
CONTRIBUTED RESEARCH ARTICLE 164

wavScalogram: An R Package with
Wavelet Scalogram Tools for Time Series
Analysis
by Vicente J. Bolós and Rafael Benítez,

Abstract In this work we present the wavScalogram R package, which contains methods based on
wavelet scalograms for time series analysis. These methods are related to two main wavelet tools: the
windowed scalogram difference and the scale index. The windowed scalogram difference compares
two time series, identifying if their scalograms follow similar patterns at different scales and times,
and it is thus a useful complement to other comparison tools such as the squared wavelet coherence.
On the other hand, the scale index provides a numerical estimation of the degree of non-periodicity of
a time series and it is widely used in many scientific areas.

1 Introduction

Since the works of Mallat (2008) and Daubechies (1992), wavelet analysis has become, in the last few
decades, a standard tool in the field of time series analysis. Its ability to simultaneously analyze a
signal in frequency space (scales) and in time, allows it to overcome many of the limitations that
Fourier analysis presents for non-stationary time series. Furthermore, the algorithms for calculating
the different wavelet transforms are characterized by their speed and ease of implementation.

There are currently many software packages that implement functions for wavelet analysis of time
series (MATLAB’s Wavelet Toolbox, Wavelab, etc.), and in recent years, the exponential growth of
the R ecosystem has not been outside the field of wavelet analysis. Within CRAN there are many
packages related to wavelet analysis for time series. Specifically, as collected in the TimeSeries Task
View, the wavelets package (Aldrich, 2020) , the WaveletComp and biwavelet packages (Roesch and
Schmidbauer, 2018; Gouhier et al., 2021) , the mvLSW package (Taylor et al., 2019) and other packages
such as hwwntest (Savchev and Nason, 2018), rwt (Roebuck and Rice University’s DSP group, 2022),
waveslim (Whitcher, 2020) and wavethresh (Nason, 2022).

In this work we will describe in depth the wavScalogram package (Bolós and Benítez, 2021) (also
mentioned in the TimeSeries Task View). In this package, methods based on the wavelet scalogram are
introduced as defined in Benítez et al. (2010); Bolós et al. (2017, 2020). These methods are basically
related to two main wavelet tools: the windowed scalogram difference and the scale index. The first one,
the windowed scalogram difference, was introduced in Bolós et al. (2017). It allows to compare two
time series at different scales and times, determining if their scalograms follow similar patterns. In
this sense, it is a complement to other wavelet tools for comparing time series such as the squared
wavelet coherence and the phase difference, since there are certain differences in time series that
these measurements are not capable of detecting while the windowed scalogram difference can. The
second tool is the scale index introduced in Benítez et al. (2010). It focuses on the analysis of the
non-periodicity of a signal, giving a numerical measure of its degree of non-periodicity, taking the
value 0 if the signal is periodic and a value close to 1 if the signal is totally aperiodic (for example, a
purely stochastic signal). The scale index has been used in many scientific areas, being the evaluation
of the quality of pseudo-random number generators the area where it has been used the most. In
addition, the scale index also has a “windowed” version, in which the windowed scalogram is used
to calculate the scale index instead, allowing to measure the evolution of the scale index over time,
which is useful in the case of non-stationary time series (see Bolós et al. (2020)).

The article is organized as follows: In the next section, we describe the basics of the wavelet
analysis and how to use them in the wavScalogram package. Then, a description of the wavelet
scalogram and its implementation is given. The following sections are devoted to the windowed
scalogram difference and the scale index, in its original and windowed versions. Finally we illustrate
the use of the package with some examples in applied problems, such as the analysis of time series of
sunspots or the use of the windowed scalogram difference in the clustering of time series, particularly
the interest rate series of sovereign bonds.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/view=TimeSeries
https://CRAN.R-project.org/package=wavelets
https://CRAN.R-project.org/package=WaveletComp
https://CRAN.R-project.org/package=biwavelet
https://CRAN.R-project.org/package=mvLSW
https://CRAN.R-project.org/package=hwwntest
https://CRAN.R-project.org/package=rwt
https://CRAN.R-project.org/package=waveslim
https://CRAN.R-project.org/package=wavethresh
https://CRAN.R-project.org/package=wavScalogram
https://CRAN.R-project.org/view=TimeSeries

CONTRIBUTED RESEARCH ARTICLE 165

Morlet

Time
−4 −2 0 2 4

−
0.

5
0.

0
0.

5

Paul

Time
−4 −2 0 2 4

−
0.

5
0.

0
0.

5
1.

0

DoG

Time
−4 −2 0 2 4

−
0.

4
0.

0
0.

4
0.

8

Figure 1: Real part (solid) and imaginary part (dashed) of Morlet, Paul and DoG wavelets for default
parameter values, ω0 = 6 and m = 4, 2 respectively. Along with Haar, they are the most used in
wavelet analysis.

2 Wavelet introduction

A wavelet (or mother wavelet) is a function ψ ∈ L2 (R) with zero average (i.e.
∫

R
ψ = 0), unit energy

(∥ψ∥ = 1, i.e. normalized) and centered in the neighborhood of t = 0 (Mallat, 2008). There exists a
wide variety of wavelets but in this package we use the following, described in Torrence and Compo
(1998) (see Figure 1):

• Morlet:
ψMorlet(t) = π−1/4eiω0te−t2/2.

It is a plane wave modulated by a Gaussian, where the positive parameter ω0 denotes the
central dimensionless frequency. According to Farge (1992), the wavelet function must fulfil an
admissibility condition, which for the Morlet wavelet is only accomplished if some correction
factors are added. We take as default value ω0 = 6, for which those correction factors are
negligible. Nevertheless, other choices of this parameter can be considered.

• Paul:

ψPaul(t) =
(2i)m m!√

π (2m)!
(1 − it)−(m+1) ,

where m is a positive integer parameter representing the order. By default, m = 4.

• Derivative of a Gaussian (DoG):

ψDoG(t) =
(−1)m+1√
Γ
(

m + 1
2

) dm

dtm

(
e−t2/2

)
,

where m is a positive integer parameter representing the derivative. By default, m = 2, that
coincides with the Marr or Mexican hat wavelet.

Moreover, we have added:

• Haar, centered at 0:

ψHaar(t) =


1 if − 1

2 ≤ t < 0,
−1 if 0 ≤ t < 1

2 ,
0 otherwise.

This is the simplest wavelet, but it is not continuous.

Scaling a wavelet ψ by s > 0 and translating it by u, we create a family of unit energy “time-
frequency atoms”, called daughter wavelets , ψu,s, as follows

ψu,s(t) =
1√

s
ψ

(
t − u

s

)
. (1)

Remark 2.2.1 (Fourier factor). Usually, the Fourier wavelength of a daughter wavelet does not coincide
with its scale s. Nevertheless, they are proportional, and this proportionality factor for converting

scales into Fourier periods is called Fourier factor . This Fourier factor is taken 4π/
(

ω0 +
√

2 + ω2
0

)
,

4π/ (2m + 1) and 2π/
√

m + 1/2 for Morlet, Paul and DoG wavelets respectively (Torrence and
Compo, 1998). For the default parameter values, the Fourier factor is approximately 1.033, 1.3963, and
3.9738 respectively. For Haar wavelet, the Fourier factor is 1.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 166

Given a function f ∈ L2 (R), that we will identify with a signal or time series , the continuous
wavelet transform (CWT) of f at time u and scale s > 0 is defined as

W f (u, s) =
∫ +∞

−∞
f (t)ψ∗

u,s(t)dt, (2)

where ∗ denotes the complex conjugate. The CWT allows us to obtain the frequency components (or
details) of f corresponding to scale s and time location u.

In practical situations, however, it is common to deal with finite signals. That is, given a time signal
x, and a finite time interval [0, T], we shall consider the finite sequence xn = x (tn), for n = 0, . . . , N.
Here, t0, . . . , tN is a discretization of the interval [0, T], i.e. tn = nh, being h = T/N the time step.
According to (1) and (2), the CWT of x at scale s > 0 is defined as the sequence

Wxn(s) = h
N

∑
i=0

xiψ
∗
n,s (ti) , (3)

where n = 0, . . . , N and

ψn,s(t) =
1√

s
ψ

(
t − tn

s

)
. (4)

Note that ψn,s(t) is in fact ψtn ,s(t), but this abuse of notation between (1) and (4) is assumed for the sake
of readability. Using Fourier transform tools, one can calculate (3) for all n = 0, . . . N simultaneously
and efficiently (Torrence and Compo, 1998).

Remark 2.2.2 (Energy density). It is known that the CWT coefficients are biased in favour of large
scales (Liu et al., 2007). Nevertheless, if the mother and daughter wavelets are normalized by the
L1-norm (as in the Rwave package, by Carmona and Torresani (2021)) instead of the L2-norm (as in our
package), this bias is not produced . Hence, to rectify the bias, the CWT in (2) and (3) can be multiplied
by the factor 1√

s . This rectification will be specially useful in some wavelet tools of our package that
quantify the “energy density” of a signal, such as the wavelet power spectrum, the scalograms and the
windowed scalogram difference. On the other hand, in the case of the scale index, this correction will
not be advisable (see Remark 2.5.1). Usually, the wavelet tools of our package have a logical parameter
called energy_density that switches this correction.

For computing the CWT of a time series x at a given set of scales, we use cwt_wst. For example,

install.packages("wavScalogram")
library(wavScalogram)
h <- 0.1
N <- 1000
time <- seq(from = 0, to = N * h, by = h)
signal <- sin(pi * time)
scales <- seq(from = 0.5, to = 4, by = 0.05)
cwt <- cwt_wst(signal = signal, dt = h,

scales = scales, powerscales = FALSE,
wname = "DOG", wparam = 6)

computes the CWT of signal at scales from sa = 0.5 to sb = 4 using DoG wavelet with m = 6. The
parameter wname indicates the wavelet used, and it can be "MORLET" (default value), "PAUL", "DOG",
"HAAR" or "HAAR2". The difference between these two last values is that "HAAR2" provides a more
accurate but slower algorithm than the one provided by "HAAR". Moreover, we can specify by means
of wparam the value of the parameters ω0 or m. As it has been stated before, the default values of these
parameters are ω0 = 6 for Morlet wavelet, m = 4 for Paul wavelet and m = 2 for DoG wavelet.

If the set of scales is a base 2 power scales set (Torrence and Compo, 1998), the parameter scales can
be a vector of three elements with the lowest scale sa, the highest scale sb and the number of suboctaves
per octave. This vector is internally passed to function pow2scales that returns the constructed base 2
power scales set. For example,

scales <- c(0.5, 4, 16)
cwt <- cwt_wst(signal = signal, dt = h, scales = scales, powerscales = TRUE)

computes the CWT of signal at scales from sa = 0.5 to sb = 4, with 16 suboctaves per octave. Since
parameter powerscales is TRUE by default, it is not necessary to specify it in the function call. If scales
= NULL (default value), then the function constructs the scales set automatically: sa is chosen so that
its equivalent Fourier period is 2h (Torrence and Compo, 1998), and sb = Nh/2rw, where rw is the
corresponding wavelet radius. Note that in this case sb maximizes the length of the scales interval

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=Rwave

CONTRIBUTED RESEARCH ARTICLE 167

Zero padding

− 3π − π π 3π

−
1

0
1

Periodization

− 3π − π π 3π

−
1

0
1

Symmetric catenation

− 3π − π π 3π

−
1

0
1

Time

Figure 2: Different constructions of an infinite signal from a finite length signal sin(t) with t ∈ [−π, π]
(in red): padding time series with zeroes, using a periodization of the original time series, and using a
symmetric catenation of the original time series. They determine the border effects.

taking into account the cone of influence. The wavelet radius and the cone of influence are defined and
discussed in Remark 2.2.4.

The output cwt is a list containing the following fields:

• coefs is an (N + 1)×length(scales) array (either real or complex depending on the wavelet
used) containing the corresponding CWT coefficients, i.e. cwt$coefs[i,j] is the CWT coefficient
at the i-th time and j-th scale.

• scales is the vector of scales used, either provided by the user or constructed by the function
itself.

• fourier_factor is the scalar used to transform scales into Fourier periods (see Remark 2.2.1).

• coi_maxscale is a numeric vector of size N + 1 that defines the cone of influence (see Remark
2.2.4).

Remark 2.2.3 (Border effects). In (3) (or (2) for finite length signals) there appear border effects (or
edge effects) when the support of the daughter wavelets is not entirely contained in the time domain
[t0, tN]. In order to try to mitigate border effects, we can construct from the original time series x an
infinite time series x̄ on ti = t0 + ih for i ∈ Z and then we define

W̄xn(s) = W x̄n(s) = h ∑
i∈Z

x̄iψ
∗
n,s (ti) , (5)

where n = 0, . . . , N. The most usual ways to construct x̄ are the following:

• Padding time series with zeroes: x̄i = xi if i ∈ {0, . . . , N}, and x̄i = 0 otherwise. In this case, (3)
and (5) are equivalent, having W̄xn(s) = Wxn(s).

• Using a periodization of the original time series: x̄i = xi mod (N+1).

• Using a symmetric catenation of the original time series: x̄i = xi mod (N+1) if ⌊ i
N+1 ⌋ is even, and

x̄i = x(N−i)mod (N+1) if ⌊ i
N+1 ⌋ is odd.

Depending on the nature of x, it may be preferable to use one construction or another for minimiz-
ing the undesirable border effects (see Figure 2). For example, a periodization is advised for stationary
short time series, and symmetric catenation for non-stationary short time series. On the other hand,
for long time series, border effects are less important and then we can just pad with zeroes, i.e. use the
original CWT given in (3).

How the border effects are treated by function cwt_wst is determined via the border_effects
parameter. Possible values for this parameter are "BE" (raw border effects, padding with zeroes),

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 168

"PER" (periodization) and "SYM" (symmetric catenation), corresponding to the three options described
above.

Remark 2.2.4 (Cone of influence). The cone of influence (CoI) is defined by the scales for which border
effects become important at each time. The field coi_maxscale of the output in cwt_wst function
contains, for each time, the maximum scale at which border effects are negligible, and consequently
determines the CoI.

In order to compute the CoI, we have to set a criterion to distinguish between relevant and
negligible border effects. In Torrence and Compo (1998), the CoI is defined by the e-folding time for
the autocorrelation of wavelet power spectrum (see the next section) at each scale s, and this e-folding
time is chosen so that the wavelet power spectrum for a discontinuity at the edge drops by a factor
e−2. For Morlet and DoG wavelets, this e-folding time is

√
2s, and for Paul wavelets is s/

√
2.

For wavelets with symmetric modulus such as Morlet, Paul and DoG, the e-folding time at s = 1 is
interpreted as a wavelet radius rw that defines an effective support [−rw, rw] for the mother wavelet.
Therefore, the CoI is given by the scales from which the corresponding effective supports of the
daughter wavelets [u − srw, u + srw] are not entirely contained in the time domain.

The wavelet radius rw determines the CoI in the different functions of this package by means of
the parameter waverad. If it is NULL (default value) we consider rw =

√
2 for Morlet and DoG wavelets,

and rw = 1/
√

2 for Paul wavelets, following Torrence and Compo (1998). On the other hand, we take
rw = 0.5 for Haar wavelet, i.e. we assume that its effective support is in fact its support. Nevertheless
we can introduce a custom rw for any wavelet, allowing us in this way to adjust the importance of
border effects in the construction of the CoI. For example,

cwt <- cwt_wst(signal = signal, dt = h,
wname = "DOG", wparam = 6, waverad = 2)

computes the CWT coefficients of signal for DoG wavelet with m = 6. Here, cwt$coi_maxscale is
obtained assuming that the wavelet radius is rw = 2. Note that the value of waverad does not affect
the computation of the CWT coefficients.

3 Wavelet scalograms

The wavelet power spectrum of a signal f ∈ L2 (R) at time u and scale s > 0 is defined as

WPS f (u, s) = |W f (u, s) |2. (6)

Analogously to (6), the wavelet power spectrum of a time series x at scale s > 0 is given by the
sequence

WPSxn(s) = |Wxn(s)|2, (7)

where n = 0, . . . , N.

We can plot the wavelet power spectrum of a time series x at a given set of scales through function
cwt_wst if the parameter makefigure is TRUE (default value). There are other parameters regarding
this plot:

• time_values is a vector that provides customized values in the time axis.

• energy_density is a logical parameter. If it is TRUE, it is plotted the wavelet power spectrum
divided by the scales, according to Remark 2.2.2. By default, it is FALSE.

• figureperiod is a logical parameter that indicates if they are represented periods or scales in
the y-axis (see Remark 2.2.1). By default, it is TRUE.

• xlab,ylab,main,zlim are parameters to customize the figure.

For example,

h <- 1 / 12
time1 <- seq(from = 1920, to = 1970 - h, by = h)
time2 <- seq(from = 1970, to = 2020, by = h)
signal <- c(sin(pi * time1), sin(pi * time2 / 2))
cwt_a <- cwt_wst(signal = signal, dt = h, time_values = c(time1, time2))
cwt_b <- cwt_wst(signal = signal, dt = h, time_values = c(time1, time2),

energy_density = TRUE)

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 169

1920 1940 1960 1980 2000 2020

(a) Wavelet Power Spectrum

Time

P
er

io
d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

21
.3

3
10

.6
7

5.
33

2.
67

1.
33

0.
67

0.
33

0.
17

1920 1940 1960 1980 2000 2020

(b) Wavelet Power Spectrum / Scales

Time

0.0

0.2

0.4

0.6

0.8

21
.3

3
10

.6
7

5.
33

2.
67

1.
33

0.
67

0.
33

0.
17

Figure 3: Wavelet power spectra of signal, non corrected (a) and corrected (b) via parameter
energy_density. The CoI is the shadowed region. This signal is the concatenation of two pure
sinusoidal time series with the same amplitude and different periods. Note that even though both
time series have the same amplitude, when the coefficients are not corrected, the magnitude of the
wavelet power spectrum is biased in favour of large scales, while in the corrected version, this bias is
not present.

plots Figure 3 (a) and (b) respectively. In this figure it is shown how the wavelet power spectrum is
biased in favour of large scales, as it is pointed out in Remark 2.2.2. The parameter energy_density
corrects it and so, values for different scales become comparable. Note that energy_density only
affects the plot and hence, cwt_a is identical to cwt_b.

The scalogram of f at scale s is defined as

S f (s) =
(∫ +∞

−∞
|W f (u, s) |2 du

)1/2
. (8)

It gives the contribution of each scale to the total “energy” of the signal and so, the notion of scalogram
here is analogous to the spectrum of the Fourier transform. It is important to note that the term
“scalogram” is often used to refer the wavelet power spectrum, but in this package, we call “scalogram”
to (8).

If f is a finite length signal with time domain I = [a, b], it is usual to consider a normalized version
of the scalogram for comparison purposes, given by

S f (s) =
(

1
b − a

∫ b

a
|W f (u, s) |2 du

)1/2

. (9)

Hence, according to (9), the (normalized) scalogram of x at scale s is given by

Sx(s) =

(
1

N + 1

N

∑
i=0

|Wxi(s)|2
)1/2

. (10)

The normalization coefficient 1/(N + 1) in (10) allows us to compare scalograms of time series with
different lengths.

We can compute the (normalized) scalograms of a time series x at a given set of scales by means
of function scalogram. This function follows the same rules as cwt_wst regarding the data entry,
construction of scales, choice of the wavelet, border effects and application of Fourier factor. So,
parameters signal, dt, scales, powerscales, wname, wparam, waverad, border_effects, makefigure,
figureperiod, xlab, ylab and main are analogous to those in function cwt_wst with same default
values. On the other hand, parameter energy_density is TRUE by default. For example,

sc_a <- scalogram(signal = signal, dt = h,
energy_density = FALSE)

computes the (normalized) scalogram of signal given by (10) at a base 2 power scales set constructed
automatically and plots Figure 4 (a). The output sc_a is a list with the following fields:

• scalog is a vector of length length(scales) with the values of the (normalized) scalogram at
each scale.

• energy is the total energy of scalog (i.e. its L2-norm) if parameter energy_density is TRUE.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 170

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(a) No energy density

Period

S
ca

lo
gr

am

0.25 0.5 1 2 4 8 16 32

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(b) Energy density

Period

0.25 0.5 1 2 4 8 16 32

Figure 4: Original scalogram (a) and corrected scalogram representing an energy density measure (b),
both relative to signal. As in Figure 3, it can be seen how the scalogram is biased in favour of large
scales when the parameter energy_density is FALSE (plot (a)).

• scales and fourier_factor are analogous to those in the output of function cwt_wst.

If parameter energy_density is set to TRUE (default value), then the scalogram is divided by the
square root of the scales, converting it into an energy density measure (see Remark 2.2.2). For example,
if we write

sc_b <- scalogram(signal = signal, dt = h)

it plots Figure 4 (b), and then sc_b$scalog is in fact sc_a$scalog / sqrt(scales).

Inner Scalogram

Given a compactly supported wavelet ψ and f a finite length signal with time domain I = [a, b], the
(normalized) inner scalogram of f at scale s is defined as

S inner f (s) =
(

1
d(s)− c(s)

∫ d(s)

c(s)
|W f (u, s) |2du

)1/2

, (11)

where [c(s), d(s)] is the maximal subinterval in I for which the support of ψu,s is included in I for all
u ∈ [c(s), d(s)]. Hence, according to (11), the (normalized) inner scalogram of x at scale s is given by

S innerx(s) =

 1
n2(s)− n1(s) + 1

n2(s)

∑
i=n1(s)

|Wxi(s)|2
1/2

,

where {n1(s), . . . , n2(s)} is the maximal subset of time indices for which the support of ψi,s is included
in [t0, tN] for all i ∈ {n1(s), . . . , n2(s)}.

This concept of inner scalogram can be extended to wavelets that do not have compact support,
considering the effective support (see Remark 2.2.4) instead of the support. But we have to take into
account that in this case, some theoretical results exposed in Benítez et al. (2010) may not hold.

We can compute the (normalized) inner scalograms of a time series x at a given set of scales by
means of function scalogram setting the parameter border_effects equal to "INNER". Since Morlet,
Paul and DoG wavelets are not compactly supported, it is considered the effective support given by
the wavelet radius rw.

Windowed Scalogram

The (normalized) windowed scalogram of f centered at time t with time radius τ > 0 at scale s is
defined as

WSτ f (t, s) =
(

1
2τ

∫ t+τ

t−τ
|W f (u, s) |2 du

)1/2
. (12)

It was introduced in Bolós et al. (2017) and it allows to determine the relative importance of the
different scales around a given time point. According to (12), the (normalized) windowed scalogram

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 171

1940 1960 1980 2000

(a) Windowed scalogram

Time

P
er

io
d

0.0

0.2

0.4

0.6

0.8
21

.3
3

10
.6

7
5.

33
2.

67
1.

33
0.

67
0.

33
0.

17

1940 1960 1980 2000

(a) Windowed inner scalogram

Time

0.0

0.2

0.4

0.6

0.8

21
.3

3
10

.6
7

5.
33

2.
67

1.
33

0.
67

0.
33

0.
17

Figure 5: Windowed scalogram (a) and windowed inner scalogram (b) of signal. The CoI is the
shadowed region and, for the inner scalogram, the region where the scalogram cannot be computed is
coloured in gray.

of x with time index radius τ ∈ N at scale s is given by the sequence

WSτ xn(s) =

(
1

2τ + 1

n+τ

∑
i=n−τ

|Wxi(s)|2
)1/2

, (13)

where n = τ, . . . , N − τ. In the particular case of τ = 0, (13) coincides with |Wxn(s)|.
We can compute the (normalized) windowed scalograms of a time series x at a given set of

scales by means of function windowed_scalogram. Parameters signal, dt, scales, powerscales, wname,
wparam, waverad, border_effects, energy_density, makefigure, figureperiod, xlab, ylab and main
are analogous to those in function scalogram, and parameters time_values and zlim are analogous to
those in function cwt_wst. For example,

wsc <- windowed_scalogram(signal = signal, dt = h,
windowrad = 72, delta_t = 6,
time_values = c(time1, time2))

computes the (normalized) windowed scalograms of signal with time index radius τ = windowrad
at a base 2 power scales set constructed automatically. Moreover, it plots Figure 5 (a). If windowrad
is NULL (default value), then it is set to ⌈(N + 1)/20⌉. The parameter delta_t is the index increment
for the computation of the windowed scalograms, i.e. (13) is computed only for n from τ to N − τ by
delta_t. If delta_t is NULL (default value) then it is taken ⌈(N + 1)/256⌉.

The output wsc is a list with the following fields:

• tcentral is the vector of times at which the windows are centered, i.e. the times of the form tn
where n goes from τ to N − τ by delta_t.

• wsc is a matrix of size length(tcentral)×length(scales) containing the values of the win-
dowed scalograms at each scale and at each central time.

• windowrad is the time index radius τ used.

• scales, fourier_factor and coi_maxscale are analogous to those in the output of function
cwt_wst.

Windowed Inner Scalogram

The (normalized) windowed inner scalogram of f centered at time t with time radius τ > 0 at scale s
is defined as

WS inner
τ f (t, s) =

(
1

d(t, s)− c(t, s)

∫ d(t,s)

c(t,s)
|W f (u, s) |2 du

)1/2

, (14)

where [c(t, s), d(t, s)] is the maximal subinterval in [t − τ, t + τ] for which the effective support of ψu,s
is included in I for all u ∈ [c(t, s), d(t, s)]. Then, the (normalized) windowed inner scalogram of x with

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 172

time index radius τ ∈ N at scale s is given by the sequence

WS inner
τ xn(s) =

 1
n2(n, s)− n1(n, s) + 1

n2(n,s)

∑
i=n1(n,s)

|Wxi(s)|2
1/2

, (15)

where {n1(n, s), . . . , n2(n, s)} is the maximal subset of time indices in {n − τ, . . . , n + τ} for which the
effective support of ψi,s is included in [t0, tN] for all i ∈ {n1(n, s), . . . , n2(n, s)}.

If border_effects is set to "INNER" in function windowed_scalogram, then the (normalized) win-
dowed inner scalograms are computed. For example,

wsc <- windowed_scalogram(signal = signal, dt = h,
windowrad = 72, delta_t = 6,
border_effects = "INNER",
time_values = c(time1, time2))

computes the (normalized) windowed inner scalogram of signal with time index radius τ =
windowrad, at a base 2 power scales set constructed automatically, and plots Figure 5 (b). Note
that in this figure, the “CoI line” is not a real CoI line, because if we consider inner scalograms,
border effects are negligible. This line represents, at each time tn, the maximum scale s such that
n1(n, s) = n − τ and n2(n, s) = n + τ, and coincides with the CoI line of the (normalized) windowed
scalogram.

4 Windowed scalogram difference

The windowed scalogram difference (WSD) is a wavelet tool, introduced in Bolós et al. (2017), whose
main objective is to compare time series by means of their respective windowed scalograms.

In order to consider differences between scalograms, it is convenient to use base 2 power scales
(Bolós et al., 2017) and hence, we must redefine them by making a change of variable. Thus, for
example, from (10), the (normalized) scalogram of a time series x at log-scale k should be given by

Sx(k) =

(
1

N + 1

N

∑
i=0

|Wxi(2
k)|2

)1/2

, (16)

where k ∈ R is the binary logarithm of the scale. From now on, k will denote log-scales of scales s in
the sense that 2k = s.

The windowed scalogram difference of two signals f , g ∈ L2 (R) centered at (t, k) with time radius
τ > 0 and log-scale radius λ > 0 is defined as

WSDτ,λ f g(t, k) =

(∫ k+λ

k−λ

(
WSτ f (t, κ)−WSτ g(t, κ)

WSτ f (t, κ)

)2
dκ

)1/2

. (17)

The commutative version of (17) is given by

1
2

(∫ k+λ

k−λ

(
WSτ f (t, κ)2 −WSτ g(t, κ)2

WSτ f (t, κ)WSτ g(t, κ)

)2

dκ

)1/2

. (18)

From (17), the windowed scalogram difference (WSD) of two time series x, y centered at log-scale k
with time index radius τ ∈ N and log-scale radius λ > 0 is given by the sequence

WSDτ,λxyn(k) =

(∫ k+λ

k−λ

(
WSτ xn(κ)−WSτyn(κ)

WSτ xn(κ)

)2
dκ

)1/2

, (19)

where n = τ, . . . , N − τ. However, in practice, we work with a finite interval of log-scales that is
discretized into k0, . . . , kM with constant step. Thus, we can adapt (19) to this situation so that it can
be written as

WSDτ,λxyn(km) =

(
2λ + 1

m2 − m1 + 1

m2

∑
i=m1

(
WSτ xn(ki)−WSτyn(ki)

WSτ xn(ki)

)2
)1/2

, (20)

where λ ∈ N is the log-scale index radius, m1 = max {0, m − λ} and m2 = min {M, m + λ}. The
factor 2λ+1

m2−m1+1 is added to counteract the “border effects” in the log-scale interval that appear when

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 173

m − λ < 0 or m + λ > M, because in these cases, the number of addends is less than 2λ + 1. Moreover,
according to (18), a commutative version of (20) can be also considered.

We can compute the WSD (20) (or its commutative version) of two time series x, y of the same length
and time step by means of function wsd. Parameters dt, windowrad, delta_t, wname, wparam, waverad,
border_effects, energy_density, makefigure, time_values, figureperiod, xlab, ylab, main and
zlim are analogous to those in function windowed_scalogram. For example,

set.seed(12345) # For reproducibility
N <- 1500
time <- 0:N
signal1 <- rnorm(n = N + 1, mean = 0, sd = 0.2) + sin(time / 10)
signal2 <- rnorm(n = N + 1, mean = 0, sd = 0.2) + sin(time / 10)
signal2[500:1000] = signal2[500:1000] + sin((500:1000) / 2)
wsd <- wsd(signal1 = signal1, signal2 = signal2,

windowrad = 75, rdist = 14)

computes the commutative WSD of signal1 and signal2 centered at a log-scales set {k0, . . . , kM}
constructed automatically, with time index radius τ = windowrad and log-scale index radius λ = rdist.
If windowrad is NULL (default value) then it is set to ⌈(N + 1)/20⌉, and if rdist is NULL (default value)
then it is set to ⌈(M + 1)/20⌉. The log-scales set can be defined by parameter scaleparam, that must be
a vector of three elements with the minimum scale, the maximum scale and the number of suboctaves
per octave. Moreover, logical parameter commutative, whose default value is TRUE, determines if it is
computed the commutative version of the WSD.

Remark 2.4.1 (Normalization). The WSD compares the patterns of the windowed scalograms of two
time series determining if they give similar weights (or energy) to the same scales. Another tool for
comparing two time series is the squared wavelet coherence (Torrence and Compo, 1998; Torrence
and Webster, 1999), that measures the local linear correlation between them. So, these tools focus on
different aspects: while the squared wavelet coherence does not take into account the magnitudes in
the signals, for the WSD they are crucial. In fact, the WSD has sense only when the two time series
considered are expressed in the same unit of measure or they are dimensionless. Otherwise, it will
be necessary to somehow normalize the signals, but depending on the normalization method, some
artifices could appear. For example, we can normalize the signals so that their scalograms have the
same energy and, in this way, we can compare the relative contributions of each scale to the total
energy. Another option is to normalize the signals so that their scalograms attain the same maximum
value. Finally, it could be also useful to normalize the signals so that their scalograms reach the same
value at a given reference scale.

The normalization method can be chosen through parameter normalize in function wsd. It can
be set to "NO" (default value), "ENERGY", "MAX" or "SCALE", according to each normalization method
exposed in Remark 2.4.1. In this last option, the reference scale must be given by parameter refscale.

Remark 2.4.2 (Near zero scalogram values). Some problems can arise in the WSD when a scalogram is
zero or close to zero for a given log-scale because we are computing relative differences and hence, the
WSD can take extremely high values or produce numerical errors. If we consider absolute differences
this would not happen but, on the other hand, it would not be appropriate for scalogram values
not close to zero. A solution is to establish a threshold for the scalogram values above which a
relative difference is computed, and below which a difference proportional to the absolute difference
is computed (the proportionality factor would be determined by requiring continuity). This threshold
can be interpreted as the relative amplitude of the noise in the scalograms.

Another solution is to substitute the original windowed scalograms WSτ xn(s), WSτyn(s) by

C +

(
1 − C

max

)
WSτ xn(s), C +

(
1 − C

max

)
WSτyn(s), (21)

where
max = max

n,s
{WSτ xn(s),WSτyn(s)} ,

and C ≥ 0 is a relatively small value, called compensation (see Figure 6).

Parameters wscnoise and compensation of function wsd allow us to deal with the near zero
scalogram problem mentioned in Remark 2.4.2. The first one is a value in [0, 1] and establishes the
threshold from which a relative difference is computed. As particular cases, if it is 0 then relative
differences are always done, and if it is 1 then absolute differences are always done. The default value
is set to 0.02. The second one determines the compensation C of (21), which is set to 0 by default.

In practical situations, signals will be usually affected by random noises. Therefore it is necessary
to determine whether the results obtained with the WSD are statistically significant or not. In this

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 174

0.
0

0.
2

0.
4

0.
6

0.
8

Compensation Method

Period

S
ca

lo
gr

am

2 4 8 16 32 64 128 256 512

Figure 6: Illustration of the compensation method exposed in Remark 2.4.2 to deal with near zero
scalogram values in the computation of the WSD. Original scalogram of signal2 (solid black line) is
transformed into the compensated scalogram (dashed red line) for a compensation parameter C = 0.2.

package, we perform Monte Carlo simulations of the WSD (with the same parameter values) of
random signals following a normal distribution with the same mean and standard deviation as the
original ones. Then, we find the 95% and 5% quantiles to determine significantly high and low values
respectively. The number of Monte Carlo simulations is set by parameter mc_nrand in function wsd,
whose default value is 0 (no significant contours are computed). For example,

wsd <- wsd(signal1 = signal1, signal2 = signal2,
mc_nrand = 100, parallel = TRUE)

computes the same WSD as before, but determines which values are significant using 100 Monte
Carlo simulations, plotting Figure 7. Parameter parallel enables parallel computations improving
considerably the execution time for high values of mc_nrand.

Finally, the output of wsd is a list with the following fields:

• wsd is a matrix of size length(tcentral)×length(scales) containing the values of the WSD at
each scale and at each central time.

• rdist is the log-scale index radius λ used.

• signif95 and signif05 are logical matrices of size length(tcentral)×length(scales) that
determine if the corresponding values of the wsd matrix are significantly high or low respectively,
following the 95% and 5% quantiles method described above.

• tcentral, scales, windowrad, fourier_factor and coi_maxscale are analogous to those in the
output of function windowed_scalogram.

With respect to the output image, it is plotted the base 2 logarithm of the inverse of the WSD
because in this way high values represent small differences (i.e. high similarity) and low values
represent large differences (i.e. low similarity) (Bolós et al., 2017).

5 Scale index and windowed scale index

Periodicity is one of the most basic characteristics to be determined in a time series study. Mathemati-
cally, the definition is clear: a time series f is periodic of period T whenever f (t + T) = f (t) for all
t, and a time series that fails to be periodic is a non-periodic signal. However, within this definition,
there are very different types of non-periodic signals (e.g. stochastic, quasi-periodic, chaotic signals),
and an interesting question to analyze is how much non-periodic a time series is. Within this regard,
the scale index and the windowed scale index (Benítez et al., 2010; Bolós et al., 2020) are two wavelet tools
that give a satisfactory answer to this question.

The scale index of a signal f ∈ L2 (R) in the scale interval [s0, s1] is defined as the quotient

iscale f =
S f (smin)

S f (smax)
, (22)

where smax ∈ [s0, s1] is the smallest scale such that S f (s) ≤ S f (smax) for all s ∈ [s0, s1], and smin ∈
[smax, 2s1] is the smallest scale such that S f (smin) ≤ S f (s) for all s ∈ [smax, 2s1] (Benítez et al., 2010;

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 175

200 400 600 800 1000 1200 1400

−log2(WSD)

Time

P
er

io
d

−4

−2

0

2

4

25
6

12
8

64
32

16
8

4
2

Figure 7: Base 2 logarithm of the inverse of the commutative WSD of signal1 and signal2 centered at
a log-scales set constructed automatically, with time index radius τ = 75 and log-scale index radius
λ = 14. The significant contours are plotted in black (significantly high) and white (significantly low)
lines, using 100 Monte Carlo simulations. Both time series are the same sinusoidal signal of period 20π
plus different white noises with the same amplitude. Moreover, signal2 has been manually modified
for 500 ≤ t ≤ 1000, with the addition of another pure sin signal of period 4π. The red band around
period 20π corresponds to the period both signals have in common while the dark blue region around
period 4π corresponds to the period both differ.

Bolós et al., 2020). Hence, according to (22), the scale index of a time series x in the scale interval
[s0, s1] is given by

iscalex =
Sx(smin)

Sx(smax)
, (23)

where smax and smin are defined analogously.

The scale index is a quantity in [0, 1] and measures the degree of non-periodicity of a signal in a
given scale interval [s0, s1]: It is close to zero for periodic and quasi-periodic signals, and close to one
for highly non-periodic signals. The choice of the scale interval [s0, s1] is very important, and it should
contain all the relevant scales that we want to study.

Remark 2.5.1 (No energy density). The correction exposed in Remark 2.2.2 should not be carried out
because the scalogram of a white noise signal is more or less constant at all scales giving a scale index
close to 1 for any scale interval [s0, s1], and this is the property that we want to preserve. If, on the
other hand, we apply the correction for converting the scalogram into an “energy density” measure,
the scale index of a white noise signal would tend to zero as we increase s1 and this is not desirable
(Bolós et al., 2020).

We can compute the scale index of a time series x by means of function scale_index. Pa-
rameters signal, dt, scales, powerscales, wname, wparam, waverad, border_effects, makefigure,
figureperiod, xlab, ylab and main are analogous to those in function scalogram. Note that, ac-
cording to Remark 2.5.1, there is no parameter energy_density because scalograms must be computed
without this correction. For example,

set.seed(12345) # For reproducibility
N <- 999
h <- 1 / 8
time <- seq(from = 0, to = N * h, by = h)
signal_si <- sin(pi * time) + rnorm(n = N + 1, mean = 0, sd = 2)
s0 <- 1
s1 <- 4
si <- scale_index(signal = signal_si, dt = h,

scales = c(s0, 2 * s1, 24), s1 = s1,
border_effects = "INNER", makefigure = FALSE)

computes the scale index of signal_si in the scale interval [s0, s1] where s0 = 1 and s1 = 4. The
parameter scales determines the scales set at which the scalograms are computed: In this case, it is

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 176

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scale Index

Period of s1

S
ca

le
 in

de
x

0.25 0.5 1 2 4 8 16

Figure 8: Scale indices of signal_si in scale intervals [s0, s1] where s0 is the scale whose equivalent
Fourier period is 0.25 and s1 varies. The signal is a pure sin of period 2 plus a noise term. Thus, for
values of s1 lower than 2, the scale index is very high because the scalogram still has not considered
this period. At s1 = 2, there is a sudden drop in the scale index and from that point onwards, as s1
increases, the scale index decreases until it reaches a stable plateau (at 0.2 approximately) for large
values of s1.

a base 2 power scales set from sa = s0 to sb = 2s1 with 24 suboctaves per octave. Note that we take
sb = 2s1 according to the definition of the scale index, because sb can not be lesser than 2s1 and there is
no need for sb to be greater than 2s1. Moreover, function scale_index takes s0 equal to the lowest scale
sa always. If scales = NULL (default value), then the scalograms are computed at an automatically
constructed set of scales with sa equal to the scale whose equivalent Fourier period is 2h, and sb = 2s1.

We can also compute the scale indices of a signal in scale intervals [s0, s1] for different values of s1
assigning a vector of scales to the parameter s1. Thus,

maxs1 <- 4
si <- scale_index(signal = signal_si, dt = h, scales = c(s0, 2 * maxs1, 24),

s1 = pow2scales(c(s0, maxs1, 24)),
border_effects = "INNER")

computes the scale indices of signal_si in scale intervals [s0, s1] where s0 = 1 and s1 varies in a base
2 power scales set from 1 to 4 with 24 suboctaves per octave. Moreover, if s1 = NULL (default value),
then s1 is automatically computed as a base 2 power scales set from s0 to sb/2. If scales is also NULL,
then sb = Nh/2rw as usual, where rw is the corresponding wavelet radius (see Remark 2.2.4). Hence,

si <- scale_index(signal = signal_si, dt = h, border_effects = "INNER")

computes the scale indices of signal_si in scale intervals [s0, s1] where s0 is the scale whose equivalent
Fourier period is 2h and s1 varies in a base 2 power scales set from s0 to Nh/rw. Moreover, it returns a
plot like Figure 8. It is important to remark that if s1 are not base 2 power scales then powerscales
must be FALSE. For example,

si <- scale_index(signal = signal_si, dt = h,
s1 = seq(from = s0, to = maxs1, by = 0.1),
powerscales = FALSE, border_effects = "INNER")

computes the scale indices of signal_si in scale intervals [s0, s1] where s0 = 1 and s1 varies linearly
from 1 to 4 with step 0.1. In this case, since scales are not given, they are constructed automatically in
a linear form, since powerscales must be FALSE.

Alternatively, we can compute the scale indices directly from a scalogram instead of giving the
original signal by means of parameter scalog. In this case, we must give the scales at which the
scalogram has been computed. Thus, we can compute the scale indices of an artificially constructed

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 177

0 20 40 60 80 100 120

0.
80

0.
85

0.
90

0.
95

1.
00

(a) Scalogram

Scale

S
ca

lo
gr

am

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Scale Index

s1

S
ca

le
 in

de
x

2 4 8 16 32 64

Figure 9: (a) Average of 100 scalograms of noise signals. (b) Scale indices computed from this averaged
scalogram. The scale indices are very close to 1, indicating a high degree of non-periodicity.

scalogram which does not necessarily have to correspond to any signal. For example, we can compute
the scale indices corresponding to the average of 100 scalograms of noise signals:

set.seed(12345) # For reproducibility
N <- 1000
nrand <- 100
X <- matrix(rnorm(N * nrand), nrow = N, ncol = nrand)
scales = pow2scales(c(2, 128, 24))
ns = length(scales)
sc_list <- apply(X, 2, scalogram, scales = scales, border_effects = "INNER",

energy_density = FALSE, makefigure = FALSE)
sc_matrix <- matrix(unlist(lapply(sc_list, "[[", "scalog")),

nrow = ns, ncol = nrand)
sc_mean <- apply(sc_matrix, 1, mean)
s1 = pow2scales(c(2, 64, 24))
si_mean <- scale_index(scalog = sc_mean, scales = scales, s1 = s1,

figureperiod = FALSE, plot_scalog = TRUE)

This code also returns figures like those in Figure 9. The logical parameter plot_scalog is used for
plotting the scalogram from which the scale indices are computed.

The output of scale_index is a list with the following fields:

• si is a vector with the scale indices, for each value of s1.
• s0 is the scale s0.
• s1 is a vector with the scales s1.
• smax and smin are vectors with the scales smax and smin respectively, for each value of s1.
• scalog is the the scalogram Sx from which the scale indices are computed.
• scalog_smax and scalog_smin are vectors with the scalogram values Sx(smax) and Sx(smin)

respectively, for each value of s1.
• fourierfactor is the scalar used to transform scales into Fourier periods (see Remark 2.2.1).

Windowed Scale Index

As was mentioned in the introduction, wavelet analysis is a very useful tool for non-stationary time
series. If we are interested in analyzing the non-periodicity of a non-stationary time series, we should
be aware that the scale index is going to give us a single number between 0 and 1 which represents the
degree of non-periodicity of the signal in the overall time interval of interest. However we may be
interested in how this degree of non-periodicity is changing along this interval. To this aim, Bolós et al.
(2020) introduced the windowed scale index, which uses the windowed scalogram in order to obtain
scale indices for different time and scale intervals.

In particular, the windowed scale index of f in the scale interval [s0, s1] centered at time t with
time radius τ > 0 is defined as

wiscale,τ f (t) =
WSτ f (t, smin)

WSτ f (t, smax)
, (24)

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 178

where, analogously to (22), smax is the smallest scale such that WSτ f (t, s) ≤ WSτ f (t, smax) for all
s ∈ [s0, s1], and smin is the smallest scale such that WSτ f (t, smin) ≤ WSτ f (t, s) for all s ∈ [smax, 2s1]
(Bolós et al., 2020). Finally, according to (24), the windowed scale index of a time series x in the scale
interval [s0, s1] with time index radius τ ∈ N is given by the sequence

wiscale,τ xn =
WSτ xn (smin)

WSτ xn (smax)
,

where n = τ, . . . , N − τ, and smax, smin are defined analogously to (24).

Remark 2.5.2 (Inner scalograms). Although in the computation of the scale index it is recommended
the use of (normalized) inner scalograms in order to fulfil some theoretical results and avoid border
effects, this recommendation is less important in the case of the windowed scale index, because for
long time series and relatively small time radii there would be no relevant border effects in most of the
windowed scalograms.

By means of function windowed_scale_index, we can compute the windowed scale index of a time
series x. As usual, parameters signal, dt, scales, powerscales, windowrad, delta_t, wname, wparam,
waverad, border_effects, makefigure, time_values, figureperiod, xlab, ylab, main and zlim are
analogous to those in function windowed_scalogram. Moreover, parameter s1 is analogous to that in
function scale_index. For example,

set.seed(12345) # For reproducibility
s0 <- 1
s1 <- 4
signal1_wsi <- sin(pi * time[1:500]) + rnorm(n = 500, mean = 0, sd = 2)
signal2_wsi <- sin(pi * time[501:1000] / 2) + rnorm(n = 500, mean = 0, sd = 0.5)
signal_wsi <- c(signal1_wsi, signal2_wsi)
wsi <- windowed_scale_index(signal = signal_wsi, dt = h,

scales = c(s0, 2 * s1, 24), s1 = s1,
windowrad = 50,
time_values = time)

computes the windowed scale index of signal_wsi in a scale interval [s0, s1] where s0 = 1 and s1 = 4.
The time index radius τ is given by the parameter windowrad. If it is NULL (default value), then it is set
to ⌈(N + 1)/20⌉ that, in this case, coincides with the value of windowrad. Moreover, it returns a plot
like Figure 10.

We can compute the windowed scale indices for different values of s1 assigning a vector of scales
to the parameter s1. It is important to remark that if s1 are not base 2 power scales, then powerscales
must be FALSE. If s1 = NULL and/or scales = NULL (default values), then they are automatically
computed in the same way as it is done in function scale_index. So,

wsi <- windowed_scale_index(signal = signal_wsi, dt = h,
time_values = time)

computes the windowed scale indices of signal_wsi in scale intervals [s0, s1] where s0 is the scale
whose equivalent Fourier period is 2h and s1 varies in a base 2 power scales set from s0 to Nh/rw. The
time index radius τ is taken automatically as ⌈(N + 1)/20⌉ = 50. It also returns a plot, like Figure 11.

Alternatively, we can compute the windowed scale indices directly from a windowed scalogram
instead of giving the original signal by means of parameter wsc. This parameter must be equal to a ma-
trix of size (number of central times)×(number of scales), as it is returned by the windowed_scalogram
function. In this case, we must give the scales at which the windowed scalogram wsc has been com-
puted and, in addition, we can give the cone of influence by means of parameter wsc_coi, that must
be a vector containing the values of the maximum scale at each central time from which there are
border effects in wsc. Thus, we can compute the windowed scale indices of an artificially constructed
windowed scalogram as it was shown in the case of the scale index. Taking the same example, we can
compute the windowed scale indices corresponding to the average of 100 windowed scalograms of
noise signals:

set.seed(12345) # For reproducibility
N <- 1000
nrand <- 100
X <- matrix(rnorm(N * nrand), nrow = N, ncol = nrand)
scales = pow2scales(c(2, 128, 24))
ns = length(scales)
wsc_list <- apply(X, 2, windowed_scalogram, scales = scales,

energy_density = FALSE, makefigure = FALSE)

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 179

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Windowed Scale Index

Time

W
in

do
w

ed
 S

ca
le

 In
de

x

6.375 20.375 34.375 48.375 62.375 76.375 90.375 104.375

Figure 10: Windowed scale index of signal_wsi in a scale interval [1, 4] and with time index radius
τ = 50. The dashed vertical lines represent the CoI limits. This time series is the concatenation of two
sinusoidal signals of periods 2 and 4, modified with two white noises of different variance. In the
first part, where the noise has a higher standard deviation, the windowed scale index is also higher.
Moreover, it can be seen how the windowed scale index captures the moment of change in the noise.

20 40 60 80 100

Windowed Scale Index

Time

P
er

io
d

of
 s

1

0.2

0.4

0.6

0.8

1.0

16
8

4
2

1
0.

5
0.

25

Figure 11: Windowed scale indices of signal_wsi in scale intervals [s0, s1] where s0 is the scale whose
equivalent Fourier period is 0.25 and s1 varies, with time index radius τ = 50. This plot also shows
that s1 should be at least 4 for the scale indices to capture all relevant periods.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 180

200 400 600 800

(a) Windowed Scalogram

Time

S
ca

le
s

0.80

0.85

0.90

0.95

1.00

1.05

12
8

64
32

16
8

4
2

200 400 600 800

(b) Windowed Scale Index

Time

s 1

0.80

0.85

0.90

0.95

1.00

64
32

16
8

4
2

Figure 12: (a) Average of 100 windowed scalograms of noise signals. (b) Windowed scale indices
computed from this averaged windowed scalogram. The windowed scale indices are always close to
1, indicating a high degree of non-periodicity.

tcentral <- wsc_list[[1]]$tcentral
ntc <- length(tcentral)
wsc_matrix <- array(unlist(lapply(wsc_list, "[[", "wsc")), c(ntc, ns, nrand))
wsc_mean <- apply(wsc_matrix, 1:2, mean)
wsc_coi <- wsc_list[[1]]$coi_maxscale
wsi_mean <- windowed_scale_index(wsc = wsc_mean, wsc_coi = wsc_coi,

scales = scales, time_values = tcentral,
figureperiod = FALSE, plot_wsc = TRUE)

This code also returns figures like those in Figure 12. The logical parameter plot_wsc is used for
plotting the windowed scalogram from which the windowed scale indices are computed.

The output of windowed_scale_index is a list with the following fields:

• wsi is a matrix of size length(tcentral)×length(s1) with the windowed scale indices at each
s1 and at each central time.

• wsc is a matrix of size length(tcentral)×length(scales) with the windowed scalograms
from which the windowed scale indices are computed. Note that scales greater than 2*max(s1)
are not necessary and they are internally removed from scales.

• s0, s1, smax, smin, scalog_smax and scalog_smin are analogous to those in the output of function
scale_index.

• tcentral, windowrad, fourierfactor and coi_maxscale are analogous to those in the output of
function windowed_scalogram.

6 Examples and applications

Windowed scalogram difference and clustering

As an application, we are going to show an example of how to define a dissimilarity measure from the
windowed scalogram difference (WSD), which can then be applied to perform time series clustering.
We are going to use the interest.rates time series from package TSclust (Montero and Vilar, 2014),
which consists on 215 observations of the monthly long-term interest rates (10-year bonds) from
January 1995 to November 2012 of several countries.

First, we define the returns time series for each country and then we compute the corresponding
WSD of any pair of countries (see Figure 13). Next, we define the dissimilarity measure as the
binary logarithm of the WSD mean plus 1 (in order to avoid negative distances). Finally, we plot the
hierarchical clusters according to this dissimilarity measure (see Figure 14).

When defining the dissimilarity measure, we can restrict the WSD to only some areas instead
of considering it entirely. For example, if we want to study the relationships between the different
countries from the beginning of the century to the 2008 crisis at long-term scales, then we could only
take into account the WSD area between 2001 and 2007, considering exclusively scales greater than
2 years. On the other hand, if border effects are relevant, only the WSD zone outside the cone of

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=TSclust

CONTRIBUTED RESEARCH ARTICLE 181

2000 2005 2010

(a) −log2(WSD) Netherlands − Finland

Time

P
er

io
d

−4

−2

0

2

4

64
32

16
8

4
2

2000 2005 2010

(b) −log2(WSD) Netherlands − Spain

Time

−4

−2

0

2

4

64
32

16
8

4
2

2000 2005 2010

(c) −log2(WSD) Netherlands − Japan

Time

−4

−2

0

2

4

64
32

16
8

4
2

Figure 13: Plots of base 2 logarithms of the inverse of the commutative WSD of returns of Netherlands
and (a) Finland, (b) Spain and (c) Japan. The corresponding dissimilarity measures of these pairs are
0.7395, 1.6279 and 2.819 respectively. Red zones indicate time-scale regions where the two signals are
more similar, while blue zones correspond to less similarity between the signals. Note that Netherlands
and Finland are two countries whose economies are similar in both time and scale (plot (a)) but, on the
other hand, Netherlands has a very different economic behaviour than Japan (plot (c)). The big blue
spot in plot (b) corresponds to the 2008 financial crisis, which hit Spain harder than the Netherlands.

Ja
pa

n

S
w

itz
er

la
nd

Ir
el

an
d

U
S

A

P
or

tu
ga

l

S
pa

in

Ita
ly

N
or

w
ay

N
et

he
rla

nd
s

F
in

la
nd

A
us

tr
ia

E
M

U

F
ra

nc
e S

w
ed

en

G
er

m
an

y

D
en

m
ar

k

U
K

C
an

ad
a

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Interest rates 1995−2012

H
ei

gh
t

Figure 14: Hierarchical clustering of several countries according to their interest rates from 1995 to
2012. Similar countries are close together in the diagram.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 182

influence could be considered. However, in our example, border effects do not substantially alter the
clustering result.

library(wavScalogram)
library(TSclust)
data("interest.rates")
returns <- apply(interest.rates, MARGIN = 2, function(x) diff(log(x)))
Nsignals <- ncol(returns)
countries <- colnames(returns)
M <- Nsignals * (Nsignals - 1) / 2 # Number of pairings
auxpair <- vector(mode = "list", M)
k <- 1
for (i in 1:(Nsignals - 1)) {
for (j in (i + 1):Nsignals) {
auxpair[[k]] <- c(i, j)
k <- k + 1

}
}
fwsd <- function(x) wsd(signal1 = returns[, x[1]],

signal2 = returns[, x[2]],
makefigure = FALSE)

Allwsd <- lapply(auxpair, FUN = fwsd)
ntimes <- length(Allwsd[[1]]$tcentral)
nscales <- length(Allwsd[[1]]$scales)
area <- ntimes * nscales
meanwsd <- rep(0, M)
for (i in 1:M) {
meanwsd[i] <- sum(Allwsd[[i]]$wsd) / area

}
d1 <- matrix(0, Nsignals, Nsignals)
d1[lower.tri(d1, diag = FALSE)] <- log2(meanwsd + 1)
dm1 <- as.dist(t(d1) + d1)
names(dm1) <- countries
plot(hclust(dm1), main = "Interest rates 1995-2012", xlab = "", sub = "")

Sunspots

In the next example we are going to illustrate the different tools of wavScalogram on the most famous
sunspot number time series and how to use them in order to find the sunspots period, which is estimated
to be around 11 years.

Let us consider the sunspot.month R dataset consisting on monthly numbers of sunspots from
1749 to present. Firstly, we can estimate the sunspots period by means of the scale at which the
scalogram reaches its maximum. Using this criterion, we obtain that the sunspots period is 10.3254
approximately (see Figure 15 (b)). For this method, it is recommended that energy_density = TRUE
since otherwise, larger scales would be over-estimated. Note that the wavelet power spectrum and
the windowed scalograms present, as expected, horizontal bands of high values precisely around the
scale 10.3254 (see Figure 15 (a) and (c)). Hence, they can be used to estimate a sunspot period that
depends on time.

On the other hand, we can also estimate the sunspots period by means of the scale at which the
scale index reaches its minimum. Contrary to the previous case and according to Remark 2.5.1, it is
recommended that energy_density = FALSE for computing scale indices (see Figure 16). Using this
criterion, we obtain that the sunspots period is 11.1215, approximately (see Figure 17 (a)). Therefore, the
windowed scale index can also be used, analogously to the scalogram and the windowed scalogram,
to estimate sunspots periods depending on time (see Figure 17 (b)).

Bibliography

E. Aldrich. wavelets: Functions for Computing Wavelet Filters, Wavelet Transforms and Multiresolution
Analyses, 2020. URL https://CRAN.R-project.org/package=wavelets. R package version 0.3-0.2.
[p164]

R. Benítez, V. J. Bolós, and M. E. Ramírez. A wavelet-based tool for studying non-periodicity. Computers

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=wavelets

CONTRIBUTED RESEARCH ARTICLE 183

1750 1800 1850 1900 1950 2000

(a) Wavelet Power Spectrum / Scales

Time

P
er

io
d

0

1000

2000

3000

4000
85

.3
3

42
.6

7
21

.3
3

10
.6

7
5.

33
2.

67
1.

33
0.

67
0.

33
0.

17

10
20

30
40

(b) Scalogram

Period

0.25 0.5 1 2 4 8 16 32 64 1800 1850 1900 1950 2000

(c) Windowed Scalogram

Time

P
er

io
d

10

20

30

40

50

60

85
.3

3
42

.6
7

21
.3

3
10

.6
7

5.
33

2.
67

1.
33

0.
67

0.
33

0.
17

Figure 15: (a) Wavelet power spectrum divided by scales, (b) scalogram, and (c) windowed scalogram
of the sunspots time series, with energy_density = TRUE. These plots show how the scalogram can be
used for determining the sunspots period. In plots (a) and (c) the yellow-red band should be centered
in the sunspots period, while in plot (b), this period should be given by the peak in the scalogram.

1750 1800 1850 1900 1950 2000

(a) Wavelet Power Spectrum

Time

P
er

io
d

0

10000

20000

30000

40000

85
.3

3
42

.6
7

21
.3

3
10

.6
7

5.
33

2.
67

1.
33

0.
67

0.
33

0.
17

0
20

40
60

80
10

0
12

0

(b) Scalogram

Period

0.25 0.5 1 2 4 8 16 32 64 1800 1850 1900 1950 2000

(c) Windowed Scalogram

Time

P
er

io
d

0

50

100

150

200

85
.3

3
42

.6
7

21
.3

3
10

.6
7

5.
33

2.
67

1.
33

0.
67

0.
33

0.
17

Figure 16: (a) Wavelet power spectrum, (b) scalogram, and (c) windowed scalogram of the sunspots
time series, with energy_density = FALSE. These plots depict the same as Figure 15, but the bias in
favour of large scales is present. Nevertheless, this is recommended for computing the corresponding
scale indices.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Scale Index

Period of s1

S
ca

le
 in

de
x

0.25 0.5 1 2 4 8 16 32 1800 1850 1900 1950 2000

(b) Windowed Scale Index

Time

P
er

io
d

of
 s

1

0.2

0.4

0.6

0.8

1.0

42
.6

7
10

.6
7

5.
33

2.
67

1.
33

0.
67

0.
33

0.
17

Figure 17: (a) Scale indices and (b) windowed scale indices of the sunspots time series. In these plots,
the use of the scale indices to determine the sunspots period is depicted. The period is estimated by
the minimum scale s1 for which the scale indices are stabilized around lower values, presenting the
transition from non-periodicity to a far more periodic signal. The windowed scale indices in plot (b)
are specially useful for non-stationary time series because they can detect changes in the sunspots
period over time.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 184

& Mathematics with Applications, 60(3):634–641, 2010. URL https://doi.org/10.1016/j.camwa.2010.
05.010. [p164, 170, 174]

V. J. Bolós and R. Benítez. wavScalogram: Wavelet Scalogram Tools for Time Series Analysis, 2021. URL
https://CRAN.R-project.org/package=wavScalogram. R package version 1.1.1. [p164]

V. J. Bolós, R. Benítez, R. Ferrer, and R. Jammazi. The windowed scalogram difference: a novel
wavelet tool for comparing time series. Applied Mathematics and Computation, 312:49–65, 2017. URL
https://doi.org/10.1016/j.amc.2017.05.046. [p164, 170, 172, 174]

V. J. Bolós, R. Benítez, and R. Ferrer. A new wavelet tool to quantify non-periodicity of non-stationary
economic time series. Mathematics, 8:844–859, 2020. URL https://doi.org/10.3390/math8050844.
[p164, 174, 175, 177, 178]

R. Carmona and B. Torresani. Rwave: Time-Frequency Analysis of 1-D Signals, 2021. URL https:
//CRAN.R-project.org/package=Rwave. R package version 2.6-0. [p166]

I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics.
Society for Industrial and Applied Mathematics, 1992. ISBN 9780898712742. [p164]

M. Farge. Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics,
24:395–458, 1992. URL https://doi.org/10.1146/annurev.fl.24.010192.002143. [p165]

T. C. Gouhier, A. Grinsted, and V. Simko. R package biwavelet: Conduct Univariate and Bivariate Wavelet
Analyses, 2021. URL https://github.com/tgouhier/biwavelet. (Version 0.20.21). [p164]

Y. Liu, X. San Liang, and R. H. Weisberg. Rectification of the bias in the wavelet power spectrum.
Journal of Atmospheric and Oceanic Technology, 24(12):2093–2102, 2007. URL https://doi.org/10.
1175/2007JTECHO511.1. [p166]

S. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 2008. ISBN 978-0-08-
092202-7. [p164, 165]

P. Montero and J. Vilar. TSclust: an R package for time series clustering. Journal of Statistical Software,
62(1):1–43, 2014. URL https://doi.org/10.18637/jss.v062.i01. [p180]

G. Nason. wavethresh: Wavelets Statistics and Transforms, 2022. URL https://CRAN.R-project.org/
package=wavethresh. R package version 4.6.9. [p164]

P. Roebuck and Rice University’s DSP group. rwt: ’Rice Wavelet Toolbox’ Wrapper, 2022. URL https:
//CRAN.R-project.org/package=rwt. R package version 1.0.2. [p164]

A. Roesch and H. Schmidbauer. WaveletComp: Computational Wavelet Analysis, 2018. URL https:
//CRAN.R-project.org/package=WaveletComp. R package version 1.1. [p164]

D. Savchev and G. Nason. hwwntest: Tests of White Noise using Wavelets, 2018. URL https://CRAN.R-
project.org/package=hwwntest. R package version 1.3.1. [p164]

S. A. C. Taylor, T. Park, and I. A. Eckley. Multivariate locally stationary wavelet analysis with the
mvLSW R package. Journal of Statistical Software, 90(11):1–19, 2019. URL https://doi.org/10.
18637/jss.v090.i11. [p164]

C. Torrence and G. Compo. A practical guide to wavelet analysis. Bulletin of the American Meteorological
Society, 79(1):61–78, 1998. URL https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.
0.CO;2. [p165, 166, 168, 173]

C. Torrence and P. J. Webster. Interdecadal changes in the ENSO–monsoon system. Journal of Climate, 12
(8):2679–2690, 1999. URL https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;
2. [p173]

B. Whitcher. waveslim: Basic Wavelet Routines for One-, Two-, and Three-Dimensional Signal Processing,
2020. URL https://CRAN.R-project.org/package=waveslim. R package version 1.8.2. [p164]

Vicente J. Bolós
Department of Bussiness Mathematics. University of Valencia
Avda. Tarongers s/n. 46022. Valencia
Spain
vicente.bolos@uv.es

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://doi.org/10.1016/j.camwa.2010.05.010
https://doi.org/10.1016/j.camwa.2010.05.010
https://CRAN.R-project.org/package=wavScalogram
https://doi.org/10.1016/j.amc.2017.05.046
https://doi.org/10.3390/math8050844
https://CRAN.R-project.org/package=Rwave
https://CRAN.R-project.org/package=Rwave
https://doi.org/10.1146/annurev.fl.24.010192.002143
https://github.com/tgouhier/biwavelet
https://doi.org/10.1175/2007JTECHO511.1
https://doi.org/10.1175/2007JTECHO511.1
https://doi.org/10.18637/jss.v062.i01
https://CRAN.R-project.org/package=wavethresh
https://CRAN.R-project.org/package=wavethresh
https://CRAN.R-project.org/package=rwt
https://CRAN.R-project.org/package=rwt
https://CRAN.R-project.org/package=WaveletComp
https://CRAN.R-project.org/package=WaveletComp
https://CRAN.R-project.org/package=hwwntest
https://CRAN.R-project.org/package=hwwntest
https://doi.org/10.18637/jss.v090.i11
https://doi.org/10.18637/jss.v090.i11
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2
https://CRAN.R-project.org/package=waveslim
mailto:vicente.bolos@uv.es

CONTRIBUTED RESEARCH ARTICLE 185

Rafael Benítez
Department of Bussiness Mathematics. University of Valencia
Avda. Tarongers s/n. 46022. Valencia
Spain
rabesua@uv.es

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

mailto:rabesua@uv.es

	wavScalogram: An R Package with Wavelet Scalogram Tools for Time Series Analysis
	Introduction
	Wavelet introduction
	Wavelet scalograms
	Inner Scalogram
	Windowed Scalogram
	Windowed Inner Scalogram

	Windowed scalogram difference
	Scale index and windowed scale index
	Windowed Scale Index

	Examples and applications
	Windowed scalogram difference and clustering
	Sunspots

