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Refreg: An R Package for Estimating
Conditional Reference Regions
by Lado-Baleato, Óscar, Roca-Pardiñas, Javier, Cadarso-Suárez, Carmen and Gude, Francisco

Abstract Multivariate reference regions (MVR) represent the extension of the reference interval concept
to the multivariate setting. A reference interval is defined by two threshold points between which
a high percentage of healthy subjects’ results, usually 95%, are contained. Analogously, an MVR
characterizes the values of several diagnostic tests most frequently found among non-diseased subjects
by defining a convex hull containing 95% of the results. MVRs have great applicability when working
with diseases that are diagnosed via more than one continuous test, e.g., diabetes or hypothyroidism.
The present work introduces refreg, an R package for estimating conditional MVRs. The reference
region is non-parametrically estimated using a multivariate kernel density estimator, and its shape
allowed to change under the influence of covariates. The effects of covariates on the multivariate
variable means, and on their variance-covariance matrix, are estimated by flexible additive predictors.
Continuous covariate non-linear effects can be estimated by penalized spline smoothers. The package
allows the user to propose, for instance, an age-specific diagnostic rule based on the joint distribution
of two non-Gaussian, continuous test results. The usefulness of the refreg package in clinical practice
is illustrated with a real case in diabetes research, with an age-specific reference region proposed for
the joint interpretation of two glycemia markers (fasting plasma glucose and glycated hemoglobin).
To show that the refreg package can also be used in other, and indeed very different fields, an example
is provided for the joint prediction of two atmospheric pollutants (SO2, and NOx). Additionally, the
text discusses how, conceptually, this method could be extended to more than two dimensions.

1 Introduction

In clinical practice, many medical decisions are based on continuous diagnostic tests (Hallworth,
2011) – i.e., tests that provide results along a continuous, quantitative scale. The interpretation of
such continuous tests requires the comparison of the obtained value with a pre-defined reference
interval, so that a result could be classified as positive or negative (ie, disease present or absent)
based on this comparator value. A reference interval is an interval containing most healthy subjects’
results. For a single test they are usually estimated from the 2.5 and 97.5 empirical percentiles of the
distribution for the healthy population; thus, 95% of healthy patients are located within the interval
limits (Wright and Royston, 1999). Those patients falling outside the reference interval, are likely
to have an undiagnosed disease. If the test results are influenced by some patient characteristics
independent of the disease (e.g., age and gender), reference intervals for specific patient groups must
be obtained. These covariate-dependent reference intervals, usually termed reference curves, are
estimated using quantile regression (Koenker and Bassett Jr, 1978) or location-scale models (Cole
and Green, 1992; Stasinopoulos et al., 2017). Several R packages for estimating reference intervals
and reference curves already exist, including the R package referenceIntervals, which comprises a
collection of tools, the R package gamlss (Stasinopoulos et al., 2007), which provides a general tool for
deriving reference curves in clinical practice (WHO, 2006), and software RefCurv (Winkler et al., 2019),
recently proposed to facilitate clinicians’ use of gamlss. However, all these packages were produced
to provide reference intervals for single tests; they cannot address diseases for which diagnosis and
control are based on multiple tests.

When the results of several tests are available for the same patient, obtaining separate reference
intervals for each one provides an incomplete picture of disease status, particularly when these results
are strongly correlated (Boyd, 2004). Although each reference interval would leave only 5% of healthy
patients out, their combined use can result in a higher percentage of false positives. Moreover, a
patient falling within each univariate reference interval might, in fact, show an abnormal multivariate
result. Thus, a multivariate reference region (MVRs) would provide a better means of interpreting
the results of multiple tests (Winkel and Lyngbye, 1972). MVRs are a straightforward extension of
the univariate reference interval to the multidimensional setting, i.e., a region that contains 95% of
the healthy patients’ results. However, despite being proposed more than 40 years ago, MVRs are
rarely used in clinical practice. This might be explained by the multivariate Gaussian assumption of
MVRs, which is quite restrictive when interpreting diagnostic test results. Further, the multivariate
distribution of test results is usually affected by patient characteristics, independent of their health
status. For example, Espasandín-Domínguez et al. (2019) showed that the correlation between two
diagnostic tests for diabetes was influenced by patient age and red blood cell turnover, independent of
glycemia status. A conditional MVR is therefore desirable, but the statistical literature is not rich in
such proposals (see, e.g., (Wei, 2008)).
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Very few statistical software routines have been proposed for estimating the region containing a
specific percentage of multivariate data points. The function mvtol.region in the R package tolerance
(Young, 2010) obtains a region containing a high percentage of a bivariate Gaussian distribution in the
context of quality control studies, and non-parametric probabilistic regions can be obtained using the
R packages r2d2 (Magnusson and Burgos, 2014), hdrcde (Hyndman, 2018) and distfree.cr (Hu and
cai Yang, 2018). However, these all suffer the major limitation of not being able to estimate the effects
of covariates on the region’s shape. The R package modQR can estimate conditional multivariate
quantiles, but the quantile level τ is not linked to the probability content of the sample (Šiman and
Boček, 2019). Thus, it is not clear how to derive a reference region from these bivariate quantiles.

The present paper introduces refreg, an implementation in R of a new statistical methodology for
estimating bivariate reference regions able to classify subjects as having normal or abnormal values
based on the results of two continuous diagnostic tests. The main advantages of the presented method
are; i) the absence of parametric restrictions for describing bivariate distributions for continuous tests,
and ii) the possibility of estimating the effects of covariates on the shape of the reference region via
flexible additive predictors. To illustrate this statistical methodology, and how to use the package, an
age-specific reference region for two diabetes diagnostic tests was estimated. The estimated reference
region offers new insights into the diagnosis and prognosis of diabetes, enabling physicians to identify
different patients’ profiles. The proposed method can, however, be applied to any disease in which
two continuous diagnostic tests are available, and can even be used in non-medical fields. Indeed,
an application is discussed in which the conditional region is used in the joint forecasting of the
concentrations of two air pollutants. Moreover, the current implementation can be easily extended to
three dimensions.

The statistical model that enables conditional reference regions to be determined is presented
in the next section. The main functions contained in the refreg package are then described, with a
brief introduction to the main functions. The use of the package is shown in analyses of real medical
and environmental data problems. The paper closes with some comments, and some notes on future
research directions.

2 Statistical methodology

In this section the main features of our statistical method is presented. In a nutshell, our proposal is
based on a bivariate location scale model, where the response means, and their variance-covariance
matrix, are related to covariates using flexible additive predictors. The probabilistic region covering a
specific percentage of the data is firstly estimated using the model standardized residuals. Then, it is
generalized for each covariate value based on the aforementioned bivariate location-scale model fit.
This statistical model was already presented and evaluated in (Roca-Pardiñas et al., 2020).

Conditional reference region

Given a bivariate continuous random variable of interest Y = (Y1, Y2), and a vector of covariates
X = (X1, . . . , Xp) we consider the following structure:(

Y1
Y2

)
=

(
µ1(X)
µ2(X)

)
+ Σ1/2(X)

(
ε1
ε2

)
(1)

where µ1(X) and µ2(X) represents the conditional means of both responses and Σ1/2(X) the Cholesky
decomposition of the variance-covariance matrix

Σ(X) =
(

σ2
1 (X) σ12(X)

σ12(X) σ2
2 (X)

)
(2)

so that Var(Y|X) = Σ(X) = Σ1/2(X)
(

Σ1/2(X)
)T

. In order to guarantee the model identification (1),

the bivariate residuals (ε1, ε2) are assumed to be independent of the covariates, with zero mean, unit
variance, and zero correlation.

We consider additive structures for the mean functions µj(X), variance functions σ2
j (X) (j = 1, 2)

and the correlation function ρ(X) – note that σ12(X) = σ̂1(X)σ̂2(X)ρ̂(X). These structures are given,
respectively, by

µr(X) = αr +
p

∑
j=1

f jr(Xj), σ2
r (X) = Hσ

βr +
p

∑
j=1

gjr(Xj)

 for r = 1, 2
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and

ρ(X) = Hρ

γ +
p

∑
j=1

mj(Xj)


where α, β and γ are parametric coefficients and f jr, gjr and mj for j = 1, · · · , p and r = 1, 2 are
smooth and unknown functions. Hσ(·) = exp(·) and Hρ(·) = tanh(·) are link functions used in the
variance and correlation structures, respectively, to ensure that the restrictions on the parameter spaces
(σ2

r (X) ≥ 0 and 0 ≤ ρ(X) ≤ 1) are maintained.

Based on the model presented in equation (1), for a given X the conditional τth- reference region
for (Y1, Y2) is given by:

Rτ(X) =
(

µ1(X)
µ2(X)

)
+ Σ1/2(X)ετ (3)

where ετ is the unconditionally probabilistic region for the errors (ε1, ε2) as

ετ(k) = {(ε1, ε2) ∈ R2| f (ε1, ε2) ≤ k} (4)

f being the density function of the bivariate residuals (ε1, ε2) and k is the τ−quantile of f (ε1, ε2).

Estimation algorithm

In this section, we present the estimation procedure of the conditioned bivariate uncertainty region
given in equation (3). Our approach is based on the estimation of the covariate effects on the response
means using an additive model, and then on the variance-covariance matrix using the squared
residuals of the former models. Finally, the bivariate region Rτ(X) is obtained with a bivariate kernel
estimation of the standardized bivariate residuals.

The steps of the proposed estimation algorithm are the following:

Step 1: For r = 1, 2 fit an additive model to the sample {Xi, Yir}n
i=1 and obtain the estimates

µ̂r(Xi) = α̂ +
p

∑
j=1

f̂ jr(Xij) (5)

Then, estimate σ2
r (X) from the sample {Xi, (Yir − µ̂r(Xi))

2}n
i=1 as

σ̂2
r (Xi) = β̂r +

p

∑
j=1

ĝjr(Xij) (6)

Step 2: Compute the correlation ρ(X), using the sample {Xi, δ̂i}n
i=1, as

ρ̂(Xi) = tanh

γ̂ +
p

∑
j=1

m̂jr(Xij)


where

δ̂i =
(Yi1 − µ̂1(Xi)) (Yi2 − µ̂2(Xi))

σ̂1(Xi)σ̂2(Xi)

Step 3: Compute the standardized residuals(
ε̂i1
ε̂i2

)
= Σ̂−1/2(Xi)

(
Yi1 − µ̂1(Xi)
Yi2 − µ̂2(Xi)

)
i = 1, . . . , n (7)

and obtain the kernel estimation of the bivariate density f̂ (ε1, ε2) given by

f̂ ((ε1, ε2), H) =
1
n

n

∑
i=1

KH

(
ε1 − ε̂i1
ε2 − ε̂i2

)
(8)

where K(·) is the kernel which is a symmetric probability density function and H is a 2 × 2 positive
definite matrix. Then, obtain the τth unconditional bivariate uncertainty region on the residual scale as

ε̂τ = {(ε1, ε2)) ∈ R2| f̂ (ε1, ε2)) ≤ k̂} (9)

k̂ being the empirical τ quantile of the values f̂ (ε11, ε12), . . . , f̂ (εn1, εn2).
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Finally, for a given X, the conditional bivariate uncertainty region Rτ(X) is estimated by

R̂τ(X) =
(

µ̂1(X)
µ̂2(X)

)
+ Σ̂

1/2
(X)ε̂τ (10)

Flexible additive models estimation and inference

The continuous covariates smooth effects ( f jr, gjr and mj for j = 1, · · · , p) may be estimated using
several non-parametric regression techniques. In previous works we applied polynomial kernel
smoothers (Roca-Pardiñas et al., 2020). However, for sake of usage simplicity and computational cost,
in the final package implementation we used a penalized spline basis representation following (Wood,
2017). Thus, given an unknown smooth effect (e.g. f (x)) is estimated as:

f (x) =
K

∑
k=1

βkbk(x)

Confidence intervals for the estimated effects may be obtained using a bootstrap procedure. Given a
specific vector of covariates X0, for the components (means, variances and correlation). The steps for
construction of the bootstrap confidence intervals are:

Step 1. From the sample data {(Yi1, Yi2), Xi}n
i=1 obtain the estimates µ̂r(X0), σ̂r(X0) (r = 1, 2) and

ρ̂(X0).

Step 2. For b = 1, . . . , B generate bootstrap samples {(Y•
i1, Y•

i2), Xi}n
i=1 with(

Y•
i1

Y•
i2

)
=

(
µ̂1(Xi)
µ̂2(Xi)

)
+ Σ̂

1/2
(Xi)

(
ε̂•i1
ε̂•i2

)
(11)

where
{
(ε̂•i1, ε̂•i2)

}n
i=1 is a sample of size n from the residuals {(ε̂i1, ε̂i2)}n

i=1 with replacement, and
compute µ̂•b

r (X0), σ̂•b
r (X0) and ρ̂•b(X0) as in Step 1.

The limits for the 100(1 − α)% confidence intervals of the true components µr(X0), σr(X0) and

ρ(X0) are given respectively by
(

µ̂α/2
r (X0), µ̂1−α/2

r (X0)
)

,
(

σ̂α/2
r (X0), σ̂1−α/2

r (X0)
)

and
(

ρ̂α/2(X0), ρ̂1−α/2(X0)
)

,

where µ̂
p
r (X0) represents the p-percentile of µ̂•1

r (X0), . . . , µ̂•B
r (X0), σ̂

p
r (X0) represents the p-percentile

of σ̂•1
r (X0), . . . , σ̂•B

r (X0), and ρ̂p(X0) is the p-percentile of ρ̂•1(X0), . . . , ρ̂•B(X0).

Bivariate residuals density estimation

The estimation of the unconditionally probabilistic region for the bivariate errors (ε1, ε2) is based on a
kernel density estimator. This estimator is given by:

f̂ ((ε1, ε2), H) =
1
n

n

∑
i=1

KH

(
ε1 − ε̂i1
ε2 − ε̂i2

)
(12)

where H is a matrix defining the kernel bandwidth

H =

(
h11 h12
h12 h22

)

The selection of H is crucial to obtain a good estimation of ετ . A natural option is to use a plug-in
or cross-validation bandwidth estimator, as in a density estimation problem

arg min
H∈H

E(
∫∫ (

f̂H(ε1, ε2)− fH(ε1, ε2)
(−i)

)2
dε1dε2 (13)

where f̂H(ε1, ε2)
−i is the estimated bivariate density function without the i-th observation. However,

as we seek for a probabilistic region (i.e. a region which contains a given percentage of the multivariate
data), the following selection criteria based on the region coverage is proposed

λ̂ = arg min
λ

∣∣∣∣∣
(

n−1
n

∑
i=1

I{(Yi1, Yi2) ∈ R(−i)(Xi)}
)
− τ

∣∣∣∣∣ (14)

where τ is the desired coverage and R̂(−i)
τ (Xi) is the estimated bivariate region without the i-th

observation. Using this criteria the estimated region show a smoother contour and a coverage of
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Figure 1: Estimated reference regions for plug-in and best coverage bandwidths for non-gaussian
data. In black we represent true regions and in red the estimated ones for τ = 0.50, 0.95. Best coverage
bandwidth offers a smoother region than plug-in estimator.

the data points closer to the desired one τ (see Figure 1). Given the high computational cost of the
regular proposed method in (13), a k-fold cross-validation scheme could be used instead. Moreover
we simplify the minimization problem by considering h11 = h22 and h12 = 0.

3 Overview of the package

The refreg package contains a set of functions for estimating a conditional reference, or uncertainty,
region. Its working framework was designed so that people without a strong statistical background
can use it. Indeed, only two functions need to be taken into account by the user: 1) the effects of
the predictor variables on responses need to be estimated using the bivRegr function, a step that
requires the user choose which variables may influence the region; 2) bivRegion needs to be applied to
a bivRegr object so that the reference region can be estimated.

The bivRegr() function has the following structure:

bivRegr(f = formulas,data = data)

The f argument contains a list of five R formulae corresponding to the additive predictors for the
means, variances and correlation models shown in equation (1). Since bivRegr() uses mgcv::gam()
internally, the user can estimate covariate linear and non-linear effects using s() operator. For instance:

mu1 <- y1 ~ s(x1)
mu2 <- y2 ~ s(x1)
var1 <- ~ x2
var2 <- ~ x2
rho <- ~ s(x3)

formula = list(mu1,mu2,var1,var2,rho)

assumes a smooth effect of x1 on the response means, a parametric effect of x2 on their variances, and
a smooth effect of x3 on the response correlation.

The bivRegion() function is designed for non-parametrically estimating a bivariate reference
region:

bivRegion(object,tau = 0.95,bandwidth = "plug-in")

The object may be a set of bivariate data points, or a bivRegr object, while tau defines the desired
coverage(s) for the reference region, which might be a single value or a vector. Finally, “bandwidth”
specifies the kernel bandwidth selection method. The user can chose between the plug-in, cross-
validation, or the best coverage method (see equation (13)).

Additionally, we defined S3 methods for these two main functions. Specifically, associated with
bivRegr we have
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• predict.bivRegr and plot.bivRegr: to predict and depict additive models results for responses’
means, variances, and their correlation.

• summary_boot.bivRegr: a function implementing the bootstrap inference for flexible additive
models (see (11)). This function results can be depicted by applying plot.summary_boot.

On the other hand, we defined the following S3 methods associated to bivRegion:

• summary.bivRegion: this function evaluates the region performance on the healthy patients’
sample.

• predict.bivRegion and plot.bivRegion: these functions offer a prediction or a plot of condi-
tional regions for a new dataset. If the argument cond=FALSE it evaluates the response values in
the standardized scale.

In addition, we define the functions trivRegr, trivRegion and plot.trivRegion as an extension
of the aforementioned method for a trivariate response variable. Finally, our package also contains
some inner functions as ace (for estimating variance, and correlation models), Hcv (it implements
equation (14) method), and refcurve (it implements an univariate location-scale model).

4 Refreg in practice

This section outlines the implemented functions of the proposed package in detail, and illustrates
their use with real datasets. The first illustration is related to diabetes research, in which a reference
region for the joint interpretation of two glycemia tests is calculated. In the second illustration, refreg
methodology is used to predict the concentrations of two air pollutants during a pollution episode.
Finally, the extension of the method to higher dimensions is shown using real data.

Case 1: Glycemic tests for diabetes diagnosis

Diabetes is a chronic disease, the diagnosis of which is based on two glycemia tests: the fasting plasma
glucose (FPG) and glycated hemoglobin (HbA1c)(American Diabetes Association, 2019) tests. The
multivariate interpretation of FPG and HbA1c results is desirable for two reasons: i) the results of both
tests are correlated in healthy patients (Aleyassine et al., 1980), ii) a miss-match between them may be
indicative of a poorer prognosis (Kim et al., 2018). Finally, it is well known that both test results are
influenced by patient age (Davidson, 1979; Pani et al., 2008).

The age-dependent reference region for the FPG and HbA1c tests was estimated using a sample of
healthy subjects derived from the A-Estrada Glycation and Inflammation Study (AEGIS) (see (Gude
et al., 2017)). A subset of this dataset is available in the package under the name “AEGIS”.

This dataset comprised 1516 subjects and 7 variables:

• id: an anonymous identifier for each subject.

• gender: a factor variable that indicates the subject’s gender with levels “male”, and “female”.

• age: the subject’s age.

• dm: a factor variable indicating a previous diabetes mellitus diagnosis with levels “no”, and
“yes”.

• fpg: fasting plasma glucose concentration in mg/dL.

• hba1c: the percentage of glycated hemoglobin.

• fru: fructosamine plasma concentration.

Applying the summary() routine to the aegis dataset indicated 55% of the subjects to be female,
the mean age of all 1516 subjects to be 52 years (range 18-91), and that 187 subjects (12%) had been
previously diagnosed with diabetes.

R> summary(aegis)
id gender age dm fpg

Min. : 1.0 female:838 Min. :18.00 no :1329 Min. : 63.00
1st Qu.: 379.8 male :678 1st Qu.:39.00 yes: 187 1st Qu.: 82.00
Median : 758.5 Median :52.00 Median : 89.00
Mean : 758.5 Mean :52.58 Mean : 94.51
3rd Qu.:1137.2 3rd Qu.:67.00 3rd Qu.:100.00
Max. :1516.0 Max. :91.00 Max. :274.00
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hba1c fru
Min. : 3.900 Min. :119.0
1st Qu.: 5.200 1st Qu.:225.0
Median : 5.400 Median :254.0
Mean : 5.608 Mean :262.2
3rd Qu.: 5.700 3rd Qu.:284.0
Max. :10.200 Max. :700.0

To estimate the reference region, a subset of the patients not previously diagnosed with diabetes
was define as dm_no. This subset sample was deemed the healthy patient sample.

R> dm_no = subset(aegis,aegis$dm == "no")
R> dm_yes = subset(aegis,aegis$dm == "yes")

To estimate the effect of age on the final region shape, the bivRegr() function was used. This
function implements the estimation process of the bivariate location-scale:

R> mu1 = fpg ~ s(age)
R> mu2 = hba1c ~ s(age)
R> var1 = ~ s(age)
R> var2 = ~ s(age)
R> rho = ~ s(age)
R> formula = list(mu1,mu2,var1,var2,rho)

The first and second formulae define the additive models for the mean values of both glycemia
tests. The third and fourth define the additive models for test result variability. The last formula
represents the additive model that comprises the effect of age on the correlation between the results of
both glycemia tests. In addition to the model formulae list, a dataset including both the test results
and subject’s age must be supplied to bivRegr() as:

R> fit = bivRegr(formula,data=dm_no)
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Figure 2: Estimated effects of age on the FPG and HbA1c mean, variance models, and on their
correlation. Output from summary_boot, the shaded area is the 95% pointwise confidence interval
obtained by bootstrap resampling. The parameters of our bivariate response change with age.

By applying the S3 method plot() to a bivRegr object, the estimated effects of covariates can
be shown for each submodel. The argument eq= controls the model component to be represented
(1 = FPG mean, 2 = HbA1c mean, 3 = FPG variance, 4 = HbA1c variance, and 5 = [FPG – HbA1c]
correlation). Moreover, the function summary_boot() may be applied to a bivRegr object to obtain the
95% pointwise confidence interval for the estimated effects via bootstrapping:

R> fit_boot = summary_boot(fit, B=250, parallel = TRUE )
R> plot(fit_boot,eq=1)
R> plot(fit_boot,eq=2)
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R> plot(fit_boot,eq=3)
R> plot(fit_boot,eq=4)
R> plot(fit_boot,eq=5)

Since bootstrap resampling (introduced in equation (11)) is time consuming, the user can fix
parallel = TRUE and run a parallelized computation. The parallel backend is registered using
doParallel (Microsoft and Weston, 2020), and the parallel computation is performed by foreach
(Microsoft and Weston, 2020).

Figure 2 shows that the mean values of both glycemia markers increase almost linearly with age.
FPG variance increases from 20 to 40 years, while the HbA1c variance increases linearly with age.
Finally, the correlation between the FPG and HbA1c concentration seems to be stronger for older
patients.
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Figure 3: Estimated region in the bivariate residuals scale for healthy patients (left), and patients
with diabetes (right). Green contour represents the region for τ = 0.50, while red dashed contour for
τ = 0.95.

Applying the function bivRegion() to a bivRegr object provides a bivariate region containing
100τ% of the model standardized residuals. This region is based on a bivariate kernel density estimator.
The kernel bandwidth selection method may be chosen with the H_choice argument. Here, the 90%,
95% and 97.5% regions are obtained with the best coverage bandwidth selector (see equation (13)):

R> region = bivRegion(fit,tau=c(0.90,0.95,0.975),H_choice = "Hcov")

This region facilitates a multivariate interpretation of the glycemia test results. A patient whose
results are “normal”, for his/her age would see them fall inside this reference region, while a subject
with “abnormal” results for his/her age would not. This interpretation is possible because the model
residuals are centered around zero, show unit variance, no correlation, and they are independent
of age. The user can check test results located outside the reference region using the bivRegion S3
method plot:

R> par(mfrow = c(1, 2))
R> plot(region, xlab = "FPG, mg/dL", ylab = "HbA1c, \%",cond=T, newdata =
data.frame (age = c(20,30,40,50,60,70)),tau=0.95,reg.lwd=2, pch="*",col="grey")

R> plot(region,xlab = "FPG, mg/dL", ylab = "HbA1c, %",cond=T, newdata =
data.frame(age = c(20,60)),tau=c(0.50,0.95), reg.lwd=2, pch="*", col="grey")

Figure 3 shows the unconditional reference region for τ = 0.90, 0.95 and 0.975 for healthy patients,
and those previously diagnosed with diabetes. Note that the plot() function argument ’newdata’
allows the glycemia test values to be observed in the standardized residuals scale of the dataset for
the patients with diabetes. As is clearly seen, most of healthy patients’ results are located inside the
reference region, while those recorded for diabetic patients are located outside.

A major advantage of this representation is that it allows clinicians new insights into the subject’s
glycemia status. Indeed, those patients located outside the reference region may be classified into four
groups: (I) individuals with high values for both tests (first quadrant); (II) those with discordant results,
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with high HbA1c concentrations and low/medium FPG (second quadrant); (III) individuals with low
values for both tests (third quadrant); and (IV) individuals with low/medium HbA1c concentrations
and high FPG values (fourth quadrant). This distinction might be useful for physicians. For instance,
discordant results are probably due to an altered bloodstream protein glycation rate, a condition
associated with a poorer prognosis. Patients located outside the standardized region may be also
checked applying summary() to a bivRegion object:

R> summary(region,tau = 0.95)

This R output presents patients located outside the standardized bivariate region for τ = 0.95.
Note that, in the full sample, patients with different ages were located outside the reference region. The
glycemia tests results located outside the reference region are interesting from a clinical point of view.
For example, the following were seen: a possible case of undiagnosed diabetes in a 20 year old patient
(FPG = 99, HbA1c = 6.3); a 47 year old patient showing a high HbA1c value for his corresponding FPG
result (FPG = 86, HbA1c =6); and a patient of 85 years in the opposite situation (FPG = 120, HbA1c =
5.7).

*

*
*

*

*

* *
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*
*

*
*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

* *

*
*

*

*

*

*
*

*

*

*
*

* *

*

*

*

*

* *
*

*

*

* *

*
*

*
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *

**

*

*

*

*

*
*

* *
* *

*

*

*

* *

*

* *
*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

**
*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*
*

* *

*
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
* *

* *

*

*

*

*

*

*

*

*

*
* *

* *

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

**

*

* *

*

*

*

*
*

*

*
*

*

*

*
*

**

*

*

* *

*

*

*

*

*
**

*

*

*

*
*

*

* **

*
*

*

*

*

*

**
*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

* *

* *

**
*

*

*
**

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*
*

* **

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

* *

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

**
*

*
*

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*
*

**

*

*
*

*

*

*

*

*

*
**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*
*

*

*

*
*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

* *

*

*

* * **

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

**

*

*
*

*

*
*

*

*

*

*

* *

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*
* **

* **

*

*
*

*

*

*
*

*

**

**

*

*

*

*

* *

*

**
*

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*

*
*

*

*
**

*

*

*

*

*
*

*

*

*

* *

*

*
*

**

*
*

*

*

*

*

*
* *

**

*
*

*
*

*

*

*

* *

*

*

*

*

*
*

*
*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*

* *

*

*

*

**

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*
*

*
* *

*
*

*

*
*

*

*

**

* *

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

* *
*

*
*

*

*

*

*

*

*

*

*
*

**

*
*

*

*
*

**
*

*
*

*

*

*

*

*

*

*

*
**

*
*

*

*
*

*

*

**

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*
** *

*

*

*

*

*

*

*

*

*
*

*

*

***
*
*

*

**

*

**

*

**

*

*

*

*
*

**

*

*

*

*

*
**

*

**

*
*

*
*

*
**

*

**

**

*

*

*

*
*

*

*
*

*
**

*

*

*

*

*

*
*

*
*

* *

*

*

*
*

*

*

* *

*

*

*

**

*

*
*

*
*
*

*
* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
* *

*

*

* *

*

*

*

*
*

*

*

*
* *

*

*

*

* **

*

*

*
*

*

*

*
*
*

*

*

*

*
*

*
*

*

*

*

*

** *

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

* * *
*

*

*
*

*

*

*
*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*
*

* *

*

* *

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*
* *

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

**

*

*

*

*

*
*

*
* *

*

*
**

*

*
* *

*
*

*
*

*
*

*

*

*

*

*
*

*

*

*

**

*

*

*

* *

*

*

*
*

*
*

*

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*
*

*
*

* *
*
*

*

*
*

*
*

*
*

*

*

*
*

*

*

*

* *

*

*

*

*

*
***
*

*

*
*

60 80 100 120 140 160 180

4
5

6
7

FPG, mg/dL

H
b
A

1
c
, 
%

age  =  20

age  =  30

age  =  40

age  =  50

age  =  60

age  =  70

0.95

*

*
*

*

*

* *
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*
*

*
*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

* *

*
*

*

*

*

*
*

*

*

*
*

* *

*

*

*

*

* *
*

*

*

* *

*
*

*
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *

**

*

*

*

*

*
*

* *
* *

*

*

*

* *

*

* *
*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

**
*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*
*

* *

*
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
* *

* *

*

*

*

*

*

*

*

*

*
* *

* *

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

**

*

* *

*

*

*

*
*

*

*
*

*

*

*
*

**

*

*

* *

*

*

*

*

*
**

*

*

*

*
*

*

* **

*
*

*

*

*

*

**
*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

* *

* *

**
*

*

*
**

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*
*

* **

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

* *

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

**
*

*
*

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*
*

**

*

*
*

*

*

*

*

*

*
**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*
*

*

*

*
*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

* *

*

*

* * **

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

**

*

*
*

*

*
*

*

*

*

*

* *

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*
* **

* **

*

*
*

*

*

*
*

*

**

**

*

*

*

*

* *

*

**
*

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*

*
*

*

*
**

*

*

*

*

*
*

*

*

*

* *

*

*
*

**

*
*

*

*

*

*

*
* *

**

*
*

*
*

*

*

*

* *

*

*

*

*

*
*

*
*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*

* *

*

*

*

**

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*
*

*
* *

*
*

*

*
*

*

*

**

* *

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

* *
*

*
*

*

*

*

*

*

*

*

*
*

**

*
*

*

*
*

**
*

*
*

*

*

*

*

*

*

*

*
**

*
*

*

*
*

*

*

**

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*
** *

*

*

*

*

*

*

*

*

*
*

*

*

***
*
*

*

**

*

**

*

**

*

*

*

*
*

**

*

*

*

*

*
**

*

**

*
*

*
*

*
**

*

**

**

*

*

*

*
*

*

*
*

*
**

*

*

*

*

*

*
*

*
*

* *

*

*

*
*

*

*

* *

*

*

*

**

*

*
*

*
*
*

*
* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
* *

*

*

* *

*

*

*

*
*

*

*

*
* *

*

*

*

* **

*

*

*
*

*

*

*
*
*

*

*

*

*
*

*
*

*

*

*

*

** *

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

* * *
*

*

*
*

*

*

*
*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*
*

* *

*

* *

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*
* *

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

**

*

*

*

*

*
*

*
* *

*

*
**

*

*
* *

*
*

*
*

*
*

*

*

*

*

*
*

*

*

*

**

*

*

*

* *

*

*

*
*

*
*

*

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*
*

*
*

* *
*
*

*

*
*

*
*

*
*

*

*

*
*

*

*

*

* *

*

*

*

*

*
***
*

*

*
*

60 80 100 120 140 160 180

4
5

6
7

FPG, mg/dL

H
b
A

1
c
, 
%

age  =  20 age  =  60

0.5

0.95

60 80 100 120 140

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

20 years

FPG, mg/dL

H
b
A

1
c
, 
%

60 80 100 120 140

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

40 years

FPG, mg/dL

H
b
A

1
c
, 
%

60 80 100 120 140

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

60 years

FPG, mg/dL

H
b
A

1
c
, 
%

Figure 4: Predicted reference regions for different ages. Solid line contour represents the refer-
ence region for τ = 0.50, and the dashed line contour for τ = 0.95. Toprow plots are depicted
by plot.bivRegion function setting the arguments cond=TRUE and add=FALSE for several ages, and
bottomrow ones with cond=TRUE and add=TRUE in a pre-existing plot. The estimated regions change
with age and it describes the shape of the observed data points.

The use of this region in combination with the results of the bivariate location-scale model allow the
conditional reference regions to be obtained. The user can visualize these regions using the bivRegion
S3 method plot(), setting cond = TRUE as follows:

R> plot(region, xlab = "FPG, mg/dL", ylab = "HbA1c, %",cond=T, newdata = data.frame(age =
c(20,30,40,50,60,70)),tau=0.95,reg.lwd=2, pch="*",col="grey")

R> plot(region,xlab = "FPG, mg/dL", ylab = "HbA1c, %",cond=T, newdata = data.frame(age =
c(20,60)),tau=c(0.50,0.95),reg.lwd=2, pch="*",col="grey")

In addition, the region may be represented in a pre-existing plot if the plot function argument add
is equal to TRUE as in the following code:

R> plot(dm_no[dm_no$age==40,"fpg"],dm_no[dm_no$age==40,"hba1c"],main="40 years",
xlim=c(50,140), ylim=c(4.2,7.5),xlab = "FPG, mg/dL", ylab = "HbA1c, %", pch=20,cex=2)

R> plot(region,cond=T,newdata = data.frame(age = 40),add=T,legend=F, tau=c(0.50,0.95),
reg.lty=c(1,2))

R> plot(dm_no[dm_no$age==60,"fpg"],dm_no[dm_no$age==60,"hba1c"],main="60 years",
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xlim=c(50,140), ylim=c(4.2,7.5),xlab = "FPG, mg/dL", ylab = "HbA1c, %", pch=20,cex=2)
R> plot(region,cond=T,newdata = data.frame(age = 60),add=T,legend=F, tau=c(0.50,0.95),

reg.lty=c(1,2))

In Figure 4, the bivariate reference region is shown for several ages. Note that the regions shift
towards the upper right corner and expand as age increase. This agrees with the non-linear effect of
age on the expected means and variability of both markers. The conditional region coverage and the
performance of the methodology have already been assessed (Lado-Baleato et al., 2021).

Extension of case 1, conditional reference region for a trivariate response

This section provides an example of how the method proposed in equation (3) might be extended to
more than two dimensions. This section is intended to provide a proof of concept rather than a formal
statistical proposal. For a trivariate variable (Y1, Y2, Y3) the following model can be assumed: Y1

Y2
Y3

 =

 µ1(X)
µ2(X)
µ3(X)

+ Σ1/2(X)

 ε1
ε2
ε3

 (15)

where {µr(X)}3
r=1 represents the conditional means of each response, and Σ1/2(X) the Cholesky

decomposition of the variance-covariance matrix

Σ(X) =

 σ2
1 (X) σ21(X) σ31(X)

σ12(X) σ2
2 (X) σ23(X)

σ13(X) σ32(X) σ2
3 (X)

 (16)

In the trivariate case, the estimated variance-covariance matrix can be non-positive-definite. Thus, Σ̂

is modified by applying the unweighted bending method of Schaeffer (2014) as implemented in the
mbend R package (Nilforooshan, 2020).

Following equation (15), a trivariate reference region may be estimated as:

Rτ(X) =

 µ1(X)
µ2(X)
µ3(X)

+ Σ1/2(X)ετ (17)

where ετ is the unconditionally probabilistic region for the errors (ε1, ε2, ε3) as

ετ(k) = {(ε1, ε2, ε3) ∈ R3| f (ε1, ε2, ε3) ≤ k} (18)

f being the density function of the trivariate residuals (ε1, ε2, ε3) and k is the τ−quantile of f (ε1, ε2, ε3).

Using this model, the application of the methodology for diabetes diagnosis can be extended by
incorporating an additional glycemia test. This extension is justified since other glycated proteins
are routinely monitored in diabetes control besides FPG and HbA1c. For instance, in conditions that
determine alterations in hemoglobin metabolism (e.g., anemia or kidney disease), fructosamine (Fr) is
frequently used as an additional marker. Nevertheless, the translation of Fr into average glucose levels
is not as clear as for HbA1c, and discordances are often encountered between the Fr and HbA1c results.
In addition, agreement among these glycemia markers can be affected by factors such as patient age.

Figure 5 show the FPG, HbA1c and Fr results for the AEGIS sample. As can be seen, the values
recorded for these tests correlate with one another, showing a complex multivariate distribution.
Moreover, it can be appreciated how their multivariate distribution changes with age. To estimate a
trivariate reference region for these markers, taking into account patient age, the trivRegr() function
was used. This function is an extension of bivRegr() to the trivariate setting. The usage of both
functions is similar, but additional additive predictors must be defined for the means vector and
variance-covariance matrix.

R> dm_no = subset(aegis,aegis$dm == "no")
R> mu1 = fpg ~ s(age)
R> mu2 = hba1c ~ s(age)
R> mu3 = fru ~ s(age)

R> var1 = ~ s(age)
R> var2 = ~ s(age)
R> var3 = ~ s(age)

R> rho12 = ~ s(age)
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Figure 5: Scatter plot for three glycemic markers (fasting plasma glucose, glycated hemoglobin and
fructosamine), with colour scale depending on age. The joint values of these glycemic markers seems
to change with age, i.e., higher values are observed at higher ages. A trivariate and age-dependent
reference region is desirable.

Figure 6: Standardized reference region (toprow plots), and conditional reference region (bottomrow
plots), for three glycemic tests. Red points represent the trivariate values located outside the reference
region after adjusting by age. The grey panels define eight octanes – each one with a different clinical
profile. The trivariate reference region for these markers changes with age.

R> rho13 = ~ s(age)
R> rho23 = ~ s(age)

R> formula = list(mu1,mu2,mu3,var1,var2,var3,rho12,rho13,rho23)
R> fit = trivRegr(formula,data=dm\_no)
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As in the bivariate estimation, the trivRegion function is applied to a trivRegr object. Here, the
method was implemented only for a single τ (the kernel density bandwidth selection was not formally
tested). The plot() method implemented for the trivRegion object can be used to interactively check
the trivariate standardized and conditional reference regions:

R> region = trivRegion(fit,tau=0.95)

R> plot(region,planes = F,size=5, col="red", incol = "grey",xlab="FPG, mg/dl",
ylab="HbA1c, \%", zlab="Fru, mg/dL")

R> plot(region,planes = T,size=5,col="red",incol = "grey",xlab="FPG, mg/dl",
ylab="HbA1c, \%", zlab="Fru, mg/dL")

R> plot(region,cond=T,newdata=data.frame(age=c(20,70)), xlab="FPG, mg/dl",
ylab="HbA1c, \%", zlab="Fru, mg/dL", legend=T)

In Figure 6 the trivariate standardized and conditional reference regions are shown for different
angles. The model residuals are centered around zero, with variance zero, and zero linear correlation.
The region contains the 94.96% of the patients. In the trivariate setting, a patient may be located
outside the region for different reasons. Indeed, if plot() argument panels=T, eight reasons exist for
why a patient is located outside the reference region (explaining each situation goes beyond the scope
of the present work). The conditional reference region may be produced for different ages by setting
the cond = T, and providing new age values in newdata.

Case 2: beyond the medical research – Joint prediction of SO2 and NOx pollutants

This section illustrates how refreg methodology can be used in fields other than laboratory medicine. It
is here shown how an uncertainty region useful for the joint forecasting of the concentration of two air
pollutants (SO2 and NOx) can be derived using the bivRegr and bivRegion functions. The following
example estimates which joint SO2 and NOx values are more likely in the course of a pollution episode.
The data, which are contained in the package, were obtained from the surroundings of the a coal-fire
power station in the northern Spain. Current Spanish legislation places a limit on the mean of 24
successive determinations of pollution concentration taken at 5 minute intervals in the neighborhood
of potential point sources of pollution. Thus, access was available to historical concentrations of both
air pollutants over a year, as well as several records of pollution episodes.

Given the historical concentrations of both pollutants (contained in the pollution dataset), we
aimed to predict the SO2 and NOx concentrations during a specific pollution episode (contained in the
pollution_episode dataset) 30 minutes in advance. As can be seen in the following R output, both
datasets have a similar structure, SO2 and Nox are the current concentrations of both pollutants, while
the remaining columns represent their concentrations in the previous 30, 45, and 60 minutes.
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Figure 7: Two different representations of a pollution incident for SO2 and NOx. Left plot represent
the pollution episode in the univariate scale, and rigth plot in a bivariate scale. SO2 and NOx pollution
episodes are associated.

R > head(pollution[,1:9])
Date So2 Nox So2_0 Nox_0 So2_1 Nox_1 So2_2 Nox_2

316 2003-02-07 16:15:00 38.38 2.38 73.50 3.21 76.79 3.38 81.92 3.54
1865 2003-05-07 03:10:00 3.00 3.67 3.00 3.33 3.00 3.33 3.00 3.33
1383 2003-04-04 01:35:00 256.50 11.17 293.71 8.96 294.54 8.33 285.29 7.71
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3262 2003-07-09 14:35:00 225.29 17.04 104.67 7.67 84.33 6.29 64.67 4.67
1191 2003-03-30 13:55:00 42.33 4.12 80.21 4.96 84.38 5.00 88.33 5.00
3065 2003-07-04 11:50:00 145.83 8.58 99.12 5.71 83.83 5.25 70.92 4.83

R > head(pollution_episode[,1:9])
Date So2 Nox So2_0 Nox_0 So2_1 Nox_1 So2_2 Nox_2

1 2003-05-09 00:00:00 3.08 4.12 3.08 4.50 3.08 4.46 3.08 4.38
2 2003-05-09 00:05:00 3.08 4.12 3.08 4.46 3.08 4.50 3.08 4.46
3 2003-05-09 00:10:00 3.08 4.12 3.08 4.38 3.08 4.46 3.08 4.50
4 2003-05-09 00:15:00 3.08 4.12 3.08 4.29 3.08 4.38 3.08 4.46
5 2003-05-09 00:20:00 3.08 4.12 3.08 4.21 3.08 4.29 3.08 4.38
6 2003-05-09 00:25:00 3.08 4.12 3.08 4.12 3.08 4.21 3.08 4.29
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Figure 8: Estimated bivariate uncertainty region for a pollution episode. Black dashed line represents
the pollution episode evolution, solid black point the observed value, and red contours the predicted
uncertainty region for τ = 0.95 (red solid contour) and τ = 0.975 (red dashed contour).

Figure 7 shows the course of the pollution episode under prediction. In the left plot the SO2 and
NOx concentrations over time are represented by solid and open circles, respectively. Each point in
the right plot of this figure shows the concentration of both pollutants at a specific instant in time. It
can be can seen how, during a pollution episode, the concentration of both pollutants increases to a
peak, and then returns slowly back to lower values. NOx increases in a manner similar to the SO2, but
its decrease is slower. Both representations show an evident correlation between the concentration of
these air pollutants. To monitor this pollution episode, the historical records from the power plant
were used, and NOx levels made dependent on their previous values (30, and 60, minutes before;
NOx0 , and NOx2 ). Similarly, the SO2 concentration was made dependent on its prior concentration
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(So20, So22). Finally, the correlation between both was made dependent on the previous observation
for both air pollutants (Nox0, So20):

R> mu1 = Nox~s(Nox_0)+s(Nox_2)
R> mu2 = So2~s(So2_0)+s(So2_2)
R> var1 = ~s(Nox_0)+s(Nox_2)
R> var2 = ~s(So2_0)+s(So2_2)
R> rho = ~s(Nox_0)+s(So2_0)
R> f = list(mu1,mu2,var1,var2,rho)

R> fit = bivRegr(f,data=pollution)
R> region = bivRegion(fit,tau=c(0.950,0.975),shape=10)

In the previous code example, the reference region was estimated for τ = 0.95, 0.975 for the model-
standardized residuals. A pollution episode can then be forecasted by predicting the uncertainty
regions based on the values provided by the pollution_episode dataset. Note, that one dataset is used
to fit the model, and another when making predictions. The observed SO2 and NOx concentrations
during the pollution episode are shown in Figure 8 along with the predicted probabilistic regions.
Each plot corresponds to a different instant in time, and to different pollution episode states. The
upper right-hand side shows the beginning of the pollution episode, the bottom left plot shows its
ending. The region’s shape changes over time, anticipating reasonably well the evolution of the
pollution episode. The size of the region becomes larger as the pollution peak is approached, and then
gradually becomes smaller. This is to be expected since the maximum corresponds to a transition
between the increase and decrease of the concentrations of both pollutants, a situation that involves
more uncertainty. Moreover, at the end of the pollution episode, the region is higher on the X axis,
which corresponds to greater uncertainty for the Nox prediction. As commented above, this might be
explained in that the NOx concentration decreases more slowly than the SO2 concentration.

par(mfrow=c(3,3))
for(k in c(150, 160, 165, 175, 180, 185, 190, 200,210)){

plot(pollution_episode[,3:2],type="l",lty=2,ylim=c(0,600),xlim=c(0,45),
main=pollution_episode[k,1])
points(pollution_episode[k,3:2],col="black",pch=19)
plot(region, cond = T, newdata = pollution_episode[k,], add = T,
tau=c(0.95, 0.975),legend=F)

}

5 Concluding remarks

This paper discusses the R implementation of a newly developed method for estimating conditional
reference regions. The method was originally designed for bivariate responses to provide a joint
interpretation of two glycemia markers. However, as shown with real data, the proposed package
can be used in other fields, and its extension to three dimensions is feasible. The proposed package is
useful in the definition of conditional reference regions for continuous diagnostic tests. Few MVRs
applications are used in practice, yet they have been shown clinically valuable in the treatment of
patients with cancer (Mattsson et al., 2008), cardiovascular disease (Selmeryd et al., 2018) and endocrine
problems (Hoermann et al., 2016). Given the simplicity with which refreg can be used, and its having
no parametric restrictions, it is hoped it might enhance the use of MVRs.

The definition of a region characterizing the central part of a multivariate distribution may be
of great interest in other fields. For instance, in quality control studies, multivariate control charts
are commonly used when two or more attributes of a product, or process, require evaluation (Fuchs
and Kenett, 1998). Analogously to medical MVRs, this multivariate analysis is currently performed
assuming a Gaussian distribution. Thus, the refreg R package may help provide for better quality
surveillance of medical conditions, environmental problems and even industrial processes that are
monitored by the measurement of more than one variable.

Future versions of our package will look forward to extending our model for continuous responses
of dimension higher than three. Such reference region would require a kernel density estimator for
high dimension applications (Nagler, 2021). To the best of our knowledge, the estimated region
is not easy to visualize for scales larger than three. Although, we might identify and visualize
the multivariate values located inside or outside the region using parallel coordinate plots, or the
interactive visualization methods as the implemented in the tourr package (Wickham et al., 2011).
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