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brolgar: An R package to BRowse Over
Longitudinal Data Graphically and
Analytically in R
by Nicholas Tierney, Dianne Cook, and Tania Prvan

Abstract Longitudinal (panel) data provide the opportunity to examine temporal patterns of individ-
uals, because measurements are collected on the same person at different, and often irregular, time
points. The data is typically visualised using a “spaghetti plot”, where a line plot is drawn for each
individual. When overlaid in one plot, it can have the appearance of a bowl of spaghetti. With even a
small number of subjects, these plots are too overloaded to be read easily. The interesting aspects of
individual differences are lost in the noise. Longitudinal data is often modelled with a hierarchical
linear model to capture the overall trends, and variation among individuals, while accounting for
various levels of dependence. However, these models can be difficult to fit, and can miss unusual
individual patterns. Better visual tools can help to diagnose longitudinal models, and better capture
the individual experiences. This paper introduces the R package, brolgar (BRowse over Longitudinal
data Graphically and Analytically in R), which provides tools to identify and summarise interesting
individual patterns in longitudinal data.

1 Introduction

This paper is about exploring longitudinal data effectively. By “longitudinal data” we specifically
mean individuals repeatedly measured through time. This could include panel data, where possibly
different samples from a key variable (e.g. country), are aggregated at each time collection. The
important component is a key variable with repeated measurements regularly, or irregularly over time.
The inherent structure allows us to examine temporal patterns of individuals, shown in Figure 1, of
the average height of Australian males over years. The individual component is country, and the time
component is year. The variable country along with other variables is measured repeatedly from 1900
to 1970, with irregular intervals between years.

The full dataset of Figure 1 is shown in Figure 2, showing 144 countries from the year 1700. This
plot is challenging to understand because there is overplotting, making it hard to see the individuals.
Solutions to this are not always obvious. Showing separate individual plots of each country does not
help, as 144 plots is too many to comprehend. Making the lines transparent or fitting a simple model
to all the data Figure 2B, might be a common first step to see common trends. However, all this seems
to clarify is: 1) There is a set of some countries that are similar, and they are distributed around the
center of the countries, and 2) there is a general upward trend in heights over time. We learn about the
collective, but lose sight of the individuals.

This paper demonstrates how to effectively and efficiently explore longitudinal data, using the R
package, brolgar. We examine four problems in exploring longitudinal data:

1. How to sample the data
2. Finding interesting individuals
3. Finding representative individuals

Figure 1: Example of longitudinal data: average height of men in Australia for 1900-1970. The height
increase over time, and are measured at irregular intervals.
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Figure 2: The full dataset shown as a spaghetti plot (A), with transparency (B), and with a linear model
overlayed (C). It is still hard to see the individuals.

4. Understanding a model

This paper proceeds in the following way: first, a brief review of existing approaches to longitudinal
data, then the definition of longitudinal data, then approaches to these four problems are discussed,
followed by a summary.

2 Background

R provides basic time series, ts, objects, which are vectors or matrices that represent data sampled at
equally spaced points in time. These have been extended through packages such as xts, and zoo (Ryan
and Ulrich 2020; Zeileis and Grothendieck 2005), which only consider data in a wide format with a
regular implied time series. These are not appropriate for longitudinal data, which can have indexes
that are not time unit oriented, such as “Wave 1. . . n”, or may contain irregular intervals.

Other packages focus more directly on panel data in R, focussing on data operations and model
interfaces. The pmdplyr package provides “Panel Manoeuvres” in dplyr(Huntington-Klein and
Khor 2020). It defines the data structure in as a pibble object (panel tibble), requiring an id and
group column being defined to identify the unique identifier and grouping. The pmdplyr package
focuses on efficient and custom joins and functions, such as inexact_left_join(). It does not imple-
ment tidyverse equivalent tools, but instead extends their usecase with a new function, for example
mutate_cascade and mutate_subset. The panelr package provides an interface for data reshaping
on panel data, providing widening and lengthening functions (widen_panel() and long_panel()
(Long 2020)). It also provides model facilitating functions by providing its own interface for mixed
effects models. The plm package (Millo 2017) for panel data econometrics provides methods for
estimating models such as GMM for panel data, and testing, for example for model specification or
serial correlation. It also provides a data structure, the pdata.frame, which stores the index attribute
of the individual and time dimensions, for use within the package’s functions.

These software generally re-implement their own custom panel data class object, as well as custom
data cleaning tasks, such as reshaping into long and wide form. They all share similar features,
providing some identifying or index variable, and some grouping or key.

3 Longitudinal Data Structures

Longitudinal data is a sibling of many other temporal data forms, including panel data, repeated
measures, and time series. The differences are many, and can be in data collection, context and even the
field of research. Time series are usually long and regularly spaced in time. Panel data may measure
different units at each time point and aggregate these values by a categorical or key variable. Repeated
measures typically measure before and after treatment effects. We like to think of longitudinal as
measuring the same individual (e.g. wage earner) over time, but this definition is not universally
agreed on. Despite the differences, they all share a fundamental similarity: they are measurements
over a time period.

This time period has structure - the time component (dates, times, waves, seconds, etc), and the
spacing between measurements - unequal or equal. This data structure needs to be respected during
analysis to preserve the lowest level of granularity, to avoid for example, collapsing across month
when the data is collected every second, or assuming measurements occur at fixed time intervals.
These mistakes can be avoided by encoding the data structure into the data itself. This information
can then be accessed by analysis tools, providing a consistent way to understand and summarise the
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data. This ensures the different types of longitudinal data previously mentioned can be handled in the
same way.

Building on a tsibble

Since longitudinal data can be thought of as “individuals repeatedly measured through time”, they can
be considered as a type of time series, as defined in Hyndman and Athanasopoulos (2018): “Anything
that is observed sequentially over time is a time series”. This definition has been realised as a time
series tsibble in (Wang, Cook, and Hyndman 2020). These objects are defined as data meeting these
conditions:

1. The index: the time variable
2. The key: variable(s) defining individual groups (or series)
3. The index and key (1 + 2) together determine a distinct row

If the specified key and index pair do not define a distinct row - for example, if there are duplicates
in the data, the tsibble will not be created. This helps ensure the data is properly understood and
cleaned before analysis is conducted, removing avoidable errors that might have impacted downstream
decisions.

We can formally define our heights data from Figure 1 as a tsibble using, as_tsibble:

heights_brolgar <- as_tsibble(heights_brolgar,
index = year,
key = country,
regular = FALSE)

The index is year, the key is country, and regular = FALSE since the intervals in the years
measured are not regular. Using a tsibble means that the index and key time series information is
recorded only once, and can be referred to many times in other parts of the data analysis by time-aware
tools.

In addition to providing consistent ways to manipulate time series data, further benefits to building
on tsibble are how it works within the tidyverse ecosystem, as well as the tidy time series packages
called “tidyverts”, containing fable (O’Hara-Wild, Hyndman, and Wang 2020a), feasts, (O’Hara-
Wild, Hyndman, and Wang 2020b). For example, tsibble provides modified tidyverse functions to
explore implicit missing values in the index (e.g., has_gaps() and fill_gaps()), as well as grouping
and partitioning based on the index with index_by(). For full details and examples of use with the
tidyverts time series packages, see Wang, Cook, and Hyndman (2020).

The brolgar package uses tsibble so users can take advantage of these tools, learning one way of
operating a data analysis that will work and have overlap with other contexts.

Characterising Individual Series

Calculating a feature

We can summarise the individual series by collapsing their many measurements into a single statistic,
such as the minimum, maximum, or median, with one row per key. We do this with the features
function from the fabletools package, made available in brolgar. This provides a summary of a given
variable, accounting for the time series structure, and returning one row per key specified. It can be
thought of as a time-series aware variant of the summarise function from dplyr. The feature function
works by specifying the data, the variable to summarise, and the feature to calculate. A template is
shown below

features(<DATA>, <VARIABLE>, <FEATURE>)

or, with the pipe:

<DATA> %>% features(<VARIABLE>, <FEATURE>)

For example, to calculate the minimum height for each key (country), in heights, we specify the
heights data, then the variable to calculate features on, height_cm, then the feature to calculate, min
(we write c(min = min) so the column calculated gets the name “min”):
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heights_min <- features(.tbl = heights_brolgar,
.var = height_cm,
features = c(min = min))

heights_min

#> # A tibble: 119 x 2
#> country min
#> <chr> <dbl>
#> 1 Afghanistan 161.
#> 2 Algeria 166.
#> 3 Angola 159.
#> 4 Argentina 167.
#> 5 Armenia 164.
#> 6 Australia 170
#> 7 Austria 162.
#> 8 Azerbaijan 170.
#> 9 Bangladesh 160.
#> 10 Belgium 163.
#> # ... with 109 more rows

We call these summaries features of the data. We can use this information to summarise these
features of the data, for example, visualising the distribution of minimum values (Figure 3A).

We are not limited to one feature at a time, many features can also be calculated, for example:

heights_three <- heights_brolgar %>%
features(height_cm, c(
min = min,
median = median,
max = max

))

heights_three

#> # A tibble: 119 x 4
#> country min median max
#> <chr> <dbl> <dbl> <dbl>
#> 1 Afghanistan 161. 167. 168.
#> 2 Algeria 166. 169 171.
#> 3 Angola 159. 167. 169.
#> 4 Argentina 167. 168. 174.
#> 5 Armenia 164. 169. 172.
#> 6 Australia 170 172. 178.
#> 7 Austria 162. 167. 179.
#> 8 Azerbaijan 170. 172. 172.
#> 9 Bangladesh 160. 162. 164.
#> 10 Belgium 163. 166. 177.
#> # ... with 109 more rows

These can then be visualised together (Figure 3).

These sets of features can be pre-specified, for example, brolgar provides a five number sum-
mary (minimum, 25th quantile, median, mean, 75th quantile, and maximum) of the data with
feat_five_num:

heights_five <- heights_brolgar %>%
features(height_cm, feat_five_num)

heights_five

#> # A tibble: 119 x 6
#> country min q25 med q75 max
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan 161. 164. 167. 168. 168.
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Figure 3: Three plots showing the distribution of minimum, median, and maximum values of height
in centimeters. Part A shows just the distribution of minimum, part B shows the distribution of
minimum, median, and maximum, and part C shows these three values plotted together as a line
graph. We see that there is overlap amongst all three statistics. That is, some countries minimum
heights are taller than some countries maximum heights.

#> 2 Algeria 166. 168. 169 170. 171.
#> 3 Angola 159. 160. 167. 168. 169.
#> 4 Argentina 167. 168. 168. 170. 174.
#> 5 Armenia 164. 166. 169. 172. 172.
#> 6 Australia 170 171. 172. 173. 178.
#> 7 Austria 162. 164. 167. 169. 179.
#> 8 Azerbaijan 170. 171. 172. 172. 172.
#> 9 Bangladesh 160. 162. 162. 163. 164.
#> 10 Belgium 163. 164. 166. 168. 177.
#> # ... with 109 more rows

This takes the heights data, pipes it to features, and then instructs it to summarise the height_cm
variable, using feat_five_num. There are several handy functions for calculating features of the data
that brolgar provides. These all start with feat_, and include:

• feat_ranges(): min, max, range difference, interquartile range;
• feat_spread(): variance, standard deviation, median absolute distance, and interquartile range;
• feat_monotonic(): is it always increasing, decreasing, or unvarying?;
• feat_diff_summary(): the summary statistics of the differences amongst a value, including the

five number summary, as well as the standard deviation and variance;
• feat_brolgar(), which will calculate all features available in the brolgar package.
• Other examples of features from the feasts package.

Feature sets

If you want to run many or all features from a package on your data you can collect them all with
feature_set. For example:

library(fabletools)
feat_set_brolgar <- feature_set(pkgs = "brolgar")
length(feat_set_brolgar)

#> [1] 6

You could then run these like so:

heights_brolgar %>%
features(height_cm, feat_set_brolgar)

#> # A tibble: 119 x 46
#> country min...1 med...2 max...3 min...4 q25...5 med...6 q75...7 max...8
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan 161. 167. 168. 161. 164. 167. 168. 168.
#> 2 Algeria 166. 169 171. 166. 168. 169 170. 171.
#> 3 Angola 159. 167. 169. 159. 160. 167. 168. 169.
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#> 4 Argentina 167. 168. 174. 167. 168. 168. 170. 174.
#> 5 Armenia 164. 169. 172. 164. 166. 169. 172. 172.
#> 6 Australia 170 172. 178. 170 171. 172. 173. 178.
#> 7 Austria 162. 167. 179. 162. 164. 167. 169. 179.
#> 8 Azerbaijan 170. 172. 172. 170. 171. 172. 172. 172.
#> 9 Bangladesh 160. 162. 164. 160. 162. 162. 163. 164.
#> 10 Belgium 163. 166. 177. 163. 164. 166. 168. 177.
#> # ... with 109 more rows, and 37 more variables: min...9 <dbl>, max...10 <dbl>,
#> # range_diff...11 <dbl>, iqr...12 <dbl>, var...13 <dbl>, sd...14 <dbl>,
#> # mad...15 <dbl>, iqr...16 <dbl>, min...17 <dbl>, max...18 <dbl>,
#> # median <dbl>, mean <dbl>, q25...21 <dbl>, q75...22 <dbl>, range1 <dbl>,
#> # range2 <dbl>, range_diff...25 <dbl>, sd...26 <dbl>, var...27 <dbl>,
#> # mad...28 <dbl>, iqr...29 <dbl>, increase...30 <dbl>, decrease...31 <dbl>,
#> # unvary...32 <dbl>, diff_min <dbl>, diff_q25 <dbl>, diff_median <dbl>, ...

To see other features available in the feasts R package run library(feasts) then ?fabletools::feature_set.

Creating your own feature

To create your own features or summaries to pass to features, you provide a named vector of functions.
These can include functions that you have written yourself. For example, returning the first three
elements of a series, by writing our own second and third functions.

second <- function(x) nth(x, n = 2)
third <- function(x) nth(x, n = 3)

feat_first_three <- c(first = first,
second = second,
third = third)

These are then passed to features like so:

heights_brolgar %>%
features(height_cm, feat_first_three)

#> # A tibble: 119 x 4
#> country first second third
#> <chr> <dbl> <dbl> <dbl>
#> 1 Afghanistan 168. 166. 167.
#> 2 Algeria 169. 166. 169
#> 3 Angola 160. 159. 160.
#> 4 Argentina 170. 168. 168
#> 5 Armenia 169. 168. 166.
#> 6 Australia 170 171. 170.
#> 7 Austria 165. 163. 162.
#> 8 Azerbaijan 170. 171. 171.
#> 9 Bangladesh 162. 162. 164.
#> 10 Belgium 163. 164. 164
#> # ... with 109 more rows

As well, brolgar provides some useful additional features for the five number summary, feat_five_num,
whether keys are monotonically increasing feat_monotonic, and measures of spread or variation,
feat_spread. Inside brolgar, the features are created with the following syntax:

feat_five_num <- function(x, ...) {
c(
min = b_min(x, ...),
q25 = b_q25(x, ...),
med = b_median(x, ...),
q75 = b_q75(x, ...),
max = b_max(x, ...)

)
}
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Figure 4: Twelve facets with three keys per facet shown. This allows us to quickly view a random
sample of the data.

Here the functions b_ are functions with a default of na.rm = TRUE, and in the cases of quantiles,
they use type = 8, and names = FALSE. What is particularly useful is that these will work on any type
of time series data, and you can use other more typical time series features from the feasts package,
such as autocorrelation, feat_acf() and Seasonal and Trend decomposition using Loess feat_stl()
(O’Hara-Wild, Hyndman, and Wang 2020b).

This demonstrates a workflow that can be used to understand and explore your longitudinal data.
The brolgar package builds upon this workflow made available by feasts and fabletools. Users can
also create their own features to summarise the data.

4 Breaking up the Spaghetti

Plots like Figure 2 are often called, “spaghetti plots”, and can be useful for a high level understanding
as a whole. However, we cannot process and understand the individuals when the data is presented
like this.

Sampling

Just how spaghetti is portioned out for consumption, we can sample some of the data by randomly
sampling the data into sub-plots with the facet_sample() function (Figure 4).

ggplot(heights_brolgar,
aes(x = year,

y = height_cm,
group = country)) +

geom_line() +
facet_sample() +
scale_x_continuous(breaks = c(1750, 1850, 1950))

This defaults to 12 facets and 3 samples per facet, and provides options for the number of facets,
and the number of samples per facet. This means the user only needs to consider the most relevant
questions: “How many keys per facet?” and “How many facets to look at?”. The code to change the
figure from Figure 2 into 4 requires only one line of code, shown below:

ggplot(heights_brolgar,
aes(x = year,

y = height_cm,
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Figure 5: All of the data is shown by spreading out each key across twelve facets. Each key is only
shown once, and is randomly allocated to a facet.

group = country)) +
geom_line() +
facet_sample()

Stratifying

Extending this idea of samples, we can instead look at all of the data, spread out equally over facets,
using facet_strata(). It uses 12 facets by default, controllable with n_strata. The code to do so is
shown below, creating Figure 5.

ggplot(heights_brolgar,
aes(x = year,

y = height_cm,
group = country)) +

geom_line() +
facet_strata() +
scale_x_continuous(breaks = c(1750, 1850, 1950))

Featuring

Figure 4 and Figure 5 only show each key once, being randomly assigned to a facet. We can meaning-
fully place the keys into facets, by arranging the heights “along” a variable, like year, using the along
argument in facet_strata to produce Figure 6:

ggplot(heights_brolgar,
aes(x = year,

y = height_cm,
group = country)) +

geom_line() +
facet_strata(along = -year) +
scale_x_continuous(breaks = c(1750, 1850, 1950))

We have not lost any of the data, only the order in which they are presented has changed. We
learn the distribution and changes in heights over time, and those measured from the earliest times
appear to be more similar, but there is much wider variation in the middle years, and then for more
recent heights measured from the early 1900s, the heights are more similar. The starting point of each
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Figure 6: Displaying all the data across twelve facets. Instead of each key being randomly in a facet,
each facet displays a specified range of values of year. In this case, the top left facet shows the keys
with the earliest starting year, and the bottom right shows the facet with the latest starting year.

of these years seems to increase at roughly the same interval. This informs us that the starting times of
the years is approximately uniform.

Together facet_sample() and facet_strata() allow for rapid exploration, by focusing on relevant
questions instead of the minutiae. This is achieved by appropriately randomly assigning while
maintaining key structure, keeping the correct number of keys per plot, and so on. For example,
facet_sample() the questions are: “How many lines per facet” and “How many facets?”, and for
facet_strata() the questions are: “How many facets / strata?” and “What to arrange plots along?”.

Answering these questions keeps the analysis in line with the analytic goals of exploring the
data, rather than distracting to minutiae. This is a key theme of improving tools for data analysis.
Abstracting away the parts that are not needed, so the analyst can focus on the task at hand.

Under the hood, facet_sample() and facet_strata() are powered with sample_n_keys() and
stratify_keys(). These can be used to create data structures used in facet_sample() and facet_strata(),
and extend them for other purposes.

Using a tsibble stores important key and index components, in turn allowing for better ways
to break up spaghetti plots so we can look at many and all sub-samples using facet_sample() and
facet_strata().

5 Book-keeping

Longitudinal data is not always measured at the same time and at the same frequency. When exploring
longitudinal data, a useful first step is to explore the frequency of measurements of the index. We
can check if the index is regular using index_regular() and summarise the spacing of the index
with index_summary(). These are S3 methods, so for data.frame objects, the index must be specified,
however for the tsibble objects, the defined index is used.

index_summary(heights_brolgar)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1710 1782 1855 1855 1928 2000

index_regular(heights_brolgar)

#> [1] TRUE

We can explore how many observations per country by counting the number of observations with
features, like so:
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heights_brolgar %>% features(year, n_obs)

#> # A tibble: 119 x 2
#> country n_obs
#> <chr> <int>
#> 1 Afghanistan 5
#> 2 Algeria 5
#> 3 Angola 9
#> 4 Argentina 20
#> 5 Armenia 11
#> 6 Australia 10
#> 7 Austria 18
#> 8 Azerbaijan 7
#> 9 Bangladesh 9
#> 10 Belgium 10
#> # ... with 109 more rows

This can be further summarised by counting the number of times there are a given number of
observations:

heights_brolgar %>% features(year, n_obs) %>% count(n_obs)

#> # A tibble: 24 x 2
#> n_obs n
#> <int> <int>
#> 1 5 11
#> 2 6 11
#> 3 7 13
#> 4 8 5
#> 5 9 12
#> 6 10 12
#> 7 11 9
#> 8 12 4
#> 9 13 7
#> 10 14 6
#> # ... with 14 more rows

Because we are exploring the temporal patterns, we cannot reliably say anything about those
individuals with few measurements. The data used, heights_brolgar has less than 5 measurements.
This was done using add_n_obs(), which adds the number of observations to the existing data. Overall
this drops 25 countries, leaves us with 119 out of the original 144 countries.

heights_brolgar <- heights %>%
add_n_obs() %>%
filter(n_obs >= 5)

We can further explore when countries are first being measured using features to find the first
year for each country number of starting years with the first function from dplyr, and explore this
with a visualisation (Figure 7).

heights_brolgar %>%
features(year, c(first = first))

#> # A tibble: 119 x 2
#> country first
#> <chr> <dbl>
#> 1 Afghanistan 1870
#> 2 Algeria 1910
#> 3 Angola 1790
#> 4 Argentina 1770
#> 5 Armenia 1850
#> 6 Australia 1850
#> 7 Austria 1750
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Figure 7: Distribution of starting years of measurement. The data is already binned into 10 year blocks.
Most of the years start between 1840 and 1900.

#> 8 Azerbaijan 1850
#> 9 Bangladesh 1850
#> 10 Belgium 1810
#> # ... with 109 more rows

heights_brolgar %>%
features(year, c(first = first)) %>%
ggplot(aes(x = first)) +
geom_bar()

We can explore the variation in first year using feat_diff_summary. This combines many sum-
maries of the differences in year.

heights_diffs <- heights_brolgar %>%
features(year, feat_diff_summary)

heights_diffs

#> # A tibble: 119 x 10
#> country diff_min diff_q25 diff_~1 diff_~2 diff_~3 diff_~4 diff_~5 diff_sd
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan 10 10 30 32.5 55.8 60 692. 26.3
#> 2 Algeria 10 10 10 22.5 39.2 60 625 25
#> 3 Angola 10 10 10 17.5 10 70 450 21.2
#> 4 Argentina 10 10 10 11.6 10 40 47.4 6.88
#> 5 Armenia 10 10 10 15 20.8 30 72.2 8.50
#> 6 Australia 10 10 10 13.3 10 40 100 10
#> 7 Austria 10 10 10 13.5 10 40 74.3 8.62
#> 8 Azerbaijan 10 10 10 25 25.8 90 1030 32.1
#> 9 Bangladesh 10 10 10 18.8 15.8 70 441. 21.0
#> 10 Belgium 10 10 10 16.7 23.3 40 125 11.2
#> # ... with 109 more rows, 1 more variable: diff_iqr <dbl>, and abbreviated
#> # variable names 1: diff_median, 2: diff_mean, 3: diff_q75, 4: diff_max,
#> # 5: diff_var

This is particularly useful as using diff on year would return a very wide dataset that is hard to
explore:

heights_brolgar %>%
features(year, diff)

#> # A tibble: 119 x 30
#> country ...1 ...2 ...3 ...4 ...5 ...6 ...7 ...8 ...9 ...10 ...11
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan 10 50 60 10 NA NA NA NA NA NA NA
#> 2 Algeria 10 10 60 10 NA NA NA NA NA NA NA
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Figure 8: Exploring the different summary statistics of the differences amongst the years. We learn
that the smallest interval between measurements is 10 years, and the largest interval is between 10
and 125 years, and that most of the data is measured between 10 and 30 or so years.

#> 3 Angola 10 10 70 10 10 10 10 10 NA NA NA
#> 4 Argentina 10 10 10 10 10 10 10 10 10 10 10
#> 5 Armenia 10 30 10 10 30 20 10 10 10 10 NA
#> 6 Australia 10 10 10 10 10 10 10 40 10 NA NA
#> 7 Austria 20 10 10 30 10 10 10 10 10 10 10
#> 8 Azerbaijan 10 90 10 10 10 20 NA NA NA NA NA
#> 9 Bangladesh 10 10 10 70 10 20 10 10 NA NA NA
#> 10 Belgium 10 10 10 10 10 10 30 40 20 NA NA
#> # ... with 109 more rows, and 18 more variables: ...12 <dbl>, ...13 <dbl>,
#> # ...14 <dbl>, ...15 <dbl>, ...16 <dbl>, ...17 <dbl>, ...18 <dbl>,
#> # ...19 <dbl>, ...20 <dbl>, ...21 <dbl>, ...22 <dbl>, ...23 <dbl>,
#> # ...24 <dbl>, ...25 <dbl>, ...26 <dbl>, ...27 <dbl>, ...28 <dbl>,
#> # ...29 <dbl>

We can then look at the summaries of the differences in year by changing to long form and facetting
(Figure 8), we learn about the range of intervals between measurements, the smallest being 10 years,
the largest being 125, and that most of the data is measured between 10 and 30 years.

6 Finding Waldo

Looking at a spaghetti plot, it can be hard to identify which lines are the most interesting, or unusual.
A workflow to identify interesting individuals to start with is given below:

1. Decide upon an interesting feature (e.g., maximum)
2. This feature produces one value per key
3. Examine the distribution of the feature
4. Join this table back to the data to get all observations for those keys
5. Arrange the keys or filter, using the feature
6. Display the data for selected keys

This workflow is now demonstrated. Firstly, we decide on an interesting feature, “maximum
height”, and whether height is always increasing. We calculate our own “feature”, calculating
maximum height, and whether a value is increasing (with brolgar’s increasing function) as follows:

heights_max_in <- heights_brolgar %>%
features(height_cm, list(max = max,

increase = increasing))
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Figure 9: The different distributions of the features - A is depicting the distribution of maximum height,
and B displays the number of countries that are always increasing (FALSE), and always increasing
(TRUE). We note that the average maximum heights range from about 160cm to 185cm, with most
being around 170cm. We also learn that the vast majority of countries are not always increasing in
height through time.

heights_max_in

#> # A tibble: 119 x 3
#> country max increase
#> <chr> <dbl> <lgl>
#> 1 Afghanistan 168. FALSE
#> 2 Algeria 171. FALSE
#> 3 Angola 169. FALSE
#> 4 Argentina 174. FALSE
#> 5 Armenia 172. FALSE
#> 6 Australia 178. FALSE
#> 7 Austria 179. FALSE
#> 8 Azerbaijan 172. FALSE
#> 9 Bangladesh 164. FALSE
#> 10 Belgium 177. FALSE
#> # ... with 109 more rows

This returns a dataset of one value per key. Figure 9 examines the distribution of the fea-
tures, showing us the distribution of maximum height, and the number of countries that are always
increasing.

We can now join this table back to the data to get all observations for those keys to move from
one key per row to all many rows per key.

heights_max_in_full <- heights_max_in %>%
left_join(heights_brolgar,

by = "country")

heights_max_in_full

#> # A tibble: 1,406 x 9
#> country max increase year n_obs continent height_cm year0 country_fct
#> <chr> <dbl> <lgl> <dbl> <int> <chr> <dbl> <dbl> <fct>
#> 1 Afghanistan 168. FALSE 1870 5 Asia 168. 160 Afghanistan
#> 2 Afghanistan 168. FALSE 1880 5 Asia 166. 170 Afghanistan
#> 3 Afghanistan 168. FALSE 1930 5 Asia 167. 220 Afghanistan
#> 4 Afghanistan 168. FALSE 1990 5 Asia 167. 280 Afghanistan
#> 5 Afghanistan 168. FALSE 2000 5 Asia 161. 290 Afghanistan
#> 6 Algeria 171. FALSE 1910 5 Africa 169. 200 Algeria
#> 7 Algeria 171. FALSE 1920 5 Africa 166. 210 Algeria
#> 8 Algeria 171. FALSE 1930 5 Africa 169 220 Algeria
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#> 9 Algeria 171. FALSE 1990 5 Africa 171. 280 Algeria
#> 10 Algeria 171. FALSE 2000 5 Africa 170. 290 Algeria
#> # ... with 1,396 more rows

We can then arrange the keys or filter, using the feature, for example, filtering only those countries
that are only increasing:

heights_increase <- heights_max_in_full %>% filter(increase)
heights_increase

#> # A tibble: 22 x 9
#> country max increase year n_obs continent height_cm year0 country_fct
#> <chr> <dbl> <lgl> <dbl> <int> <chr> <dbl> <dbl> <fct>
#> 1 Honduras 168. TRUE 1950 6 Americas 164. 240 Honduras
#> 2 Honduras 168. TRUE 1960 6 Americas 164. 250 Honduras
#> 3 Honduras 168. TRUE 1970 6 Americas 165. 260 Honduras
#> 4 Honduras 168. TRUE 1980 6 Americas 165. 270 Honduras
#> 5 Honduras 168. TRUE 1990 6 Americas 165. 280 Honduras
#> 6 Honduras 168. TRUE 2000 6 Americas 168. 290 Honduras
#> 7 Moldova 174. TRUE 1840 5 Europe 165. 130 Moldova
#> 8 Moldova 174. TRUE 1950 5 Europe 172. 240 Moldova
#> 9 Moldova 174. TRUE 1960 5 Europe 173. 250 Moldova
#> 10 Moldova 174. TRUE 1970 5 Europe 174. 260 Moldova
#> # ... with 12 more rows

Or tallest country

heights_top <- heights_max_in_full %>% top_n(n = 1, wt = max)
heights_top

#> # A tibble: 16 x 9
#> country max increase year n_obs continent height_cm year0 country_fct
#> <chr> <dbl> <lgl> <dbl> <int> <chr> <dbl> <dbl> <fct>
#> 1 Denmark 183. FALSE 1820 16 Europe 167. 110 Denmark
#> 2 Denmark 183. FALSE 1830 16 Europe 165. 120 Denmark
#> 3 Denmark 183. FALSE 1850 16 Europe 167. 140 Denmark
#> 4 Denmark 183. FALSE 1860 16 Europe 168. 150 Denmark
#> 5 Denmark 183. FALSE 1870 16 Europe 168. 160 Denmark
#> 6 Denmark 183. FALSE 1880 16 Europe 170. 170 Denmark
#> 7 Denmark 183. FALSE 1890 16 Europe 169. 180 Denmark
#> 8 Denmark 183. FALSE 1900 16 Europe 170. 190 Denmark
#> 9 Denmark 183. FALSE 1910 16 Europe 170 200 Denmark
#> 10 Denmark 183. FALSE 1920 16 Europe 174. 210 Denmark
#> 11 Denmark 183. FALSE 1930 16 Europe 174. 220 Denmark
#> 12 Denmark 183. FALSE 1940 16 Europe 176. 230 Denmark
#> 13 Denmark 183. FALSE 1950 16 Europe 180. 240 Denmark
#> 14 Denmark 183. FALSE 1960 16 Europe 180. 250 Denmark
#> 15 Denmark 183. FALSE 1970 16 Europe 181. 260 Denmark
#> 16 Denmark 183. FALSE 1980 16 Europe 183. 270 Denmark

We can then display the data by highlighting it in the background, first creating a background plot
and overlaying the plots on top of this as an additional ggplot layer, in Figure 10.

7 Dancing with Models

These same workflows can be used to interpret and explore a model. As the data tends to follow a non
linear trajectory, we use a general additive model (gam) with the mgcv R package (Wood 2017) using
the code below:

heights_gam <- gam(
height_cm ~ s(year0, by = country_fct) + country_fct,
data = heights_brolgar,
method = "REML"

)
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Figure 10: Plots of the data in the background, with the countries that always increase in height
through time in A, and the country with the tallest people in B

This fits height in centimetres with a smooth effect for year for each country, with a different
intercept for each country. It is roughly equivalent to a random intercept varying slope model. Note
that this gam model took approximately 8074 seconds to fit. We add the predicted and residual values
for the model below, as well as the residual sums of squares for each country.

library(mgcv)
library(modelr)
heights_aug <- heights_brolgar %>%
add_predictions(heights_gam, var = "pred") %>%
add_residuals(heights_gam, var = "res") %>%
group_by_key() %>%
mutate(rss = sum(res^2)) %>%
ungroup()

We can use the previous approach to explore the model results. We can take a look at a sample of
the predictions along with the data, by using sample_n_keys. This provides a useful way to explore
some set of the model predictions. In order to find those predictions that best summarise the best, and
worst, and in between, we need to use the methods in the next section, “Stereotyping”.

heights_aug %>%
sample_n_keys(12) %>%
ggplot(aes(x = year,

y = pred,
group = country)) +

geom_line(colour = "steelblue") +
geom_point(aes(y = height_cm)) +
facet_wrap(~country)

8 Stereotyping

To help understand a population of measurements over time, it can be useful to understand which in-
dividual measurements are typical (or “stereotypical”) of a measurement. For example, to understand
which individuals are stereotypical of a statistic such as the minimum, median, and maximum height.
This section discusses how to find these stereotypes in the data.

Figure 12 shows the residuals of the simple model fit to the data in the previous section. There is
an overlaid five number summary, showing the minimum, 1st quantile, median, 3rd quantile, and
maximum residual value residuals, as well as a rug plot to show the data. We can use these residuals
to understand the stereotypes of the data - those individuals in the model that best match to this five
number summary.

We can do this using keys_near() from brolgar. By default this uses the 5 number summary, but
any function can be used. You specify the variable you want to find the keys nearest, in this case rss,
residual sums of squares for each key:

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 21

Figure 11: Exploration of a random sample of the data. This shows the data points of 12 countries,
with the model fit in blue.

Figure 12: Five number summary of residual values from the model fit. The residuals are centered
around zero with some variation.
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Figure 13: The keys nearest to the five number summary of the residual sums of squares. Moldova
and Madagascar are well fit by the model, and are fit by a straight line. The remaining countries with
poorer fit have greater variation in height. It is not clear how a better model fit could be achieved.

keys_near(heights_aug, var = rss)

#> # A tibble: 62 x 5
#> country rss stat stat_value stat_diff
#> <chr> <dbl> <fct> <dbl> <dbl>
#> 1 Denmark 9.54 med 9.54 0
#> 2 Denmark 9.54 med 9.54 0
#> 3 Denmark 9.54 med 9.54 0
#> 4 Denmark 9.54 med 9.54 0
#> 5 Denmark 9.54 med 9.54 0
#> 6 Denmark 9.54 med 9.54 0
#> 7 Denmark 9.54 med 9.54 0
#> 8 Denmark 9.54 med 9.54 0
#> 9 Denmark 9.54 med 9.54 0
#> 10 Denmark 9.54 med 9.54 0
#> # ... with 52 more rows

To plot the data, they need to be joined back to the original data, we use a left join, joining by
country.

heights_near_aug <- heights_aug %>%
keys_near(var = rss) %>%
left_join(heights_aug,

by = c("country"))

Figure 13 shows those countries closest to the five number summary. Observing this, we see that
the minimum RSS for Moldova fits a nearly perfectly straight line, and the maximum residuals for
Myanmar have wide spread of values.

ggplot(heights_near_aug,
aes(x = year,

y = pred,
group = country,
colour = country)) +

geom_line(colour = "orange") +
geom_point(aes(y = height_cm)) +
scale_x_continuous(breaks = c(1780, 1880, 1980)) +
facet_wrap(~stat + country,

labeller = label_glue("Country: {country} \nNearest to \n{stat} RSS"),
nrow = 1) +

theme(legend.position = "none",
aspect.ratio = 1)

We can also look at the highest and lowest 3 residual sums of squares:

heights_near_aug_top_3 <- heights_aug %>%
distinct(country, rss) %>%
top_n(n = 3,
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Figure 14: Figure of stereotypes for those keys with the three highest and lowest RSS values. Those
that fit best tend to be linear, but those that fit worst have wider variation in heights.

wt = rss)

heights_near_aug_bottom_3 <- heights_aug %>%
distinct(country, rss) %>%
top_n(n = -3,

wt = rss)

heights_near_top_bot_3 <- bind_rows(highest_3 = heights_near_aug_top_3,
lowest_3 = heights_near_aug_bottom_3,
.id = "rank") %>%

left_join(heights_aug,
by = c("country", "rss"))

Figure 14 shows the same information as the previous plot, but with the 3 representative countries
for each statistic. This gives us more data on what the stereotypically “good” and “poor” fitting
countries to this model.

9 Getting Started

The brolgar R package can be installed from CRAN using

# From CRAN
install.packages("brolgar")
# Development version
remotes::install_github("njtierney/brolgar")

The functions are all designed to build upon existing packages, but are predicated on working with
tsibble. The package extends upon ggplot2 to provide facets for exploration: facet_sample() and
facet_strata(). Extending dplyr’s sample_n() and sample_frac() functions by providing sampling
and stratifying based around keys: sample_n_keys(), sample_frac_keys(), and stratify_keys().
New functions are focussed around the use of key, for example key_slope() to find the slope of
each key, and keys_near() to find those keys near a summary statistic. Finally, feature calculation is
provided by building upon the existing time series feature package, feasts.

To get started with brolgar you must first ensure your data is specified as a tsibble - discussed
earlier in the paper, there is also a vignette “Longitudinal Data Structures”, which discusses these
ideas. The next step we recommend is sampling some of your data with facet_sample(), and
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facet_strata(). When using facet_strata(), facets can be arranged in order of a variable, using the
along argument, which can reveal interesting features.

To further explore longitudinal data, we recommend finding summary features of each variable
with features, and identifying variables that are near summary statistics, using keys_near to find
individuals stereotypical of a statistical value.

10 Concluding Remarks

The brolgar package facilitates exploring longitudinal data in R. It builds upon existing infrastructure
from tsibble, and feasts, which work within the tidyverse family of R packages, as well as the newer,
tidyverts, time series packages. Users familiar with either of these package families will find a lot
of similarity in their use, and first time users will be able to easily transition from brolgar to the
tidyverse or tidyverts.

Visualizing categorical or binary data over a time period can be difficult as the limited number of
values on the y axis leads to overplotting. This can conceal the number of values present at a given
value. The tools discussed in brolgar facilitate this in the form of facet_sample, and facet_strata.
Some special methods could be developed to add jitter or noise around these values on the y axis,
while still maintaining the graphical axis and tick marks.

Future work will explore more features and stratifications, and stereotypes, and generalise the
tools to work for data without time components, and other data types.
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12 Paper Source

The complete source files for the paper can be found at https://github.com/njtierney/rjournal-
brolgar. The paper is built using rmarkdown, targets and capsule to ensure R package versions are
the same. See the README file on the github repository for details on recreating the paper.
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