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htestClust: A Package for Marginal
Inference of Clustered Data Under
Informative Cluster Size
by Mary Gregg, Somnath Datta and Douglas Lorenz

Abstract When observations are collected in/organized into observational units, within which
observations may be dependent, those observational units are often referred to as "clustered" and the
data as "clustered data". Examples of clustered data include repeated measures or hierarchical shared
association (e.g., individuals within families). This paper provides an overview of the R package
htestClust, a tool for the marginal analysis of such clustered data with potentially informative cluster
and/or group sizes. Contained in htestClust are clustered data analogues to the following classical
hypothesis tests: rank-sum, signed rank, t-, one-way ANOVA, F, Levene, Pearson/Spearman/Kendall
correlation, proportion, goodness-of-fit, independence, and McNemar. Additional functions allow
users to visualize and test for informative cluster size. This package has an easy-to-use interface
mimicking that of classical hypothesis-testing functions in the R environment. Various features of this
package are illustrated through simple examples.

1 Introduction

Observations often occur or can be organized into units called clusters, within which those observations
may be dependent. For example, individuals may be repeatedly assessed or naturally belong to some
hierarchical structure like a family unit. Potential correlation among intra-cluster observations clearly
invalidates the use of classical hypothesis tests for the analysis of such data. Instead, inference is
generally performed using model-based methods that capture intra-cluster relationships through
parametric or semi-parametric assumptions. Generalized estimating equations (GEEs) are one such
approach that fit marginal generalized linear models to clustered data while making a working
assumption on the correlation structure. GEE models are appealing for their flexible and robust nature,
and several packages in the R environment, such as gee (Carey et al., 2019) and geepack (Halekoh
et al., 2006), offer an implementation of this method. However, GEEs and other standard methods
for analysis of clustered data operate under an assumption that the number of observations within
the clusters (defined as the cluster size) is ignorable. In practice, this assumption may not hold and
cluster size may vary systematically in a way that carries information related to the response of
interest. When this occurs data are said to have informative cluster size (ICS). Examples of ICS can be
found in data related to dental health (Williamson et al., 2003), pregnancy studies (Chaurasia et al.,
2018), and longitudinal rehabilitation (Lorenz et al., 2011), among others. For data with ICS, standard
model-based methods can produce biased inference as their estimates may be overweighted in favor
of larger clusters.

A related but distinct type of informativeness occurs when the distribution of group-defining
covariates varies in a way that carries information on the response. Such phenomenon has been called
informative within-cluster group size (IWCGS), as well as informative covariate structure (Pavlou,
2012), sub-cluster covariate informativeness (Lorenz et al., 2018), and informative intra-cluster group
size (Dutta and Datta, 2016a). This additional informativeness may occur simultaneously with or
separately from ICS, and similarly can result in the failure of standard methods to maintain appropriate
nominal size (Huang and Leroux, 2011; Dutta and Datta, 2016a).

Williamson et al. (2003) developed a reweighting methodology that corrects for potential bias from
cluster- or group-size informativeness. This reweighting originates from a Monte Carlo resampling
process, and leads to weighting observations proportional to their inverse cluster or within-cluster
group size. Correction for ICS/IWCGS was originally proposed in the context of modeling, and a
number of extensions to this application have been established (Bible et al., 2016; Iosif and Sampson,
2014; Mitani et al., 2019, 2020). However, when adjustment for covariates is not of interest, this
reweighting can be directly applied in the estimation of marginal parameters. Under mild conditions,
such estimates are asymptotically normal, permitting Wald-type intervals and tests. This methodology
has been applied to develop rank-based tests (Datta and Satten, 2005, 2008; Dutta and Datta, 2016a),
and tests of correlation (Lorenz et al., 2011), proportions (Gregg et al., 2020), means and variances
(Gregg, 2020). This collection of reweighted non-model-based hypothesis tests includes clustered data
analogues of the following classical tests: rank-sum, signed rank, t-, one-way ANOVA, F, Levene,
Pearson/Spearman/Kendall correlation, proportion, goodness-of-fit, independence, and McNemar.

These clustered data analogues to standard hypothesis tests provide simple and intuitive means of
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performing exploratory and preliminary analysis of clustered data in which the cluster and/or group
size varies and is potentially informative. However, many of these tests are recent developments
that are not available in a software environment. We address this deficiency through the package
htestClust, the first R package designed as a comprehensive collection of direct, non-model-based
inferential methods for analysis of clustered data with potential ICS and/or IWCGS. Introduced in
this paper, htestClust implements the collection of methods by Datta and Satten (2005, 2008); Dutta
and Datta (2016a); Lorenz et al. (2011); Gregg et al. (2020) and Gregg (2020), as well as a method by
Nevalainen et al. (2017) that tests for the presence of informative cluster size. The syntax and output
of functions contained in htestClust are intentionally modeled after their corresponding analogous
classical function, allowing researchers to assess various marginal analyses through intuitive and user-
friendly means. The rest of this paper is organized as follows. We will begin by briefly summarizing
the reweighting approach developed by Williamson et al. (2003) and describe how its application has
been used in the development of hypothesis tests of marginal parameters in clustered data. We will
then provide an overview of the htestClust package, describe the features and structure of functions,
and describe an illustrative simulated data set with informativeness. Finally, we will demonstrate
htestClust using the example data set and close with a discussion.

2 Methods for clustered data under informativeness

In this section we outline the weighting methodology that corrects for bias from ICS and IWCGS, and
describe the general form of the tests in htestClust that implement this weighting. We then summarize
the balanced bootstrap design implemented in the test of ICS by Nevalainen et al. (2017).

Notation

Consider a sample of M independent clusters, with each cluster containing ni potentially correlated
observations, i = 1, . . . , M. The jth observation from cluster i is Xij, with j = 1, . . . , ni. The collection
of data from cluster i is Vi = {ni, Xi1, . . . , Xini} and the set of all observed data is V = {V1, . . . , VM}.
Informative cluster size is defined as inequality between the marginal distribution of the response
X and the distribution of X conditional on cluster size: P(Xij ≤ x | ni = n) ̸= P(Xij ≤ x), n =
1, 2, . . . ; j = 1, . . . , ni.

When observations within clusters belong to one of K distinct groups, we define the variable

Gij = k to represent that observation j from cluster i belongs to group k, k = 1, . . . , K. We let n(k)
i

denote the number of observations from cluster i in group k, and note that ni = ∑K
k=1 n(k)

i . We define

Kc
i = ∑K

k=1 I[n(k)
i > 0] to be the number of distinct groups observed in cluster i. When Kc

i < K, not
all groups are observed in cluster i, a condition referred to as incomplete group structure. The data

from cluster i is now the set Vi = {n(k)
i , (Xij, Gij)}, with observations belonging to group k denoted as

the set {X(k)
i1 , . . . , X(k)

in(k)
i

}. Informative within-cluster group size can be defined as P
(

Xij ≤ x | n(k)
i

)
̸=

P
(

Xij ≤ x
)

, i.e. that the marginal distribution of X differs from the distribution of X conditional on
the within-cluster group size.

Weighting for ICS/IWCGS

Let θ denote a marginal parameter to be estimated and/or tested. One approach for estimating θ is
within-cluster resampling (WCR), in which one observation is randomly selected from each cluster
(Hoffman et al., 2001). The resulting subset of data, X∗ = {X∗

1 , X∗
2 , . . . , X∗

M}, consists of independent
observations so an estimate of the parameter, θ̂, can be calculated using standard i.i.d. methods. Clearly,
this estimate is inefficient, using only a subset of the data, so the resampling process is repeated many
times, creating many pseudo data sets and estimates θ̂∗q . An overall estimate of θ is obtained over

Q resamplings (Q large) by averaging the resampled estimates, θ̂∗ = 1
Q ∑Q

q=1 θ̂∗q . This estimator was
shown to be asymptotically normal and inference can be conducted using Wald-type intervals and
tests.

The method of reweighting proposed by Williamson et al. (2003) derives from WCR by noting

that as M, Q → ∞, the overall resampled estimator converges to θ̂ = E
[
θ̂∗q | V

]
with respect to the

resampling distribution. This marginalization is equivalent to averaging the resampled estimator
across all realizations of the resampled data. As sampling is uniform across clusters and with equal
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probability within each cluster, each observation is weighted by the inverse of the associated cluster
size.

The link between WCR and reweighting can be illustrated by a simple example - estimating a
marginal mean. For a single resampled data set produced by WCR, the estimate of the marginal mean
is the simple average, θ̂∗q = 1

M ∑M
i=1 X∗

i . Application of the marginalization calculation produces

θ̂ = E
[
θ̂∗q | V

]
=

1
M

M

∑
i=1

E [X∗
i |V ] =

1
M

M

∑
i=1

1
ni

ni

∑
j=1

Xij

The independence of clusters allows the expectation of the resampled estimate to be expressed as
the average of the expectations. Conditioned on the observed data V , the expectation of a resampled
observation from a particular cluster is the average of all observations from the cluster, as the WCR
process resamples observations from that cluster with equal probability.

The weighting that corrects for ICS can be adapted to correct for IWCGS by modifying the under-
lying resampling process into a two-step procedure that marginalizes the within-cluster distribution of
groups (Dutta and Datta, 2016a; Huang and Leroux, 2011). In this two-step resampling, we first select
a group, G∗

i , with uniform probability from the levels of G available in cluster i. Second, we select X∗
i

from the set of observations in group k, {X(k)
i1 , . . . , X(k)

in(k)
i

}, where k is the group selected in the first step

of the process. As in the original WCR methodology, this process is repeated for all clusters, resulting
in a resampled data (X∗, G∗) =

{
(X∗

1 , G∗
1 ), . . . , (X∗

M, G∗
M)

}
. An estimate of the parameter of interest

is calculated from this resampled data. When the marginalization calculation is applied to a single
WCR estimate produced by this two-step process, observations are weighted by the product of the
two selection probabilities - one for the selection of a group and one for the selection of an observation
within the group. Since both of these selections are made with equal probability, the weights in a given
cluster are defined by the number of groups available in that cluster and the number of observations
within the group:

wij =


(

Kc
i n(k)

i

)−1
, if n(k)

i > 0

0, otherwise.

Hypothesis tests of marginal parameters

The asymptotic normality of the estimators described in the previous section has been established
under mild regularity conditions (Datta and Satten, 2005, 2008; Williamson et al., 2003). The tests
of ranks, correlation, proportions, means and variances contained in htestClust all leverage this
asymptotic normality through the general univariate and multivariate Wald-type forms

Z =
S − E [S]√

V̂ (S)
X = (S − E(S))T (

V̂(S)
)−1

(S − E(S)).

The statistic, S, differs across the various tests. However, in each of the tests S is either a reweighted
estimator derived through the marginalization calculation or a smooth function of such reweighted
estimators. E[S] is the statistic’s expected value under the null hypothesis and V̂ (S) is an estimate of
the variance of S. Z asymptotically follows a standard normal distribution, while X asymptotically
follows a chi square distribution with K − 1 degrees of freedom.

Methods of estimating the variance of S also vary across the tests. The rank-sum and signed
rank tests weighted for ICS apply Hajek projections (Datta and Satten, 2005, 2008), while the tests of
correlation use an approach based on the empirical variances of within-cluster averages (Lorenz et al.,
2011). The rank-sum test weighted for IWCGS and the multi-group tests of means and variances use
jackknife estimates (Dutta and Datta, 2016a; Gregg, 2020). The tests of proportions were constructed
and evaluated under different variance estimation techniques including sandwich forms, method of
moments, and empirical estimates. Gregg et al. (2020) provide a detailed examination by simulation
of different variance estimation techniques in the context of estimating and testing proportions, and
note that no one variance estimation technique is optimal for different types of tests. Further, the
size and power of the tests in htestClust previously have been evaluated via simulation in the source
manuscripts for each test. Predictably, each has been shown to perform well under the informativeness
conditions for which they were designed to adjust.
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Testing for informative cluster size

Nevalainen et al. (2017) proposed a test for ICS using a novel balanced bootstrap scheme. As it might
be desirable to perform this test prior to the application of the marginal methods mentioned thus far,
we have included this test for ICS in the htestClust package and briefly summarize it below.

Let V = (V1, . . . , VM) be a collection of independent clustered observations, where Vi =
(
ni; Xi1, . . . , Xini

)
is the data from cluster i. Assuming exchangeability of observations within clusters, the hypothesis of

interest is H0 : P
(

Xij ≤ x|ni = k
)
= F(x), k = 1, 2, . . . ; j = 1, . . . , k, for some unknown distribution F.

Two test statistics are proposed for testing H0; a Kolmogorov-Smirnov type statistic takes the form

TF = supx|F̂(x)− F̃(x)|

where F̂(x) = 1
n ∑M

i=1 ∑ni
j=1 I

[
Xij ≤ x

]
and F̃(x) = 1

M ∑M
i=1

1
ni

∑ni
j=1 I

[
Xij ≤ x

]
. A Cramer-von Mises

type alternative to TF is:

TCM = ∑
kϵψ

[
kMk

∫ (
F̂k (x)− F̂ (x)

)2 dx
]

,

where ψ represents the set of unique cluster sizes, Mk represents the number of clusters of size k, and

F̂k(x) = 1
kMk

∑M
i=1 ∑ni

j=1 I
[
ni = k, Xij ≤ x

]
. TCM is suggested for use when there is a small number of

distinct cluster sizes, as it tends to be more powerful. TF is preferred when the number of distinct
cluster sizes is large and the number of clusters with those sizes is small, as TCM tends to be too liberal.

The bootstrap scheme, which is employed for either statistic, is as follows. For iteration b, b =
1, . . . , B,

1. Permute observations within each cluster.

2. Resample clusters from the permuted data by performing the following for i = 1, . . . , M:

(a) Randomly select a cluster i∗, i∗ = 1, . . . , M.

(b) If ni∗ ≥ ni, form the ith bootstrapped cluster from the first ni observation from cluster i∗;
e.g., V∗

bi =
(
ni; Xi∗1, . . . , Xi∗ni

)
.

(c) If n∗
i < ni, form the ith bootstrapped cluster by merging observations from the resampled

cluster i∗ and observations from the closest ‘matching’ cluster to cluster i∗; e.g., V∗
bi =(

ni; Xi∗1, . . . , Xi∗n∗
i
, Xk(n∗

i +1), . . . , Xkni

)
, where k = arg mink{D(Vi∗ , Vk) : nk ≥ ni}. The

closest matching cluster is determined by minimum distance calculated by D
(

Vi, Vj

)
=(

min{ni, nj}
)−1

∑
min{ni ,nj}
k=1

(
Xik − Xjk

)2
.

3. Calculate the test statistic from the collection of bootstrapped clusters, T∗
b = T

(
V∗

b
)
, V∗

b =(
V∗

b1, . . . , V∗
bM

)
.

The approximate p-value is then obtained from the sample of bootstrapped test statistics by
1
B ∑B

b=1 I
[
T∗

b ≥ T
]
, where T is the desired test statistic calculated from the original data.

3 Overview of htestClust

htestClust includes ten functions for conducting different hypothesis tests under ICS, one function
for visualizing informativeness in cluster size, and a simulated hypothetical data set to illustrate
the use of the functions. We first note that, at the time of this publication, we are aware of only
two other R packages available on CRAN that provide functions for analyzing data under ICS and
IWCGS: clusrank (Jiang, 2018) and ClusterRankTest (Dutta and Datta, 2016b). Each of these packages
provides functionality only for rank-based tests for clustered data, i.e. clustered data analogues of
the well-known Wilcoxon signed rank and rank sum tests. We know of no other R package that
includes the broad range of tests of means, proportions, variances, and correlations in addition to
these rank-based tests that is provided by htestClust.

Package functions, syntax, and output

With the exception of the test of informative cluster size, each of the hypothesis testing functions
implemented in htestClust has a well-known analogue test for i.i.d. data (Table 1). As such, the syntax
and output of the functions in htestClust are designed to conform with that of the analogous i.i.d.
functions from the R stats library. A notable but necessary departure from this correspondence is that
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htestClust function Reweighted test(s) Classical analogue function

chisqtestClust() Chi squared goodness of fit, independence chisq.test()

cortestClust() Correlation cor.test()

icstestClust() Test of ICS NA
levenetestClust() K-group test of variance leveneTest()

mcnemartestClust() Homogeneity mcnemar.test()

onewaytestClust() K-group mean equality oneway.test()

proptestClust() Proportion prop.test()

ttestClust() Test of means (one/two group, paired) t.test()

vartestClust() 2-group test of variance var.test()

wilcoxtestClust() Rank sum, signed rank wilcox.test()

Table 1: Hypothesis testing functions available in the htestClust package. Each row gives the name of
a htestClust function, the reweighted test the function performs, and the R function that executes the
corresponding classical analogue test. All classical analogue functions are available in R through the
stats package, except for leveneTest(), which is included in the car package.

the htestClust functions require as input (1) a variable identifying the clusters as an argument in the
data set or (2) a cluster-level summary of the data.

As an example, consider the syntax for the stats and htestClust functions for conducting a test of a
single proportion:

prop.test(x, n, p = NULL, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, correct = TRUE)

proptestClust(x, id, p = NULL, alternative = c("two.sided", "less",
"greater"), variance = c("sand.null", "sand.est", "emp", "MoM"),
conf.level = 0.95)

The stats library function prop.test does not operate on variables in a data frame, but instead takes
summary counts as its input. Argument x can be a scalar representing the number of binomial
successes, whence n is required as the number of binomial trials. Alternatively, x can be a one-
dimensional table or matrix with two entries, whence n is omitted. The remaining arguments customize
the test in ways familiar to most users.

The function proptestClust from htestClust operates on binary variables in a data frame or on
cluster-level summary counts. In this function, x may be a binary variable measured over clusters,
wherein id is required as a vector of cluster identifiers. Alternatively, x may instead be a two-
dimensional table of within-cluster counts of failures and successes, wherein id is omitted. As
previously noted, several options are available for variance estimation; these may be selected by the
user through the variance argument. Additional customization of the test is as in prop.test.

Each of the testing functions in htestClust has been constructed in this vein – parallel to the
analogous stats function with contingencies necessary for clustered data. htestClust functions accept
vector input that designates the response, grouping (if necessary), and clustering variables. However,
for convenience, many functions are designed with a secondary interface accepting tables or formulas.
Like their stats package analogues, htestClust testing functions produce list objects of class htest
for which the print method behaves in the usual way.

icsPlot provides a simple method for illustrating informative cluster size, providing a visual
supplement to the results of the test of ICS, icstestClust. Briefly, icsPlot plots a within-cluster
summary statistic of a variable, such as a mean, against the size of each cluster. For quantitative
variables, icsPlot produces a scatterplot of a within-cluster measure of location (mean, median)
or variation (SD, variance, IQR, range) against cluster size. For a categorical variable, a barplot of
within-cluster proportions is produced.

Simulated example data set

htestClust includes a simulated data set named screen8 of clustered observations with informa-
tiveness, created under a hypothetical scenario we briefly describe here. A large school district has
conducted a voluntary comprehensive exit survey for students graduating elementary school, collect-
ing demographic, biometric, and academic performance data. The clustering mechanism for these
data are the schools, with students comprising the observations within clusters.

The school district has offered an incentive program to boost participation, wherein schools having
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Variable Description
sch.id School identification variable
stud.id Student identification variable within school
age Student age in years
gender Student gender
height Student height in inches
weight Student weight in lbs
math Student score on standardized math test
read Student score on standardized reading test
phq2 Ordinal (0-6) score from a mental health screening. Higher scores correspond to higher levels of

depression
qfit Age-adjusted fitness quartile from physical health assessment taken at end of school year
qfit.s Age-adjusted fitness quartile from physical health assessment taken at beginning of school year
activity Student after-school activity

Table 2: Variables in screen8 data set. Each row gives the name of a variable included in the screen8
data set and its associated description.

higher participation rates are rewarded with priority status for classroom and technology upgrades
for the new academic year. This incentive introduces the potential for ICS – resource-poor schools may
exhibit greater participation (larger cluster sizes) but also tend to have students with poorer health
metrics and standardized test scores.

screen8 contains data from 2224 students from 73 schools in this district. Cluster sizes – the
number of students participating in the exit survey at each school – ranged from 17 to 50, with a
median of 30. The first few lines of the data are printed below, followed by the tabulated number
of participants from each school and a summary of the cluster sizes. Table 2 provides details on the
variables in the data set.

R> library(htestClust)
R> data(screen8)
R> head(screen8)
sch.id stud.id age gender height weight math read phq2 qfit qfit.s activity
1 1 1 15 M 65 136 69 75 3 Q2 Q2 other
2 1 2 14 M 66 135 80 57 2 Q4 Q3 other
3 1 3 15 M 65 146 60 85 0 Q2 Q3 sports
4 1 4 15 M 68 156 70 83 1 Q3 Q2 other
5 1 5 15 M 68 170 66 60 1 Q2 Q2 sports
6 1 6 14 M 63 109 84 62 0 Q1 Q1 academic

R> (tab <- table(screen8$sch.id))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
35 32 26 33 23 25 27 21 39 28 32 38 35 24 29 27 36 29 38 39 25 30 36 29 46 27
...

R> summary(as.vector(tab))
Min. 1st Qu. Median Mean 3rd Qu. Max.
17.00 25.00 30.00 30.47 36.00 50.00
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4 Examples

In this section, we demonstrate usage of the functions in htestClust using the screen8 data set. Our
illustration is not comprehensive, but users can learn more about functions not covered here by
browsing the associated help files. To motivate the demonstration, we’ll investigate the following
questions:

1. Is the proportion of students having “proficient” standardized math test scores (65 or greater)
more than 0.75?

2. Are participation in extracurricular activity and gender independent?

3. Are mean standardized math test scores different between male and female students?

4. Are mean standardized reading test scores different among groups defined by extracurricular
activities?

Evaluating informative cluster size

Before addressing these questions, we illustrate how to assess the potential informativeness of cluster
size in the data set, starting by visualizing ICS through the icsPlot function. The arguments to
icsPlot specify the variable of interest, a cluster-identifying variable, and a summary function to be
applied to the variable within each cluster. This summary can be any of ‘obs’, ‘mean’, ‘median’, ‘var’,
‘IQR’, ‘range’, ‘prop’, producing plots of the observations themselves, measure of location, or measures
of variation against cluster size. Option ‘prop’ can only be used when the variable of interest is a
factor, so numerically coded categorical variables must be converted to factors. Standard R graphical
parameters can also be specified when calling icsPlot().

R> ### Figure 1
R> par(mfrow = c(1,2))
R> icsPlot(x = screen8$math, id = screen8$sch.id, FUN = "mean", pch = 20)
R> icsPlot(x = screen8$read, id = screen8$sch.id, FUN = "mean", pch = 20)

R> ### Figure 2
R> layout(mat = matrix(c(1, 2), nrow = 1, ncol = 2),
+ heights = c(1, 2), # Heights of the two rows
+ widths = c(2, 2.5))
R> par(mar = c(5, 4, 1, 0))
R> icsPlot(x = screen8$gender, id = screen8$sch.id, FUN = "prop",
+ ylab = "P(Female)", pch = 20)
R> par(mar = c(5, 4, 1, 5))
R> icsPlot(x = screen8$activity, id = screen8$sch.id, FUN = "prop",
+ legend = TRUE,
+ args.legend = list(x = "topright", bty = "n", inset=c(-0.32, 0)))

Figures 1 and 2 show potential informativeness in cluster size for the screen8 data. Cluster size
appears to be negatively associated with average standardized test scores but positively associated
with the proportion of male students and the proportion participating in sports-related extracurricular
activities. These empirical results can be verified using the test for ICS, implemented through
the function icstestClust, as illustrated below. The result of this test suggests that cluster size is
informative for standardized math test scores. Cluster size is also informative for standardized reading
test scores, gender, and sports as an extracurricular activity (p < .001, results not shown).

R> set.seed(100)
R> ics.math <- icstestClust(screen8$math, screen8$sch.id, B = 1000,
+ print.it = FALSE)

R> ics.math
Test of informative cluster size (TF)
data: screen8$math
TF = 0.029686, p-value < 2.2e-16

Within the icstestClust function, the type of test statistic, TF or TCM as detailed earlier, is specified
using the test.method argument, and the number of bootstrap loops by argument B. Argument
print.it is a logical indicating whether to print the progress of the bootstrap procedure. We note
that the need for bootstrap resampling in icstestClust can make its implementation computationally
expensive.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 61

20 30 40 50

6
0

6
5

7
0

7
5

8
0

cluster size

m
e

a
n

 s
c
re

e
n

8
$

m
a

th

20 30 40 50

5
4

5
8

6
2

6
6

cluster size

m
e

a
n

 s
c
re

e
n

8
$

re
a

d

Figure 1: Average scores in maths and reading by cluster size in screen8 data.
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Figure 2: Plots of categorical variables by cluster size in screen8 data. Proportion of female students
decreases with cluster size (left), whereas student participation in sports-related extracurricular
activities increases with cluster size (right).

Testing a marginal proportion

The first question of interest suggests a one-sample test of a proportion via proptestClust. We specify
a one-sided alternative and use the default sandwich variance estimator evaluated at the null value of
the proportion (variance = "sand.null"), shown to perform best for this test (Gregg et al., 2020).

R> screen8$math.p <- 1*(screen8$math >= 65)
R> proptestClust(screen8$math.p, screen8$sch.id, p = .75, alternative = "great")
Cluster-weighted proportion test with variance est: sand.null

data: screen8$math.p, M = 73
z = 0.70159, p-value = 0.2415
alternative hypothesis: true p is greater than 0.75
95 percent confidence interval:
0.7311459 1.0000000
sample estimates:
Cluster-weighted proportion
0.7640235

As noted earlier, htestClust functions produce objects of class htest, producing familiar output
through the print method for such objects. We conclude that the proportion of students with proficient
math test scores is not greater than 0.75.

In the case that all clusters have a size of 1, the results of htestClust functions will be in general
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correspondence with that of the classical analogue test, though exact results will differ slightly due to
the reweighted tests relying on asymptotics. This is demonstrated through the following example.

R> set.seed(123)
R> x <- rbinom(100, size = 1, p = 0.7)
R> id <- 1:100
R> proptestClust(x, id)

Cluster-weighted proportion test with variance est: sand.null

data: x, M = 100
z = 4.2, p-value = 2.669e-05
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.6120018 0.8079982
sample estimates:
Cluster-weighted proportion
0.71

R> prop.test(sum(x), length(x))

1-sample proportions test with continuity correction

data: sum(x) out of length(x), null probability 0.5
X-squared = 16.81, df = 1, p-value = 4.132e-05
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.6093752 0.7942336
sample estimates:
p
0.71

Test of independence

The second question suggests a test of independence of extracurricular activity and gender. We start
by producing cluster-weighted estimates of the proportion of students participating in each activity
within each gender.

R> tab <- table(screen8$gender, screen8$activity, screen8$sch.id)
R> ptab <- prop.table(tab, c(1,3))
R> apply(ptab, c(1,2), mean)
academic other sports
F 0.3952102 0.2968473 0.3079425
M 0.3790267 0.3186699 0.3023035

The cluster-weighted proportions appear roughly similar, and we can test using chisqtestClust. Here,
the default method of variance estimation is method of moments (variance = "MoM"), demonstrated
to be best for the test of independence (Gregg et al., 2020).

R> chisqtestClust(screen8$gender, screen8$activity, screen8$sch.id)
Cluster-weighted Chi-squared test of independence with variance est:
MoM

data: screen8$gender and screen8$activity, M = 73
X-squared = 1.6131, df = 2, p-value = 0.4464

Before proceeding to the next analysis, we note that further evidence of ICS in the screen8 data
can be demonstrated by implementing the standard chi-squared test for this question, which suggests
that females were more likely to participate in academic extracurricular activities and males in sports.

R> prop.table(table(screen8$gender, screen8$activity), 1)
academic other sports
F 0.3891323 0.2979842 0.3128834
M 0.3370268 0.3120960 0.3508772

R> chisq.test(screen8$gender, screen8$activity)
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Pearson's Chi-squared test

data: screen8$gender and screen8$activity
X-squared = 6.9303, df = 2, p-value = 0.03127

Tests of quantitative variables for two or more groups

We compare math test scores between males and females using the ttestClust function. We conclude
that mean standardized test scores are equivalent between males and females, a departure from the
conclusion reached by the standard t test (p < .001, results not shown).

R> ttestClust(math ~ gender, id = sch.id, data = screen8)

Two sample group-weighted test of means

data: math by gender, M = 73
z = 1.3495, p-value = 0.1772
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.2234259 1.2111344
sample estimates:
weighted mean in group F weighted mean in group M
70.75124 70.25739

Even though this test does not make use of the t distribution, we have named it as such to parallel the
standard t-test means (t.test in R). Multi-group tests of quantitative parameters in htestClust imple-
ment jackknife variance estimation, so specification of variance estimation method is not necessary. In
addition to the formula implementation used above, we note that ttestClust can also accept vectors
of data and cluster identifiers for each of the two groups.

An alternative approach to this comparison, particularly if test scores were skewed in any way,
would be a rank-based test. wilcoxtestClust implements the group-weighted analogue of the
Wilcoxon test, which we use as an alternative method for the comparison of math test scores between
males and females.

R> wilcoxtestClust(math ~ gender, id = sch.id, data = screen8, method = "group")
Group-weighted rank sum test

data: math by gender, M = 73
z = -1.3799, p-value = 0.1676
alternative hypothesis: true location shift is not equal to 0

Our conclusion is the same as with the reweighted test of means. We note that this test requires
estimation of the cluster-weighted empirical cumulative distribution (Dutta and Datta, 2016a) as well
as jackknife variance estimation, so there is an added measure of computational expense in using
wilcoxtestClust.

Finally, we compare reading test scores among the three groups defined by extracurricular activity,
using onewaytestClust. Mean standardized reading test scores are not appreciably different among
extracurricular activity groups.

R> onewaytestClust(read ~ activity, id = sch.id, data = screen8)
Reweighted one-way analysis of means for clustered data

data: read and activity, M = 73
X-squared = 1.3191, df = 2, p-value = 0.5171
sample estimates:
academic other sports
60.11498 60.40785 59.69659

We have not shown the full functionality of the above-demonstrated functions, nor the htestClust
functions for testing correlation, marginal homogeneity, and variance listed in Table 1. Their syntax
and usage is similar and fully documented with examples in the help files.
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5 Discussion

Standard model-based inference of clustered data can be biased when cluster or group size is informa-
tive. Reweighting methods that correct for this bias have been established and a number of authors
have applied such weighting to develop direct hypothesis tests of marginal parameters in clustered
data. Such tests can be interpreted as clustered analogues to common classical statistical tests, and
include methods related to ranks, correlation, proportions, means and variances. While these methods
are effective and intuitive, all but a few of these tests have remained inaccessible to many researchers
due to an absence of convenient software.

In this paper we introduced htestClust, which is the first R package designed as a comprehensive
library of inferential methods appropriate for clustered data with ICS/IWCGS. Most functions in
htestClust perform hypothesis tests for clustered data that have an analogous classical form, and
the interface of the package has been designed to reflect this relationship. Function syntax has been
purposefully structured to resemble that of functions available in the native R environment that
perform the analogous classical tests. Many functions have been designed with a secondary interface
that operates through table or formula input, allowing flexibility in data structure. In addition to
the hypothesis tests of marginal parameters, htestClust also includes functions to visualize potential
informativeness and test for ICS. These tools allow analysts to explore the effect and degree of
informativeness in their data.

With the exception of the test for ICS, the hypothesis tests performed by htestClust are derived
through the asymptotic normality of reweighted parameters, and their asymptotic convergence is
indexed by the number of clusters. As such, their use should only be considered when the number of
clusters is sufficiently large (at least 30). Additionally, these methods retain a cluster-based marginal
interpretation, making them appropriate when clusters, rather than intra-cluster observations, are
the unit of interest. The marginal nature of these tests provides researchers with an analysis corre-
sponding to a snapshot in time. If analysis of temporal aspects or effects of additional covariates
is desired, readers might instead consider reweighted model-based methods such as those by Bible
et al. (2016), Neuhaus and McCulloch (2011), and Wang et al. (2011). Future research will also be
devoted to developing tests adjusting for informativeness due to quantitative covariates measured at
the individual-within-cluster level.

htestClust is a tool to facilitate the analysis of clustered data, and we have designed its use to
be accessible and intuitive. While the inferential methods performed by this package have been
developed to correct for the biasing effects of ICS/IWCGS, they remain applicable when fluctuations
of cluster or group size are unrelated to the outcome of interest. As such, this package is an effective
resource for researchers addressing marginal analyses in clustered data with any variation in the
cluster and/or group sizes.

Computational details

The results in this paper were obtained using R 4.0.3 with the MASS 7.3.51 package.
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