multivariate angular data on the torus. The package provides angular
adaptations of usual clustering methods such as the k-means clustering and pairwise angular distances,
which can be used as an input for distance-based clustering algorithms, and implements a novel
clustering method based on conformal prediction framework (Vovk et al., 2005). Also implemented in
the package are the EM algorithms and an elliptical k-means algorithm for fitting mixture models on
the torus, and a kernel density estimation. We will introduce various clustering tools implemented
in the package, explaining choices in conformal prediction using two sets of example data. We also
present the theoretical and technical background, and demonstrate these tools with R codes.

For data on the torus, there are a few previous works for mixture modeling and clustering. Mardia
et al. (2007) proposed a mixture of bivariate von Mises distributions for data on T2, with an application
to modeling protein backbone chain angles. Mardia et al. (2012) proposed a density estimation on the
torus, based on a mixture of approximated von Mises sine distributions, for higher dimensional cases,
but the proposed EM algorithm tends to be unstable when sample sizes are limited. The R package
BAMBI (Chakraborty and Wong, 2019, 2020) provides routines to fit such von Mises mixture models
using MCMC, but is only applicable to bivariate (and univariate) angles in T2. We have implemented
EM algorithms (for p = 2) and the elliptical k-means algorithm (for any p), originally proposed for
vector-valued data (Sung and Poggio, 1998; Bishop, 2006; Shin et al., 2019), for fitting mixture models
on the torus. To the best of authors’ knowledge, ClusTorus is the first implementation of methods for
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Figure 1: Several clustering results on Ramachandran plot for SARS-CoV-2 by using clus.torus
(top left) and kmeans.torus (top right), both implemented in ClusTorus, mixtools::mvnormalmixEM
(bottom left), in which the number of components 3 is prespecified, and mclust::Mclust (bottom
right), in which the number of components is chosen by BIC. Gray points in the top-left panel are
“outliers", automatically assigned by clus.torus.

fitting mixture models on multidimensional tori of any dimension.

Algorithmic clustering for data on the torus has also been proposed. For example, Gao et al. (2018)
used an extrinsic k-means algorithm for clustering protein angles. While this algorithm is not always
satisfactory, it is implemented in ClusTorus for a quick-and-dirty analysis. The top right panel of
Figure 1 depicts the result of applying this algorithm with k = 3. Note that the popular R packages
mixtools (Benaglia et al., 2009) and mclust (Scrucca et al., 2016) provide misleading clustering results,
when applied to data on the torus. As we illustrate in Figure 1, these tools do not take into account the
cyclic nature of the angular data.

The main contribution of ClusTorus is an implementation of the predictive clustering approaches
of Jung et al. (2021) and Shin et al. (2019). For this, the conformal prediction framework of Vovk et al.
(2005) is extended for multivariate angular data. The conformal prediction is a distribution-free method
of constructing prediction sets, and our implementation uses kernel density estimates and mixture
models, both based on the multivariate von Mises distribution (Mardia et al., 2012). Furthermore, by
using Gaussian-like approximations of the von Mises distributions and a graph-theoretic approach,
flexible clusters, composed of unions of ellipsoids on Tp, can be identified. The proposed predictive
clustering can be obtained by simply using clus.torus as follows.

library(ClusTorus)
set.seed(2021)
ex <- clus.torus(SARS_CoV_2)
plot(ex)

The result of the predictive clustering is visualized in the top left panel of Figure 1, which is generated
by plot(ex). The dataset SARS_CoV_2, included in ClusTorus, collects the dihedral angles ϕ, ψ in the
backbone chain B of SARS-CoV-2 spike glycoprotein. The raw coronavirus protein data are available
at Protein Data Back with id 6VXX (Walls et al., 2020), and can be retrieved by using R package bio3d.
The function clus.torus performs three core procedures—conformal prediction, hyperparameter
selection and cluster assignment—for predictive clustering.

The rest of this article focuses on introducing the three core procedures: (i) the conformal prediction
framework, including our choices of the conformity scores, (ii) hyperparameter selection and (iii)
cluster assignment. After demonstrating how the package ClusTorus can be used for clustering of T2-
and T4-valued data, we describe how the main function clus.torus and other clustering algorithms
such as k-means and hierarchical clustering can be used to analyze data on the torus. In the Appendix,
we provide technical details and options in fitting mixture models on the torus, and a list of S3 classes
defined in ClusTorus.
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2 Conformal prediction

The conformal prediction framework (Vovk et al., 2005) is one of the main ingredients of our develop-
ment. Based on the work of Vovk et al. (2005) and Lei et al. (2013, 2015), we briefly introduce the basic
concepts and properties of conformal prediction. Suppose that we observe a sample of size n, Xi ∼ F
where Xi ∈ Tp for each i and that the sequence Xn = {X1, · · · , Xn} is exchangeable . Then, for a new
Xn+1 ∼ F, the prediction set Cn = Cn (Xn) is said to be valid at level 1 − α if:

P (Xn+1 ∈ Cn) ≥ 1 − α, α ∈ (0, 1) , (1)

where P is the corresponding probability measure for Xn+1 = Xn ∪ {Xn+1}.

For a given x ∈ Tp, write Xn(x) = Xn ∪ {x}. Consider the null hypothesis H0 : Xn+1 = x, where
Xn+1 ∼ F. To test the hypothesis, the conformal prediction framework uses conformity scores σi
defined as follows:

σi (x) := g (Xi, Xn (x)) , ∀i = 1, · · · , n + 1,

σ (x) := g (x, Xn (x)) = σn+1 (x) ,

for some real valued function g, which measures the conformity or similarity of a point to the given

set. If X(1), · · · , X(n+1) are ordered to satisfy σ(1) ≤ · · · ≤ σ(n+1) for σ(i) = g
(

X(i), Xn+1

)
, then we

may say that X(n+1) is the most similar point to Xn+1.

Consider the following quantity:

π (x) =
1

n + 1

n+1

∑
i=1

I (σi (x) ≤ σn+1 (x)) , I(A) =

{
1, A is true,
0, otherwise,

which can be understood as a p-value for the null hypothesis H0. The conformal prediction set of level
1 − α is constructed as

Cα
n = {x : π (x) > α} . (2)

Because the sequence Xn(x) is exchangeable under H0, π (x) is uniformly distributed on
{

1
n+1 , · · · , 1

}
.

With this property, it can be shown that the conformal prediction set is valid for finite samples, i.e., (1)
holds with Cn replaced by Cα

n for any F, that is, the prediction set is distribution-free (Lei et al., 2013).
The performance of the conformal prediction highly depends on the choice of conformity score σ. In
some previous works on conformal prediction (Lei et al., 2013, 2015; Shin et al., 2019; Jung et al., 2021),
the quality of prediction sets using density based conformity scores has been satisfactory.

We demonstrate a construction of the conformal prediction set with a kernel density estimate-based
conformity score, defined later in (3), for the data shown in Figure 1. With the conformity score given
by (3), cp.torus.kde computes the conformal prediction set Cα

n at a given level 1 − α (α = 0.1 below),
by performing the kernel density estimation. The function tests the inclusion in Cα

n of each point (ϕ, ψ)
over a fine grid of T2, and the result of the testing is shown as the boolean indices in the column Cn of
the output below. The columns Lminus and Lplus provide approximated prediction sets, defined in
Jung et al. (2021).

cp.kde <- cp.torus.kde(SARS_CoV_2)
cp.kde

Conformal prediction sets (Lminus, Cn, Lplus) based on kde with concentration 25

Testing inclusion to the conformal prediction set with level = 0.1 :
-------------

phi psi Lminus Cn Lplus level
1 0.00000000 0 FALSE FALSE FALSE 0.1
2 0.06346652 0 FALSE FALSE FALSE 0.1
3 0.12693304 0 FALSE FALSE FALSE 0.1
4 0.19039955 0 FALSE FALSE FALSE 0.1
5 0.25386607 0 FALSE FALSE FALSE 0.1
6 0.31733259 0 FALSE FALSE FALSE 0.1
7 0.38079911 0 FALSE FALSE FALSE 0.1
8 0.44426563 0 FALSE FALSE FALSE 0.1
9 0.50773215 0 FALSE FALSE FALSE 0.1
10 0.57119866 0 FALSE FALSE FALSE 0.1
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Figure 2: The Ramachandran plot for SARS-CoV-2, with boundaries of the conformal prediction set,
whose conformity score is (3) with κ = 25 for level 1 − α = 0.9.

9990 rows are omitted.

The concentration parameter κ of the kernel density estimation and the level(s) of the prediction
set can be designated by providing arguments concentration and level. By default, these values are
set as concentration = 25 and level = 0.1.

The output cp.kde is an S3 object with class cp.torus.kde, for which a generic method plot is
available. The conformal prediction set for SARS_CoV_2 data can be displayed on the Ramachandran
plot, as follows. The result is shown in Figure 2.

plot(cp.kde)

Inductive conformal prediction

If the sample size n and the number N of grid points over Tp are large, evaluating n + N conformity
scores may take a long time. That is, constructing the conformal prediction set suffers from high
computational costs. A workaround for this inefficiency is inductive conformal prediction , which
enjoys significantly lower computational cost. The inductive conformal prediction framework is
based on splitting the data into two sets. The algorithm for inductive conformal prediction is given in
Algorithm 1.

Algorithm 1 Inductive Conformal Prediction

1: procedure INDUCTIVE CONFORMAL PREDICTION({X1, · · · , Xn} , α, n1 < n)
2: Split the data randomly into X1 = {X1, · · · , Xn1}, X2 =

{
Xn1+1, · · · , Xn

}
.

3: Construct σ with σ (x) = g (x, X1) for some function g.
4: Put σi = g

(
Xn1+i, X1

)
and order as σ(1) ≤ · · · ≤ σ(n2), where n2 = n − n1.

5: Construct Ĉα
n =

{
x : σ(x) ≥ σ(in2,α)

}
where in,α = ⌊(n + 1) α⌋.

6: end procedure

While the sizes n1 and n2 of two split data sets can be of any size, they are typically set as equal
sizes. It is well-known that the output Ĉα

n of the algorithm also satisfies the distribution-free finite-
sample validity (Vovk et al., 2005; Lei et al., 2015). For fast computation, the inductive conformal
prediction is primarily used in constructing prediction sets and clustering, in our implementation
of ClusTorus. Specifically, icp.torus implements Algorithm 1 for several prespecified conformity
scores. As already mentioned, we need to choose the conformity score σ carefully for better clustering
performances.
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Before we discuss our choices of the conformity scores, we first illustrate how the functions
in ClusTorus are used to produce inductive conformal prediction sets. The following codes show
a calculation of the inductive conformal prediction set for the data SARS_CoV_2. The conformal
prediction set with the conformity score given by kernel density estimates (3) can be constructed by
icp.torus and icp.torus.eval. The function icp.torus computes σi’s in line 4 of Algorithm 1 and
icp.torus.eval tests whether pre-specified evaluation points are included in Ĉα

n . If these evaluation
points are not supplied, then icp.torus.eval creates a grid of size 100 × 100 (for p = 2).

set.seed(2021)
icp.torus.kde <- icp.torus(SARS_CoV_2, model = "kde", concentration = 25)
icp.kde <- icp.torus.eval(icp.torus.kde, level = 0.1)
icp.kde

Conformal prediction set (Chat_kde)

Testing inclusion to the conformal prediction set with level = 0.1:
-------------

X1 X2 inclusion
1 0.00000000 0 FALSE
2 0.06346652 0 FALSE
3 0.12693304 0 FALSE
4 0.19039955 0 FALSE
5 0.25386607 0 FALSE
6 0.31733259 0 FALSE
7 0.38079911 0 FALSE
8 0.44426563 0 FALSE
9 0.50773215 0 FALSE
10 0.57119866 0 FALSE

9990 rows are omitted.

In the codes above, the data splitting for icp.torus is done internally, and can be inspected by
icp.torus.kde$split.id.

We now introduce our choices for the conformity score σ in the next two subsections.

Conformity score from kernel density estimates

For the 2-dimensional case, Jung et al. (2021) proposed to use the kernel density estimate based
on the von Mises kernel (Marzio et al., 2011) for the conformity score. A natural extension to the
p-dimensional tori, for p ≥ 2, is

g (u, Xn (x)) =
1

n + 1

n+1

∑
i=1

Kκ (u − Xi) , Kκ (v) =
p

∏
i=1

eκ cos(vi)

2π I0 (κ)
, v =

(
v1, · · · , vp

)T ∈ Tp (3)

where I0 is the modified Bessel function of the first kind of order 0, and κ is a prespecified concentration
parameter. The function kde.torus provides the multivariate von Mises kernel density estimation.
For conformal prediction, we take σ (xi) = g (xi, Xn (x)), and for inductive conformal prediction, we
take σ (x) = g (x, X1).

Conformity scores from mixtures of multivariate von Mises

Our next choices of conformity scores are based on mixture models. Since the multivariate normal
distributions are not defined on Tp, we instead use the multivariate von Mises distribution (Mardia
et al., 2008), whose density on Tp is

f (y; µ, κ, Λ) = C (κ, Λ) exp
{
−1

2

[
κT (2 − 2c (y, µ)) + s (y, µ)T Λs (y, µ)

]}
(4)
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where y =
(
y1, · · · , yp

)T ∈ Tp, µ =
(
µ1, · · · , µp

)T ∈ Tp, κ = (κ1, . . . , κp)T ∈ (0, ∞)p, Λ = (λj,l) for
1 ≤ j, l ≤ p, −∞ < λjl < ∞,

c (y, µ) =
(
cos (y1 − µ1) , · · · , cos

(
yp − µp

))T ,

s (y, µ) =
(
sin (y1 − µ1) , · · · , sin

(
yp − µp

))T ,

(Λ)jl = λjl = λl j, j ̸= l, (Λ)jj = λjj = 0,

and for some normalizing constant C (κ, Λ) > 0. We write f (y; θ) = f (y; µ, κ, Λ) for θ = (µ, κ, Λ).

For any positive integer J and a mixing probability π =
(
π1, · · · , πJ

)
, consider a J-mixture model:

p (u; π, θ) =
J

∑
j=1

πj f
(

u; θj

)
(5)

where θ =
(
θ1, · · · , θJ

)
, θj = (µj, κj, Λj) for j = 1, · · · , J. Let

(
π̂, θ̂

)
be appropriate estimators of (π, θ)

based on X1. The plug-in density estimate based on (5) is then

p
(
·; π̂, θ̂

)
=

J

∑
j=1

π̂j f
(
·; θ̂j

)
, (6)

which can be used as a conformity score by setting g (·, X1) = p̂ (·). Assuming high concentrations,
an alternative conformity score can be set as g (·, X1) = pmax (·, π̂, θ̂

)
where

pmax (u; π̂, θ̂
)

:= max
j=1,··· ,J

(
π̂j f

(
u; θ̂j

))
≈ p

(
u; π̂, θ̂

)
. (7)

On the other hand, Mardia et al. (2012) introduced an approximated density function f ∗ for the
p-variate von Mises sine distribution (4) for sufficiently high concentrations and when Σ ≻ 0:

f ∗ (y; , µ, Σ) = (2π)−p/2 |Σ|−1/2 exp
{
−1

2

[
κT (2 − 2c (y, µ)) + s (y, µ)T Λs (y, µ)

]}
where

(
Σ−1)

jl = λjl ,
(
Σ−1)

jj = κj, j ̸= l. By further approximating via θ ≈ sin θ, 1 − θ2

2 ≈ cos θ, we
write

f ∗ (y; , µ, Σ) ≈ (2π)−p/2 |Σ|−1/2 exp
{
−1

2

[
(y ⊖ µ)T Σ−1 (y ⊖ µ)

]}
, (8)

where the angular subtraction ⊖ stands for

X ⊖ Y :=
(

arg
(

ei(ϕx1−ϕy1)
)

, · · · , arg
(

ei(ϕxp−ϕyp)
))T

,

for X =
(
ϕx1, · · · , ϕxp

)T ∈ Tp and Y =
(
ϕy1, · · · , ϕyp

)T ∈ Tp as defined in Jung et al. (2021) for p = 2.
By replacing the von Mises density f in (7) with the approximate normal density (8), log (pmax (·; π, θ))
is approximated by

log (pmax (u; π, θ)) ≈ 1
2

max
j

e
(

u; πj, θj

)
+ c,

e
(

u; πj, θj

)
= −

(
u ⊖ µj

)T
Σ−1

j

(
u ⊖ µj

)
+ 2 log πj − log

∣∣∣Σj

∣∣∣ (9)

where θj = (µj, Σj), µj = (µ1j, · · · , µpj)
T ∈ Tp, Σj ∈ Rp×p and a constant c ∈ R. Our last choice of

the conformity score is

g (·, X1) = max
j

e
(
·, π̂j, θ̂j

)
. (10)

Note that with this choice of conformity score, the conformal prediction set can be expressed as the
union of ellipsoids on the torus. That is, the following equalities are satisfied (Shin et al., 2019; Jung
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et al., 2021): Let Ce
n be the level 1 − α prediction set using (10). Then

Ce
n :=

{
x ∈ Tp : g (x, X1) ≥ g

(
X(in2,α), X1

)}
=

J⋃
j=1

Êj

(
σ(in2,α)

)
(11)

where Êj (t) =

{
x ∈ Tp :

(
x ⊖ µ̂j

)T
Σ̂−1

j

(
x ⊖ µ̂j

)
≤ 2 log π̂j − log

∣∣∣Σ̂j

∣∣∣− t
}

for t ∈ R. Note that

Êj (t) is automatically vanished if t ≥ 2 log π̂j − log
∣∣∣Σ̂j

∣∣∣.
Implementation

We have implemented four conformity scores, described in the previous section. These are based on

1. kernel density estimate (3),

2. mixture model (6),

3. max-mixture model (7), and

4. ellipsoids obtained by approximating the max-mixture (10).

The function icp.torus in ClusTorus computes these conformity scores using the inductive conformal
prediction framework, and returns icp.torus object(s). Table 1 illustrates several important arguments
of the function icp.torus.

Arguments Descriptions
data n × d matrix of toroidal data on [0, 2π)d or [−π, π)d

model A string. One of "kde", "mixture", and "kmeans" which determines the model or
estimation methods. If "kde", the model is based on the kernel density estimates.
It supports the kde-based conformity score only. If "mixture", the model is based
on the von Mises mixture, fitted with an EM algorithm. It supports the von Mises
mixture and its variants based conformity scores. If "kmeans", the model is also
based on the von Mises mixture, but the parameter estimation is implemented
with the elliptical k-means algorithm illustrated in Appendix. It supports the
log-max-mixture based conformity score only. If the dimension of data space is
greater than 2, only "kmeans" is supported. Default is model = "kmeans".

J A scalar or numeric vector for the number(s) of components for model =
c("mixture", "kmeans"). Default is J = 4.

concentration A scalar or numeric vector for the concentration parameter(s) for model = "kde".
Default is concentration = 25.

Table 1: Key arguments and descriptions for the function icp.torus

The argument model of the function icp.torus indicates which conformity score is used. By
setting model = "kde", the kde-based conformity score (3) is used. By setting model = "mixture" the
mixture model (6) is estimated by an EM algorithm, and conformity scores based on (6), (7), (10) are all
provided. Setting model = "kmeans" provides a mixture model fit by the elliptical k-means algorithm
and conformity score based on (10).

The arguments J and concentration specify the model fitting hyperparameters. To compute con-
formity scores based on kernel density estimate (3), one needs to specify the concentration parameter
κ. Likewise, the number of mixtures, J, needs to be specified in order to fit the mixture model (6) and
the variants (7) and (10). The function icp.torus takes either a single value (e.g., J = 4 is the default),
or a vector (e.g., J = 4:30 or concentration = c(25,50)) for arguments J and concentration. If J
(or concentration) is a scalar, then icp.torus returns an icp.torus object.

On the other hand, if J (or concentration) is a numeric vector containing at least two values, then
icp.torus returns a list of icp.torus objects, one for each value in J (or concentration, respectively).
Typically, the hyperparameter J (or κ) is not predetermined, and one needs to choose among a
set of candidates. A list of icp.torus objects, evaluated for each candidate in vector-valued J (or
concentration) is required for our hyperparameter selection procedure, discussed in a later section.

Let us present an R code example for creating an icp.torus object, fitted with model = "kmeans"
(the default value for argument model) and J = 12.
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Figure 3: The Ramachandran plot for SARS-CoV-2, with conformal prediction set whose conformity
score is (10) with J = 12 for level α = 0.1111. The plot demonstrates the union of ellipses as (11).

set.seed(2021)
icp.torus.12 <- icp.torus(SARS_CoV_2, J = 12)
plot(icp.torus.12, level = 0.1111)

The icp.torus object has an S3 method plot, and the R code plot(icp.torus.12,level = 0.1111)
plots the ellipses in (11) with α specified by argument level = 0.1111. The union of these ellipses is
in fact the inductive conformal prediction set of level 1 − α. The boundaries of the inductive conformal
prediction set can be displayed by specifying ellipse = FALSE, as follows.

plot(icp.torus.12, ellipse = FALSE)

The resulting graphic is omitted.

Conformity scores based on mixture model and its variants need appropriate estimators of the
parameters, π and θ. If the parameters are poorly estimated, the conformal prediction sets will be
constructed trivially and thus become useless. We have implemented two methods of estimation: EM
algorithms and the elliptical k-means algorithm, also known as the generalized Lloyd’s algorithm
(Sung and Poggio, 1998; Bishop, 2006; Shin et al., 2019). EM algorithms for the mixture model (6)
are described in Jung et al. (2021), for the 2-dimensional case. Since the EM estimates require long
computation time and large sample sizes, extensions to higher-dimensional tori do not seem to apt.
The EM estimates of the mixture model parameters can be naturally used for the case of max-mixture
(7) and ellipsoids (10) as well. The argument model = "mixture" of icp.torus works only for the
2-dimensional case. On the other hand, the elliptical k-means algorithm converges much faster even for
moderately high-dimensional tori. The elliptical k-means algorithm is used for estimating parameters
in the approximated normal density (8), and for computation of the conformity score of ellipsoids (10).
The elliptical k-means algorithms for data on the torus are further discussed in the Appendix.

Table 2 summarizes the four choices of conformity scores in terms of model-fitting methods,
dimensionality of the data space, and whether clustering is available. Our predictive clustering is
implemented only based on the "ellipsoids" conformity score (10). The rational for this choice is due to
the relatively simple form of prediction sets (a union of ellipsoids (11)).

3 Clustering by conformal prediction

We now describe our clustering strategies using the conformal prediction sets. Suppose for now that
the level α and the hyperparameter J of the prediction set are given. The basic idea of clustering is
to take each connected component of the prediction set as a cluster. For this, we need an algorithm
identifying connected components from any prediction set. Since the prediction sets are in general of
irregular shapes, such an identification is a quite difficult task. However, as shown in Jung et al. (2021),
if the conformal prediction set is of the form (11), clusters are identified by testing the intersection
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Conformity Scores EM k-means dim = 2 dim > 2 Clustering

Kernel density (3)
Mixture (6)
Max-mixture (7)
Ellipsoids (10)

✓
✓ ✓
✓ ✓
✓ ✓ ✓ ✓ ✓

Table 2: Conformity scores against available fitting methods, dimensions of the torus, and whether
cluster assignment is available.

Figure 4: 1

of ellipsoids. Suppose Ce
n = ∪J

j=1Êj where each Êj is an ellipsoid. Let the (i, j)th entry of a square

matrix A be 0 if Êi ∩ Êj = ∅, 1 otherwise. Then, A is the adjacent matrix of a graph whose nodes and
edges represent the ellipsoids and intersections, respectively. The adjacent matrix A gives a partition
I1, · · · , IK ⊆ {1, · · · , J} satisfying

Êik
∩ Êik′

= ∅, k ̸= k′

where 1 ≤ k, k′ ≤ K, ik ∈ Ik, ik′ ∈ Ik′ . This implies that the union of ellipsoids, Uk = ∪i∈Ik
Êi, whose

indices are in a connected component Ik for some k, can be regarded as a cluster. That is, U1, · · · , UK
are the disjoint clusters. With this, the conformal prediction set naturally generates K clusters. Note
that testing the intersection of ellipsoids can be done efficiently (which is a univariate root finding
problem (Gilitschenski and Hanebeck, 2012)), while testing the intersection of arbitrarily shaped sets
is not feasible in general. This is the reason why we only use the conformity score of the form (10), the
prediction set from which is exactly the union of ellipsoids.

We now describe how the cluster labels are assigned to data points. Each data point included in
the prediction set is automatically assigned to the cluster which contains the point. For the data points
which are not included in the conformal prediction set, we have implemented two different types for
cluster assignment, as defined in Jung et al. (2021). The first is to assign the closest cluster label. The
notion of closest cluster can be defined either by the Mahalanobis distance (x ⊖ µ̂j)

TΣ̂−1
j (x ⊖ µ̂j), the

approximate log-density (9), or the largest posterior probability P̂(Y = k|X = x). For example, for
x ̸∈ Ce

n, let Ei be the set with the largest approximate log-density êi(x). If i ∈ Ik, then x is assigned
to the cluster k. These provide three choices of cluster assignment, depending on the definition of
“closeness." The last choice is to regard the excluded points as outliers. That is, if x ̸∈ Ce

n, then the
point x is labeled as “outlier." This outlier-disposing clustering may be more appropriate for the cases
where some of data points are truely outliers. Figure 4 compares the two different types of clustering
assignment.

The function cluster.assign.torus, which takes as input an icp.torus object and level α, gener-
ates the clusters as we described above. The output of the function is an S3 object with class cluter.obj,
and includes the cluster memberships of all data points, for each and every cluster assignment method
we discussed above. The output of cluster.assign.torus includes the number of clusters detected,
the cluster assignment results for the first 10 observations, and cluster sizes, as shown in the code
example below.

c <- cluster.assign.torus(icp.torus.12, level = 0.1111)
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c

Number of clusters: 5
-------------
Clustering results by log density:
[1] 1 1 1 1 2 4 2 1 3 1
cluster sizes: 538 372 39 4 19

Clustering results by posterior:
[1] 5 5 5 5 2 4 3 5 3 5
cluster sizes: 6 310 104 4 548

Clustering results by representing outliers:
[1] 1 1 1 1 2 6 2 1 6 1
cluster sizes: 508 343 15 3 0 103

Note: cluster id = 6 represents outliers.

Clustering results by Mahalanobis distance:
[1] 1 1 1 1 2 4 2 1 3 1
cluster sizes: 533 372 39 4 24

962 clustering results are omitted.

The clustering results contained in the object c can be visualized as follows.

plot(c, assignment = "log.density")
plot(c, assignment = "outlier")

The results are displayed in Figure 4. When the argument assignment is not specified, the outlier
disposing assignment is chosen by default.

4 Hyperparameter selection

Poor choices of conformity score result in too wide prediction sets. Thus, we need to choose the hyper-
parameters elaborately for a better conformal prediction set and for a better clustering performance.
The hyperparameters are the concentration parameter κ (for the case (3)) or the number of mixture
components J (for the cases (6), (7), (10)), as well as the level α for all cases. There have been some
efforts to select the optimal hyperparameters by introducing adequate criteria. Lei et al. (2013) and
Jung et al. (2021) each proposed criteria based on the minimum volume of the conformal prediction set.
However, as we shall see, these approaches become computationally infeasible for higher dimensions.

We briefly review the criterion used in Jung et al. (2021). Assume for now that mixture models are
used; that is, (J, α) are the hyperparameters of interest. For a set C ⊆ Tp, let µ(C) be the volume of
C. Without loss of generality, we can assume that µ (Tp) = 1. For a given level α, the optimal choice
of hyperparameter J minimizes µ (Cn(α, J)) of conformal prediction set Cn (α, J). To choose α and J
altogether, Jung et al. (2021) proposed to use the following criterion:(

α̂, Ĵ
)
= arg min

α,J
α + µ (Cn (α, J)) . (12)

Note that if (κ, α) are the hyperparameters, then J and Ĵ in (12) are replaced by κ and κ̂.

To evaluate (12), one needs to have a set of candidates for J (or κ), and conformal prediction sets
corresponding to each choice of J (or κ, respectively). For this purpose, the function icp.torus is
designed to take as input a set of hyperparameter candidates. As an example, the following code
evaluates the inductive conformal prediction sets for data SARS_CoV_2, fitted by mixture models with
the number of components given by each J = 3, 4, . . . , 35.

set.seed(2021)
icp.torus.objects <- icp.torus(SARS_CoV_2, J = 3:35)

The result, icp.torus.objects, is a list of 33 icp.torus objects. Evaluating Jung et al. (2021)’s
criterion (12) is implemented in the function hyperparam.torus. There, the criterion (12) is termed
"elbow", since the minimizer (α̂, Ĵ) is typically found at an elbow of the graph of the objective function.
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hyperparam.out <- hyperparam.torus(icp.torus.objects)
hyperparam.out

Type of conformity score: kmeans general
Optimizing method: elbow
-------------
Optimally chosen parameters. Number of components = 12 , alpha = 0.1111111
Results based on criterion elbow :

J alpha mu criterion
2241 12 0.1111111 0.1215 0.2326111
2244 12 0.1172840 0.1169 0.2341840
2242 12 0.1131687 0.1211 0.2342687
2243 12 0.1152263 0.1198 0.2350263
2001 11 0.1172840 0.1179 0.2351840
2240 12 0.1090535 0.1265 0.2355535
2245 12 0.1193416 0.1169 0.2362416
2002 11 0.1193416 0.1175 0.2368416
2494 13 0.1316872 0.1053 0.2369872
2004 11 0.1234568 0.1136 0.2370568
2246 12 0.1213992 0.1161 0.2374992
2003 11 0.1213992 0.1163 0.2376992
2005 11 0.1255144 0.1123 0.2378144
1999 11 0.1131687 0.1248 0.2379687
2239 12 0.1069959 0.1310 0.2379959

8004 rows are omitted.

Available components:
[1] "model" "option" "results" "icp.torus" "Jhat" "alphahat"

It can be checked that the choice of J = 12 and α = 0.1111 in the previous examples was indeed
given by the option "elbow".

In computing the criterion (12), the volume µ (Cn (α, J)) is numerically approximated. This is
feasible for data on T2 = [0, 2π)2 by inspecting the inclusion of each point of a fine grid. However, for
high dimensional cases, for example T4, evaluating the volume becomes computationally infeasible. In
fact, as the dimension increases, the number of required inspections grows exponentially. Furthermore,
the function (α, J) → α + µ (Cn(α, J)) is typically not a convex function and has multiple local minima.
Thus, the choice of

(
α̂, Ĵ

)
by (12) tends to be unstable, resulting in high variability of the clustering

results. Therefore, evaluating (12) is not practical for high-dimensional data.

To this end, we have developed and implemented a computationally more efficient procedure
for hyperparameter selection, which also provides more stable clustering results. This procedure is a
two-step procedure, first choosing the model parameter J, then choosing the level α. The two-step
procedure is implemented for choosing J and α, but not for κ and α. Our approach is in contrast to the
approaches in Lei et al. (2013) and Shin et al. (2019) in which they only choose the model parameter
for a prespecified level α.

The first step of the procedure is to choose J, without making any reference to the level α. Choosing
J can be regarded as selecting an appropriate mixture model. The model selection is based on either
the (prediction) risk, Akaike information criterion (Akaike, 1974), or Bayesian information criterion
(Schwarz, 1978). Since the mixture model-based conformity scores (6), (7) and (10) are actually the
density or the approximated log-density of the mixture model, we use the conformity scores in place
of the likelihood. For example, the sum of the conformity scores (10) over the given data is exactly
the fitted log-likelihood. Specifically, let X1, X2 be the splitted datasets given by Algorithm 1 and
X = X1 ∪ X2. Let σ(·) = log g (·; X1) if g is given by (6) and (7) or σ(·) = g (·; X1) if g is given by (10).
Recall that g is the conformity score, and it depends on the estimated model p̂. Then, the function σ
we defined above also depends on the model p̂, and the criterion R can be defined as follows:

R (X, p̂) =


−2 ∑x∈X2

σ(x) if the criterion is the risk,
−2 ∑x∈X1

σ(x) + 2k if the criterion is AIC,
−2 ∑x∈X1

σ(x) + k log n1 if the criterion is BIC,

where k is the number of model parameters and n1 is the cardinality of X1. The function hyperparam.J
computes the minimizer Ĵ of the criterion, as summarized in Algorithm 2.

The fitted models p̂j1 , · · · , p̂jn of Algorithm 2 are exactly the outputs of icp.torus for various
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Algorithm 2 hyperparam.J

1: procedure HYPERPARAM.J(X ⊂ Tp, fitted models p̂j1 , · · · , p̂jn , criterion R)
2: Evaluate Rj = R

(
X, p̂j

)
for j = j1, · · · , jn.

3: Evaluate Ĵ = arg minj∈{j1,··· ,jn} Rj.
4: Output Ĵ, p̂ Ĵ .
5: end procedure

J = j1, · · · , jn. Which criterion to use is specified by setting the argument option of hyperparam.J.
The argument option = "risk", "AIC", or "BIC" is for the risk, AIC, or BIC, respectively. By choosing
Ĵ, we also fix the model p̂ Ĵ for the next step.

The second step is to choose the level α ∈ (0, 1) for the chosen Ĵ and p̂ Ĵ , so that the clustering
result is stable over perturbations of α. If the number of clusters does not change by varying the level
α ∈ I for some interval I, we regard that the clustering result is stable on I. If I is sufficiently wide, it
is reasonable to choose an α ∈ I. Thus, our strategy is to find the most wide interval I = [a, b] ⊆ (0, 1)
whose elements construct the same number of clusters, and to set α̂ as the midpoint of the interval,
i.e. α̂ = (a + b)/2. However, choosing α large, e.g. α > 0.5, results in a too small coverage 1 − α of
the prediction set. Thus, we restrict the searching area as [0, M] for M ∈ (0, 1) which is close to 0, and
find the desirable I in the restricted area [0, M] rather than the whole interval [0, 1]. This strategy is
implemented in hyperparam.alpha, and the algorithm is described in Algorithm 3.

Algorithm 3 hyperparam.alpha

1: procedure HYPERPARAM.ALPHA(fitted model p̂, n2 := |X2|, M ∈ [0, 1])
2: Evaluate the number of clusters cαj for αj = j/n2, j = 1, · · · , ⌊n2M⌋.
3: Set A = {j : cαj−1 ̸= cαj , j = 2, · · · , ⌊n2M⌋}.
4: For A = {αj1 , · · · , αjN} find i = arg maxk∈{1,··· ,N−1} αjk+1

− αjk .
5: Output α̂ =

(
αji+1 + αji

)
/2

6: end procedure

Note that we could alternatively input an array of levels, for the argument alphavec of hyperparam.alpha,
if there is a prespecified searching area. In our experience, setting M = 0.15 gives generally satisfying
results. By setting M = 0.15, at most 15% of the data points are not included in the prediction set, and
at most 15% of the data can be regarded as the outliers. The default value for argument alpha.lim of
hyperparam.alpha, which is M in Algorithm 3, is 0.15. We may interpret this level selecting procedure
as finding the representative modes for the given mixture model; the chosen level is the cutoff value
for which the most stable modes are not vanished.

In summary, we first choose the number of model components J in view of model selection, and
then find the most stable level α̂ in the sense of invariability of the number of clusters. The function
hyperparam.torus combines and implements Algorithms 2 and 3 sequentially and thus chooses J and
α. This two-step hyperparameter selection procedure is used when mixture models are used to produce
the conformal prediction sets, and can be invoked when the argument option of hyperparam.torus
is set as option = "risk", "AIC", or "BIC". If option = "elbow" (the default value, if the dimension
of data is p = 2), then the "elbow" criterion (12) is used to choose either (J, α) or (κ, α). The function
hyperparam.torus returns the chosen hyperparameters ( Ĵ, α̂) (or (κ̂, α̂)), as well as the corresponding
model as an icp.torus object.

As an example, the following code applies the two-step procedure with option = "risk" to
icp.torus.objects we evaluated earlier.

hyperparam.risk.out <- hyperparam.torus(icp.torus.objects, option = "risk")
hyperparam.risk.out

Type of conformity score: kmeans general
Optimizing method: risk
-------------
Optimally chosen parameters. Number of components = 12 , alpha = 0.132716
Results based on criterion risk :

J criterion
1 3 2016.575
2 4 1990.566
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Figure 5: The pairwise scatter plots of ILE data, in which there are four variables (angles) ϕ, ψ, χ1 and
χ2. Each diagonal entry of the plot shows a marginal kernel density estimate for the corresponding
angle. Each off-diagonal panel is a scatter plot for a pair of variables.

3 5 1907.887
4 6 1922.430
5 7 1924.768
... (omitted)

With the option "risk," ( Ĵ, α̂) = (12, 0.0.1327). Recall that with option "elbow", we have chosen
( Ĵ, α̂) = (12, 0.1111). The hyperparameter selection procedures can be visualized by plot(hyperparam.out)
and plot(hyperparam.risk.out). (The resulting graphic is omitted.)

In the next section, the two-step procedures for hyperparameter selection are used in a cluster
analysis of data on T4.

5 Clustering data on T4

In this section, we give an example of clustering ILE data in T4. ILE is a dataset included in ClusTorus,
which represents the structure of the isoleucine. This dataset is obtained by collecting several different
‘.pdb’ files in the Protein Data Bank (Berman et al., 2003). We used PISCES (Wang and Dunbrack,
2003) to select high-quality protein data, by using several benchmarks—resolution is 1.6Å or better,
R-factor is 0.22 or better, sequence percentage identity is equal to or less than 25—as described in
Harder et al. (2010) and Mardia et al. (2012). The ILE data consist of n = 8080 instances of four angles
(ϕ, ψ, χ1, χ2) ∈ T4, and is displayed in Figure 5.

For predictive clustering of ILE data, the conformal prediction sets and scores are built from
mixture models, fitted with the elliptical k-means algorithm (i.e., model = "kmeans"). Other choices of
models such as "kde" and "mixture" are not applicable for this data set with p > 2. The number J of
components in the mixture model needs to be tuned, and we set the candidates for J as {10, . . . , 40}.
In the code example below, conformal prediction sets from mixture models are constructed by the
function icp.torus, with J = 10:40 indicating the candidates of J.

set.seed(2021)
icp.torus.objects <- icp.torus(ILE, J = 10:40)

Next step is to select the hyperparameter J, and the level α of the prediction set, using the function
hyperparam.torus. As discussed in the previous section, for this data set with p = 4, evaluating the
"elbow" criterion is computationally infeasible, and is not supported in hyperparam.torus, if p > 2.
For p > 2, hyperparam.torus uses the two-step procedure, discussed in the previous section, with
option = "risk" as the default choice for the criterion. In the code example below, we use the two-step
procedure, but apply all three available criteria (option = "risk", "AIC", and "BIC") in choosing Ĵ.
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Figure 6: Hyperparameter selection for ILE data, generated from the outputs of hyperparam.torus.
Rows correspond to different choices of criteria "risk", "AIC" and "BIC". In each row, the left panel
shows the values of criterion over J, with the optimal Ĵ indicated by a thicker dot; the right panel
shows the number of clusters over varying α, in which the longest streak is highlighted. The optimal α̂
is the midpoint of the longest streak.

output_list <- sapply( c("risk", "AIC", "BIC"), function(opt) {
hyperparam.torus(icp.torus.objects, option = opt)},
simplify = FALSE,
USE.NAMES = TRUE)

The result output_list is a list of length 3, consisting of outputs of the function hyperparam.torus.
The details of hyperparameter selection can be visualized, and are shown in Figure 6. The first row
of the figure is created by plot(output_list$risk), and shows that the evaluated prediction risk is
the smallest at Ĵ = 29. On the right panel, it can be seen that the longest streak of the number of
clusters over varying level α occurs at 16, which is given by a range of levels around α̂ = 0.1093. The
second and third rows are similarly generated, and they show the results of AIC- and BIC-based
hyperparameter selection. While the results of hyperparameter selection from the three criteria do not
always agree with each other, we observe that using BIC tends to choose parsimonious models than
others, for this and many other data sets we tested.

The number of clusters, given by the conformal prediction set Cn(α̂, Ĵ), can be seen in the right
panels of Figure 6. For example, in the top right panel, with Ĵ = 29 and α̂ = 0.1093, the number of
clusters is 16 (the vertical position of the blue-colored longest streak). For the subsequent analysis, we
use the risk criterion, thus choosing ( Ĵ, α̂) = (29, 0.1093).

hyperparam.risk.out <- output_list$risk

Finally, the function cluster.assign.torus is used for cluster membership assignment for each
data point in ILE. In the code below, the function cluster.assign.torus takes as input hyperparam.risk.out,
an output of hyperparam.torus, and we have not specified any level. Since the object hyperparam.risk.out
contains the chosen level α̂ (in its value alphahat), the level of the conformal prediction set is, by
default, set as hyperparam.risk.out$alphahat.

cluster.out <- cluster.assign.torus(hyperparam.risk.out)
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The output cluster.out contains the membership assignment results as well as the number of clus-
ters, which can be retrieved by cluster.out$ncluster or by simply printing the output cluster.out.
The assigned cluster memberships can be displayed on the pairwise scatter plots of the four angles. We
demonstrate the outlier-disposing membership assignment (the default behavior for S3 method plot),
as well as the membership assignment based on the maximum of log-densities. Figure 7 displays the
scatter plots generated by the codes:

plot(cluster.out, assignment = "outlier") # Top panel of Figure 7
plot(cluster.out, assignment = "log.density") # Bottom panel of Figure 7

Note that these cluster assignments are based on the conformal prediction set Cn(α̂, Ĵ). The
information to construct Cn(α, Ĵ) (for any α ∈ (0, 1)) is contained in the object hyperparam.risk.out
as value icp.torus. Since the conformal prediction set is a union of 4-dimensional toroidal ellipsoids,
projections of such ellipsoids onto coordinate planes are plotted by the following code, and is shown
in Figure 8.

set.seed(2021)
plot(hyperparam.risk.out$icp.torus,

data = ILE[sample(1:nrow(ILE),500),],
level = hyperparam.risk.out$alphahat)

Scatter plots of n = 8080 observations are typically too busy, especially when other informa-
tion (such as the ellipses) is overlaid. In the code example above, we use the argument data =
ILE[sample(1:nrow(ILE),500),] to plot randomly selected observations.

6 All-in-one function: clus.torus

The predictive clustering for data on the torus is obtained by sequentially applying functions icp.torus,
hyperparam.torus and cluster.assign.torus, as demonstrated for ILE data in the previous section.
The function clus.torus is a user-friendly all-in-one function, which performs the predictive clustering
by sequentially calling the three core functions.

Using clus.torus can be as simple as clus.torus(data), as shown in the first code example,
resulting in Figure 1, in Introduction. In this case, the three functions are called sequentially with
default choices for their arguments. On the other hand, users can specify which models and fitting
methods are used, whether hyperparameter tuning is required, and, if so, which criterion is used
for hyperparam.torus, and so on. Key arguments of clus.torus are summarized in Table 3. The
argument model only takes "kmeans" and "mixture" as input, which is passed to icp.torus inside the
function. Since the function concerns clustering, conformal prediction sets consisting of ellipsoids
(10) are needed, and such prediction sets are given by both model = "kmeans" and "mixture". Next,
the values of the arguments J and level determine whether tuning is needed for hyperparameters J
and α. If both are not specified, i.e., J = NULL and level = NULL, then hyperparam.torus is used to
select both parameters, with argument option (see Table 3). If either J or level is specified as a scalar,
then the function simply uses the given value for constructing the conformal prediction sets and for
clustering. Other arguments available for icp.torus and hyperparam.torus can be specified, and the
function passes those arguments to corresponding functions, if applicable.

The output of the function is a list of three objects, with S3 class clus.torus. The three objects in
the output are

1. a cluster.obj object, containing the results of cluster membership assignments,

2. an icp.torus object, corresponding to the model with Ĵ (or the specified J), and

3. if applicable, a hyperparam.torus, hyperparam.J or hyperparam.alpha object.

Each of these objects can be plotted via plot, defined for S3 class clus.torus. For example, recall that
ex is a clus.torus object we created in Introduction. By setting the argument panel of the method
plot as panel = 1, the cluster.obj object is plotted.

plot(ex, panel = 1) # equivalent to plot(ex)

The result is shown in Figure 1 (top left). If the data dimension is p > 2, then figures similar
to Figure 7 will be created. If panel = 2, the icp.torus object is plotted, similar to Figures 3 and 8.
Finally, if panel = 3, the graphics relevant to hyperparameter selection are created, similar to Figure 6.
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Figure 7: The pairwise scatter plots of ILE data with cluster assignments. (Top) assignment =
"outlier". (Bottom) assignment = "log.density".
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Figure 8: The pairwise scatter plots of ILE data, overlaid with the (projected) ellipsoids that constitute
the conformal prediction set Cn(α̂, Ĵ).

Arguments Descriptions
data n × d matrix of toroidal data on [0, 2π)d or [−π, π)d

model A string. One of "kmeans" and "mixture" which determines the model or estimation
methods. If "mixture", the model is the von Mises mixture, fitted with an EM
algorithm. If "kmeans", the model is also the von Mises mixture, fitted by the
elliptical k-means algorithm. If the dimension of data space is greater than 2, only
"kmeans" is supported. Default is model = "kmeans".

J A scalar or numeric vector. If J is scalar, the number of components J is set as J. If J
is a vector, then hyperparam.torus or hyperparam.J is used to select Ĵ. Default is J
= NULL, in which case J = 4:30 is used.

level A scalar in [0, 1]. The level of the conformal prediction set used for clustering. Default
is level = NULL, in which case hyperparam.alpha is used to choose optimal level α̂.

option A string. One of "elbow", "risk", "AIC", or "BIC", determining the criterion used for
hyperparam.torus andr hyperparam.J. Default is option = "elbow" if d = 2, and
option = "risk" if d > 2.

Table 3: Key arguments and descriptions of the function clus.torus

7 Other methods of clustering on the torus

Gao et al. (2018) and Jung et al. (2021) used the extrinsic k-means , which uses Euclidean embedding and
enjoys fast computation of the vanilla k-means algorithm. That is, consider the mapping f : Tp → R2p

as
f
(
ϕ1, · · · , ϕp

)
=

(
cos ϕ1, · · · , cos ϕp, sin ϕ1, · · · , sin ϕp

)
which is the simple Euclidean embedding and is injective. Since R2p is a Euclidean space, the k-means
clustering for vector-valued data can be used. The function kmeans.torus implements the extrinsic
k-means clustering. In the simple code example below, the number of cluster is set to k = 3, and the
result shows the membership assignment by the extrinsic k-means algorithm.

set.seed(2021)
exkmeans <- kmeans.torus(SARS_CoV_2, centers = 3, nstart = 30)
head(exkmeans$membership)

27.B.ALA 28.B.TYR 29.B.THR 30.B.ASN 31.B.SER 32.B.PHE
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1 1 1 1 2 3

Distance-based clustering methods, such as hierarchical clustering, only requires a pairwise
distances of the data points. The function ang.pdist generates the distance matrix for the input data
in which the angular distance between the two points on Tp is measured. Combined with hclust,
the pairwise angular distances are used to provide a hierarchical clustering using, e.g., the complete
linkage, as done in the following example.

distmat <- ang.pdist(SARS_CoV_2)
hc <- hclust(distmat, method = "complete")
hc.result <- cutree(hc, k = 3)
head(hc.result)

[1] 1 1 1 1 2 3

Figure 9 shows the results for the two clustering algorithms, discussed above. The left panel shows
that the Euclidean embedding reflects the rotational nature of angular data. The right panel shows that
the distance-based clustering methods is well-applied with ang.pdist. Note that both the extrinsic
k-means and the hierarchical clustering results are invariant to different representations of angles.
That is, the cluster assignments do not change if Xn is replaced by Xn − π. However, these methods
are inadequate when true clusters are irregularly shaped and when there are outliers (Jung et al., 2021).
In addition, the number of clusters needs to be predetermined for both methods. In contrast, these
weaknesses are mostly resolved by using the predictive clustering.

Figure 9: The clustering results for SARS-CoV-2 by using extrinsic k-means and hierarchical clustering
under the 3 clusters assumption. The left panel shows the result for extrinsic k-means, and the right
panel shows the result for hierarchical clustering.

8 Summary and discussion

In this paper, we introduced the package ClusTorus which contains various tools and routines for
multivariate angular data, including kernel density estimates and mixture model estimates. ClusTorus
performs clustering based on conformal prediction sets. We demonstrated our implementation with
data on T4. The clustering by ClusTorus can result in cluster assignment either with or without an
outlier class. A reviewer pointed out that the package MoEClust (Murphy and Murphy, 2020, 2021)
can also dispose some points as outliers. However, MoEClust only works on Euclidean space, not on
Tp.

There are some possible future developments for ClusTorus. First, EM algorithms for von Mises
mixture models on high dimensional tori (e.g., T4) can be implemented assuming independence of
angles in each component. Using closed-form approximations of maximum likelihood estimators
for univariate von Mises-Fisher distributions (Banerjee et al., 2005; Hornik and Bettina, 2014), fitting
mixtures of product components can be done efficiently (Grim, 2017). Another direction is obtained by
viewing clustering based on (11) by varying α as surveying birth and death of connected components.
This can be dealt with a persistence diagram, a concept of topological data analysis. Hence, instead of
using Algorithm 3, one may choose desirable α using persistence diagram.
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9 Appendix

Elliptical k-means algorithm

In this appendix, we outline the elliptical k-means algorithm for the data on the torus, implemented in
the function ellip.kmeans.torus. The algorithm is used to estimate the parameters of the mixture
model (5), approximated as in (8). Note that the EM algorithm can be used for parameter estimation
for mixture models in low dimensions. The EM algorithms of Jung et al. (2021) is implemented in
the function EMsinvMmix, but works for p = 2 only. For p > 3, EM algorithms suffer from high
computational costs (Mardia et al., 2012). To circumvent this problem, we estimate the parameters by
modifying the generalized Lloyd’s algorithm (Shin et al., 2019), also known as the elliptical k-means
algorithm (Sung and Poggio, 1998; Bishop, 2006). For vector-valued data, Shin et al. (2019) showed
that the elliptical k-means algorithm estimates the parameters sufficiently well for the max-mixture
density case as (7).

Suppose y1, · · · , yn ∈ Tp are an independent and identically distributed sample. Using the
approximated density (8), the approximated likelihood, L′, is

L′ (µ, Σ) = (2π)−np/2 |Σ|−n/2 exp
[
−n

2
tr
(

SΣ−1
)]

(13)

where S = 1
n ∑n

i=1 (yi ⊖ µ) (yi ⊖ µ)T . Thus, if µ is known, Σ̂ = S maximizes L′. Following Mardia et al.

(2012), the mean µ is estimated as follows. Let Ūj = ∑n
i=1 cos

(
yij

)
/n and V̄j = ∑n

i=1 sin
(

yij

)
/n for

j = 1, · · · , p. Then, µ̂ =
(
µ̂1, · · · , µ̂p

)T ,

µ̂j = arctan
V̄j

Ūj
, j = 1, · · · , p (14)

which is the maximum likelihood estimator of mean direction of von Mises-Fisher distribution (Mardia
and Jupp, 1999).

With these approximated maximum likelihood estimators, the elliptical k-means algorithm, de-
scribed in Algorithm 4, maximizes the likelihood corresponding to the max-mixture model (7). The
algorithm is implemented in the function ellip.kmeans.torus.

Algorithm 4 Elliptical k-means algorithm for the torus

1: procedure ELLIPTICAL K-MEANS({X1, · · · , Xn}, J)
2: Initialize πj, θj =

(
µj, Σj

)
, j = 1, · · · , J

3: set

wi,j =

{
1, if j = arg maxl

[
− (Xi ⊖ µl)

T Σ−1
l (Xi ⊖ µl)− log |Σl |+ 2 log πl

]
0, otherwise

Ij =
{

i ∈ {1, · · · , n} |wi,j = 1
}

4: Update µj as (14) with {Xi}i∈Ij
for j = 1, · · · , J

5: Update Σj =
1

∑n
i=1 wi,j

∑n
i=1 wi,j

(
Xi ⊖ µj

) (
Xi ⊖ µj

)T for j = 1, · · · , J

6: Update πj =
1
n ∑n

i=1 wi,j for j = 1, · · · , J
7: Repeat step 3-6 until converge
8: end procedure

Note that the initial values require an initial clustering. For this, we use other clustering algorithms
such as the extrinsic k-means or the hierarchical clustering algorithms, and can be specified by
argument init of ellip.kmeans.torus and icp.torus. One may specify arguments for either hlcust
or kmeans in icp.torus. For example, one may specify the choice of initial values as follows.

icp.torus(data = SARS_CoV_2, J = 4, init = "kmeans", nstart = 30)
icp.torus(data = SARS_CoV_2, J = 4, init = "hierarchical", method = "complete")

By default, the hierarchical clustering with complete linkage is used. Data analysis in this article
using icp.torus or clus.torus was performed with the default initialization.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 205

Constraints for mixture models

The protein structure data we aim to analyze typically consist of hundreds of angles (observations).
Fitting the mixture with a large number of components may give inefficient estimators. Thus, we have
implemented options for reducing the number of model parameters, by constraining the shape of
the ellipsoids, or the covariance matrices. Applying the constraints lead much faster convergence
for estimating parameters (Grim, 2017). We list three types of constraints for covariance matrices Σj.
These constraints are specified by setting the arguments mixturefitmethod and kmeansfitmethod (for
icp.torus) and type (for EMsinvMmix and ellip.kmeans.torus). We explain in terms of the arguments
for the function icp.torus.

• Σj = σ2
j Ip for some σ2

j > 0 for all j, and the prediction set will be the union of spheres.
mixturefitmethod = "circular" and kmeansfitmethod = "heterogeneous-circular" rep-
resents this constraint. Furthermore, if σ2

1 = · · · = σ2
J and πj = 1/J for all j, then all the

spheres have the same radii and this constraint can be designated with kmeansfitmethod =
"homogeneous-circular".

• Σj = diag
(

σ2
jk

)
k=1,··· ,p

for σ2
jk > 0, and the fitted ellipsoids Êj (j = 1, · · · , J) are the axis-aligned

ellipsoids. mixturefitmethod = "axis-aligned" represents this constraint.

• No constraint for Σj, and Êj (j = 1, · · · , J) are any ellipsoids. This option can be designated by
mixturefitmethod = "general" and kmeansfitmethod = "general".

The default values for icp.torus are kmeansfitmethod = "general" and mixturefitmethod =
"axis-aligned".

List of S3 classes defined in ClusTorus

Several S3 classes are defined in the packages ClusTorus. A list of the S3 classes is given in Table 4.

S3 class functions methods
cp.torus.kde cp.torus.kde print, plot
icp.torus icp.torus print, plot, LogLik, predict

icp.torus.eval icp.torus.eval print

cluster.obj cluster.assign.torus print, plot
kmeans.torus kmeans.torus print, predict

hyperparam.torus hyperparam.torus print, plot
hyperparam.J hyperparam.J print, plot

hyperparam.alpha hyperparam.alpha print, plot
clus.torus clus.torus print, plot

Table 4: List of S3 classes, the functions returning a list with corresponding S3 class, and available
methods for the S3 class.
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