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The smoots Package in R for
Semiparametric Modeling of Trend
Stationary Time Series
by Yuanhua Feng, Thomas Gries, Sebastian Letmathe and Dominik Schulz

Abstract This paper is an introduction to the new package in R called smoots (smoothing time series),
developed for data-driven local polynomial smoothing of trend-stationary time series. Functions for
data-driven estimation of the first and second derivatives of the trend are also built-in. It is first applied
to monthly changes of the global temperature. The quarterly US-GDP series shows that this package
can also be well applied to a semiparametric multiplicative component model for non-negative time
series via the log-transformation. Furthermore, we introduced a semiparametric Log-GARCH and a
semiparametric Log-ACD model, which can be easily estimated by the smoots package. Of course,
this package applies to suitable time series from any other research area. The smoots package also
provides a useful tool for teaching time series analysis, because many practical time series follow an
additive or a multiplicative component model.

1 Introduction

This paper provides an introduction to a new package in R called smoots (version 1.0.1, Feng and
Schulz, 2019) for data-driven local polynomial smoothing of trend-stationary time series. This package
is developed based on the R codes for the practical implementation of the proposals in Feng et al.
(2020). Detailed discussion on the methodology and the development of the algorithms may be
found in that work. Here, the main algorithm is a fully data-driven IPI (iterative plug-in, Gasser
et al., 1991) approach for estimating the trend under stationary time series errors, where the variance
factor in the asymptotically optimal bandwidth is estimated by another IPI-approach for a lag-window
estimator of the spectral density following Bühlmann (1996). Numerous sub-algorithms determined by
different options, such as the choice of the order of local polynomial, the choice of the kernel weighting
functions and the choice of the so-called inflation factors for estimating the bias in the asymptotically
optimal bandwidth, are included. Further functions for data-driven estimation of the first and second
derivatives of the trend are also developed by adapting the idea of Feng (2007). A related proposal
may be found in Francisco-Fernández et al. (2004). The algorithms included in the smoots package
differ to their proposal in several ways. (1) The IPI-algorithm is usually superior to the DPI (see
Beran et al., 2009, for detailed discussion in models with i.i.d. errors). (2) In Francisco-Fernández et al.
(2004) the variance factor is estimated under an AR(1) model, which is usually a misspecification. (3)
Data-driven estimation of the derivatives are also included in the current package. Moreover, the user
can obtain any estimate with fixed bandwidths chosen beforehand. A function for kernel smoothing is
also built-in for comparison.

The smoots package complements the Comprehensive R Archive Network (CRAN), as already
existing base R functions or CRAN packages for local polynomial smoothing either do not implement
an automated bandwidth selection or, if such bandwidth algorithms do exist, they are only suitable for
data with i.i.d. (independently and identically distributed) errors, which is an assumption that is often
violated for time series. In more detail, notwithstanding that the stats package offers the functions
lowess() and loess() for computing the local polynomial estimates of the regression function given
one or multiple predictor variables, a smoothing bandwidth has to be selected arbitrarily in both cases.
Similar functionality is provided by the locpol (Ojeda Cabrera, 2018), KernSmooth (Wand, 2021) and
lokern (Herrmann and Maechler, 2021) packages, however, derivative estimation approaches and
various bandwidth selection algorithms for the regression function, such as the leave-one-out estimator
(Allen, 1974) and the plug-in algorithm by Ruppert et al. (1995), are built into them. Moreover, within
lokern, the bandwidth for estimating the first or second derivative of the regression function can be
selected automatically. Nevertheless, these traditional data-driven bandwidth selection approaches
are only suitable in case of data with i.i.d. errors (Hart, 1991; Altman, 1990; Opsomer, 1997) and
can therefore often not be considered for time series. Explicit CRAN packages for detrending a time
series nonparametrically are rmaf (Qiu, 2015) and mFilter (Balcilar, 2019). While with rmaf, a fully
data-driven refined moving average and a cubic smoothing spline, which requires a manually selected
smoothness parameter, can be applied, the trend as well as the cyclical component of a time series can
be extracted with the filters implemented in the mFilter package like the Baxter-King (Baxter and King,
1999) or Hodrick-Prescott (Hodrick and Prescott, 1997) filters among others. However, all filtering
functions in the mFilter package are not fully data-driven. Instead, they make use of default values
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recommended within scientific literature. Thus, to our knowledge, there are not any packages on
CRAN that implement a data-driven local polynomial regression for the trend of a time series or its
derivatives.

The methodological and computational background for the smoots package is summarized briefly
hereinafter. For further details we refer the reader to Feng et al. (2020) and references therein. Our focus
is to illustrate the wide application spectrum of the smoots package for semiparametric modeling of
time series. We propose to estimate the nonparametric trend using the current package in the first stage
and to fit e.g. an ARMA model to the residuals with the standard arima() function of the stats package
in R. This idea is first shown with monthly Northern Hemisphere temperature changes data obtained
from the website of the National Aeronautics and Space Administration (NASA). Then the proposal
is applied to the log-transformation of the quarterly US-GDP data, retrieved from the website of the
Federal Reserve Bank of St. Louis, using a semiparametric log-local-linear growth model. Moreover,
two new semiparametric models for financial time series are proposed to show further application
of this package. Firstly, a Semi-Log-GARCH model is defined by introducing a scale function into
the Log-GARCH (logarithmic GARCH) (Pantula, 1986; Geweke, 1986; Milhøj, 1987). The latter is a
special extension of the seminal ARCH (autoregressive conditional heteroskedasticity, Engle, 1982)
and GARCH (generalized ARCH, Bollerslev, 1986) models and is just a slightly restricted ARMA
model for the log-transformation of the squared returns (see e.g. Sucarrat, 2019). The usefulness of the
Log-GARCH has recently been rediscovered by Francq et al. (2013). The application of this proposal is
illustrated by the DAX returns collected from Yahoo Finance. Secondly, a Semi-Log-ACD model is
proposed as an extension of the Type I Log-ACD (Bauwens and Giot, 2000), which is closely related to
the Semi-Log-GARCH. Like the ACD (autoregressive conditional duration, Engle and Russell, 1998)
model, the Semi-Log-ACD can be applied to different non-negative financial data, such as realized
volatilities and trading volumes. In this paper, this new model is applied to the CBOE Volatility
Index (VIX) obtained from Yahoo Finance. Datasets for all of those examples are built in the proposed
package. The smoots package can be applied to suitable time series from other research areas. In
addition, the smoots package provides a useful tool for teaching time series analysis, which helps a
lecturer to obtain automatically detrended real data examples to show the application of parametric
time series models.

The methods and IPI-algorithms are summarized in the following two sections. The general usage
of the R functions is then described in another section. Three further sections illustrate the applications
of those functions in simple cases and with respect to the Semi-Log-GARCH and the Semi-Log-ACD.

2 Local polynomial regression for time series

The main algorithm of the smoots package is a fully automatic non-parametric procedure for estimating
a deterministic trend in an additive time series model with observations yt, t = 1, ..., n. The data
under consideration can for example be from environmental statistics, economics or finance. The basic
nonparametric time series model is defined by

yt = m (xt) + ξt, (1)

where xt = t/n denotes the rescaled time, m is a smooth function and ξt is a zero mean stationary
process. This model defines a nonparametric approach for trend-stationary time series. Let γξ (τ)
denote the acf (autocovariances) of ξt. Under the regularity conditions given in Bühlmann (1996), a
data-driven IPI-algorithm for estimating the variance factor in the asymptotically optimal bandwidth
can be developed. As indicated by Feng et al. (2020), the required conditions are fulfilled by an ARMA
process with finite eighth moment. However, models with long-memory errors are excluded by those
assumptions.

The local polynomial estimator of m(ν) (x), the ν-th derivative of m, is obtained by minimizing

Q =
n

∑
t=1

yt −
p

∑
j=0

bj (x) (xt − x)j


2

W
(

xt − x
h

)
, (2)

where h is the bandwidth, W is a second order kernel function with compact support [−1, 1] and is
used here as the weighting function, and p is the order of polynomial. It is assumed that p − ν is odd.
We have m̂(ν) (x) = ν!b̂ν (x), which is asymptotically equivalent to some kernel regression with a k-th
order kernel K (u) and automatic boundary correction, where k = p + 1. In this paper, the following
weighting functions are considered:

W (u) = Cµ

(
1 − u2

)µ
I[−1,1] (u) , (3)
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where Cµ is a standardization constant that is indeed irrelevant for calculating the weights in (3) and
µ = 0, 1, ..., is a smoothness parameter. For automatic bandwidth selection using the smoots package,
only µ = 0, 1, 2 and 3 are allowed, corresponding to the use of the uniform, Epanechnikov, bisquare
and triweight kernels, respectively.

An IPI-algorithm is developed based on the asymptotically optimal bandwidth hA, which is the
minimizer of the AMISE (asymptotic mean integrated squared error):

AMISE (h) = h2(k−ν)
I
[
m(k)

]
β2

(k!)2 +
2πc f (db − cb) R (K)

nh2ν+1 , (4)

where I
[
m(k)

]
=

∫ db
cb

[
m(k) (x)

]2
dx, β =

∫ 1
−1 ukK (u) du, R (K) =

∫ 1
−1 K2 (u) du, c f = f (0) is the

value of the spectral density at the frequency zero and 0 ≤ cb < db ≤ 1 are introduced to reduce the
effect of the estimates at the boundary points. Then we have

hA = n− 1
2k+1

 2ν + 1
2 (k − ν)

2πc f (k!)2 (db − cb) R (K)

I
[
m(k)

]
β2

 1
2k+1

. (5)

After estimating and removing the nonparametric trend, any suitable parametric model can be
fitted to the residuals for further econometric analysis. For instance, we can assume that ξt follows an
ARMA model:

ξt = φ1ξt−1 + ... + φrξt−r + ψ1εt−1 + ... + ψsεt−s + εt, (6)

where εt are i.i.d. innovations. A semiparametric ARMA (Semi-ARMA) model is then defined by (1)
and (6).

3 The proposed IPI-algorithms

Since both c f and I
[
m(k)

]
in (5) are unknown, we need to obtain and insert appropriate estimates of

these two quantities into this formula to achieve a selected bandwidth ĥA. However, the estimation of

c f and I
[
m(k)

]
requires the use of two additional bandwidths. Hence, iterative bandwidth selection

procedures should be employed. The estimation of I
[
m(k)

]
is not influenced by the correlation

structure, which can be simply obtained by means of established IPI-algorithms for models with
independent errors. Consequently, solely a comprehensive review of the estimation approach for c f
will be given.

Data-driven estimation of c f

Let rt,V = yt − m̂V denote the residuals obtained from a pilot estimate using a bandwidth hV and
denote the sample acf calculated from rt,V by γ̂ (l). In this paper we propose to use the following
lag-window estimator of c f :

ĉ f ,M =
1

2π

M

∑
l=−M

wl γ̂ (l) , (7)

where wl = l/ (M + 0.5) are weights calculated according to some lag-window with the window-
width M. And, M will be selected by the following IPI-algorithm proposed by Feng et al. (2020), which
is adjusted from that of Bühlmann (1996).

i) Let M0 = [n/2] be the initial window-width, where [·] denotes the integer part.

ii) Global steps: Estimate
∫ (

f (λ)2
)

dλ in the j-th iteration following Bühlmann (1996). Denote

by
∫

f (1) (λ) dλ the integral of the first generalized derivative of f (λ). Estimate it using the

window-width M′
j =

[
Mj−1/n2/21

]
, the proposal in Bühlmann (1996) and the Bartlett-window.

Obtain Mj by inserting this quantity into Eq. (5) in Bühlmann (1996). Carry out this procedure
iteratively until convergence is reached or until a maximum of 20 iterations. Denote the selected
M by M̂G.

iii) Local adaptation at λ = 0: Calculate
∫

f (1) (λ) dλ again using M′ =
[

M̂G/n2/21
]
. Obtain the

finally selected window-width M̂ by inserting the estimates into the formula of the local optimal
bandwidth at λ = 0 in (5) of Bühlmann (1996).
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It is proposed to use the Bartlett-window throughout the whole algorithm for simplicity. If M̂
converges, it is usually not affected by the starting value M0. Hence, any 1 ≤ M0 ≤ [n/2] can be used
in the proposed algorithm.

The IPI-algorithm for estimating m

In this subsection the data-driven IPI-algorithm for selecting the bandwidth for local linear and local
cubic estimators m̂, with k = 2 and 4, respectively, under correlated errors will be described. Note that,
although the variance factor c f can be estimated well from residuals of m̂, Feng et al. (2020) showed
that the asymptotically optimal bandwidth for estimating c f should be CF · hA, not hA itself, where

CF =

{
2k

[
2K (0)
R (K)

− 1
]}1/(2k+1)

(8)

is a correction factor to obtain the asymptotically optimal bandwidth for estimating ĉ f from ĥ, which
is the same as given in Feng and Heiler (2009) and is always bigger than 1. Theoretically, c f should
be estimated from rt,V obtained with the bandwidth CF · ĥ. The proposed main IPI-algorithm for
selecting the bandwidth proceeds as follows.

i) Start with an initial bandwidth h0 given beforehand.

ii) Obtain rt,V using hj−1 or CF · hj−1 and estimate c f from rt,V as proposed above.

iii) Let α = 5/7 or 5/9 for p = 1, and α = 9/11 or 9/13 for p = 3, respectively. Estimate I
[
m(k)

]
with hd,j = hα

j−1 and a local polynomial of order pd = p + 2. We obtain

hj =

 [k!]2

2kβ2

2πĉ f (db − cb) R (K)

I
[
m̂(k)

]
1/(2k+1)

· n−1/(2k+1). (9)

iv) Increase j by 1. Repetitively carry out Steps ii) and iii) until convergence is reached or until for
example J = 20 iterations are achieved. Let ĥ = hj be the selected bandwidth.

In the developed package the initial bandwidth h0 = 0.15 for both p = 1 and p = 3 is used. Also, for
both p = 1 and p = 3, the default value cb = 1 − db = 0.05 is proposed to reduce the effect of the
estimates at the boundary points. That is, the bandwidth is selected only using 90% of the observations
in the middle part. The bandwidth hd,j = hα

j−1 for estimating the k-th derivative is roughly fixed using

a so-called EIM (exponential inflation method). The first α value is chosen so that I
[
m̂(k)

]
and hence ĥ

will achieve their optimal rates of convergence. Now, the algorithm will be denoted by AlgA. If the
second α value is used, m̂(k), but not ĥ, will achieve its optimal rate of convergence. This algorithm is
called AlgB. And ĥ selected by AlgB is larger than that by AlgA. For further details on those topics we
refer the reader to Feng et al. (2020).

Data-driven estimation of m′ and m′′

The proposed IPI-algorithm can be easily adapted to select bandwidths for estimating m̂(ν). In the
following, only the cases with ν = 1 or 2 are considered, where c f is estimated by means of a data-
driven pilot estimate m̂ of the order pp, say. Then m(ν) will be estimated with p = ν + 1 and k = ν + 2.
As before, m(k) for calculating the bias factor will be estimated with pd = p + 2 and a correspondingly
inflated bandwidth. This leads to the following two-stage procedure.

i) In the first stage ĉ f is obtained by the main IPI-algorithm with pp = 1 or pp = 3.

ii) Then an IPI-procedure as proposed above to select the bandwidth for estimating m(ν) according
to (5) is carried out with fixed ĉ f obtained in i).

Note that m̂(ν) is asymptotically equivalent to some kernel estimator with boundary correction. Explicit
forms of the equivalent kernels for estimating m(ν) in the middle part may be found in Müller (1988).
The corresponding inflation factors (i.e. the α values) are determined by p or k.
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4 Practical implementation in R

The package smoots developed based on the algorithms described in the last section consists of five
directly usable functions, two S3 methods and four datasets as examples. The first four functions
are called msmooth(), tsmooth(), gsmooth() and knsmooth(), designed for estimating the trend in
different ways. Data-driven estimation can be carried out by each of the first two functions, where
msmooth() is a user-friendlier simplified version of tsmooth(). Local polynomial estimation of m(ν)

and kernel smoothing of m with an arbitrary bandwidth fixed beforehand can be carried out by
gsmooth() and knsmooth(), respectively. In the first case, one should choose p such that p − ν is
odd to avoid the boundary problem. Those functions allow a flexible application of this package
by an experienced user. Data-driven estimation of the first or second derivative can be obtained by
dsmooth().

The functions for selecting the bandwidth will be described in more detail. Moreover, for simplicity,
shared arguments between functions will only be discussed once. With

tsmooth(y, p, mu, Mcf, InfR, bStart, bvc, bb, cb, method),

the trend in equidistant and trend-stationary time series with short-memory can be estimated via an
automated local polynomial. Its arguments are as follows.

• y is the input time series.

• p reflects the order of polynomial and currently only p = 1 (local linear) and p = 3 (local cubic)
are selectable.

• mu corresponds to the smoothness parameter µ of the second order kernel function (3) used for
weighting. Only 0, 1, 2 and 3 are valid options.

• Mcf defines the method for estimating c f . For Mcf = "NP", the default, c f is estimated nonpara-
metrically as described in the section Data-driven estimation of c f . If "AR", "MA" or "ARMA" are
selected, ξt in model (1) is assumed to follow an AR, MA or ARMA process, respectively, during
the bandwidth selection and thus, c f is estimated parametrically.

• InfR sets the inflation rate α considered for the bandwidth (see also Step iii) in the section The
IPI-algorithm for estimating m). The options are InfR = "Opt", which corresponds to α = 5/7
for a local linear and α = 9/11 for a local cubic regression, InfR = "Nai" with α = 5/9 and
α = 9/13 for local linear and local cubic regressions, respectively, and InfR = "Var", which
always sets α = 1/2.

• bStart is the (relative) starting bandwidth for the bandwidth selection algorithm. The default is
bStart = 0.15. Note that ĥ is usually not affected by the initial value.

• With the argument bvc the estimation of c f can be adjusted even further. By setting bvc = "Y",
the bandwidth for estimating c f will be enlarged by the factor CF as in (8). CF is omitted for bvc
= "N".

• bb describes the boundary method. If bb = 0 is selected, the number of observations considered
for smoothing is decreasing towards the boundaries, while it is constant throughout for bb = 1.

• cb is the proportion of observations at each boundary that is omitted in the bandwidth selection
process.

• Via method the final smoothing method, after the bandwidth has been selected, can be defined.
The default method = "lpr" corresponds to local polynomial estimates, whereas with method =
"kr" a kernel regression is conducted.

A simplified version of tsmooth() for estimating a time series trend with a data-driven local
polynomial is

msmooth(y, p, mu, bStart, alg, method),

which shares most of its arguments with tsmooth(). The only unknown argument is alg.

• alg defines specific argument settings of tsmooth() as named subalgorithms. The two algo-
rithms AlgA and AlgB described in the section The IPI-algorithm for estimating m can be directly
chosen by alg = "A" and alg = "B", respectively.

In accordance with Feng et al. (2020), we propose the use of AlgA with the optimal inflation factor for
local linear regression. For local cubic regression with a moderate n, AlgB with the stronger inflation
factor should be used. If n is big enough, e.g. bigger than 400, the combination of p = 3 and AlgA
will also lead to suitable results. In case when slight over smoothing is wished/required, the inflation
factor "Nai" or even "Var" should be employed.

To estimate the first or second derivative of a time series trend with a data-driven local polynomial,
the function
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dsmooth(y, d, mu, pp, bStart.p, bStart)

should be employed. With this function, the first and second derivatives are always estimated using a
local quadratic and local cubic regression, respectively. To obtain ĉ f , a data-driven pilot estimate of
the trend function via tsmooth() is computed.

• d specifies the order of derivative of the trend that will be estimated. Currently, d = 1 and d =
2 are valid options.

• pp corresponds to the order of polynomial considered for the pilot estimate of the trend function.
pp = 1 and pp = 3 are available.

• bStart.p is the starting bandwidth for the data-driven pilot estimate of the trend.

Note that here, bStart is the initial bandwidth considered in the bandwidth selection for the derivative
series. For further details on the functions we refer the reader to the user’s guideline for this package.
Beside the above functions, two S3 methods are also built in the package: a print() and a plot()
method for objects of class "smoots", a newly introduced class of objects created by the smoots
package. They allow for a quick and detailed overview of the estimation results. The "smoots" objects
themselves are generally lists consisting of different components such as input data and estimation
results.

5 Simple application of smoots

In this and the next two sections, the wide applicability of the above mentioned functions will be
illustrated by four real data examples. Those datasets are built in the package so that the reader can
also use them. They are: tempNH, gdpUS, dax and vix, which contain observations of the mean monthly
temperature changes of the Northern Hemisphere, the US GDP and daily financial data of the German
stock index (DAX) and the CBOE Volatility Index (VIX), respectively. For further information see
also the documentation on the data within the smoots package. Since the package is available on
CRAN, the commands install.packages("smoots") and library(smoots) can be used to install it
and attach it within the current R environment.

Direct application of the Semi-ARMA

To show the application of the additive Semi-ARMA model defined by (1) and (6), the time series of
the mean monthly Northern Hemisphere temperature changes from 1880 to 2018 (NHTM) is chosen.
The data are downloaded from the website of the NASA. For this purpose, the function tsmooth() is
applied. The used settings of the arguments for this function are equivalent to those in algorithm A
with p = 1.

tempChange <- smoots::tempNH$Change
est_temp <- smoots::tsmooth(tempChange, p = 1, mu = 2, Mcf = "NP", InfR = "Opt",
bStart = 0.1, bvc = "Y", method = "lpr")

d1_temp <- smoots::dsmooth(tempChange, d = 1, mu = 2, pp = 3, bStart.p = 0.2,
bStart = 0.15)

d2_temp <- smoots::dsmooth(tempChange, d = 2, mu = 3, pp = 1, bStart.p = 0.1,
bStart = 0.2)

Figure 1(a) shows the observations together with the estimated trend. Here, the selected bandwidth is
0.1221. We see, the estimated trend fits the data very well. In particular, the trend increases steadily
after 1970 that might be a signal for possible global warming in the last decades. The residuals are
displayed in Figure 1(b), which look quite stationary. This indicates that Model (1) is a suitable
approach for this time series. Moreover, Figures 1(c) and 1(d) illustrate the data-driven estimates of
the first and second derivatives of the trend respectively, which fit the features of the trend function
very well and provide us further details about the global temperature changes.

arma1 <- stats::arima(est_temp$res, order = c(1, 0, 1), include.mean = FALSE)

Consequently, an ARMA(1, 1) model is fitted to the residual series ξ̃t = yt − m̂(xt) using the arima()
function in R, which results in

ξ̃t = 0.7489ξ̃t−1 − 0.3332εt−1 + εt. (10)

We see, the dependence of errors is dominated by a strong positive AR parameter with a moderate
negative MA coefficient.
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Figure 1: The NHTM series and the estimated trend are displayed in (a). The residuals, as well as the
estimated first and second derivatives are shown in (b), (c) and (d), respectively.

A semiparametric log-local-linear growth model

A well-known approach in developing economics is the log-linear growth model. Assume that
the log-transformation of a macroeconomic time series follows Models (1) and (6), we achieve a
semiparametric local polynomial, in particular a local-linear extension of this theory. To show this
application, the series of the quarterly US-GDP from the first quarter of 1947 to the second quarter
of 2019, downloaded from the Federal Reserve Bank of St. Louis, is chosen. Data-driven local linear
regression is applied to estimate the trend from the log-data using AlgA with the selected bandwidth
0.1325. A kernel regression estimate using the same bandwidth is also carried out for comparison.

l_gdp <- log(smoots::gdpUS$GDP)
gdp_t1 <- smoots::msmooth(l_gdp, p = 1, mu = 1, bStart = 0.1, alg = "A",
method = "lpr")

gdp_t2 <- smoots::msmooth(l_gdp, p = 1, mu = 1, bStart = 0.1, alg = "A",
method = "kr")

gdp_d1 <- smoots::dsmooth(l_gdp, d = 1, mu = 1, pp = 1, bStart.p = 0.1,
bStart = 0.15)

gdp_d2 <- smoots::dsmooth(l_gdp, d = 2, mu = 1, pp = 1, bStart.p = 0.1,
bStart = 0.2)

The results together with the log-data are displayed in Figure 2(a). We see that the two trend estimates
in the middle part coincide with each other. They differ from each other only at the boundary points
and the kernel estimate is affected by a clear boundary problem. Thus, the local linear method should
be used. Residuals of this estimate are shown in Figure 2(b). Again, the estimated first and second
derivatives are given in Figures 2(c) and 2(d), respectively, which help us to discover more detailed
features of the economic development in the US.

arma2 <- stats::arima(gdp_t1$res, order = c(1, 0, 1), include.mean = FALSE)

Furthermore, the following ARMA(1, 1) model is obtained from the residuals:

ξ̃t = 0.9079ξ̃t−1 + 0.2771εt−1 + εt. (11)
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Figure 2: The log-transformed GDP series and the estimated trends are displayed in (a). The residuals
based on the estimated local linear trend, as well as the estimated first and second derivatives are
shown in (b), (c) and (d), respectively.

6 The Semi-Log-GARCH model

Most of the GARCH extensions, including the Log-GARCH (Pantula, 1986; Geweke, 1986; Milhøj, 1987),
are defined for stationary return series. Recently, Francq et al. (2013) rediscovered the usefulness of the
Log-GARCH. In practice it is however found that the unconditional variance of financial returns may
change slowly over time and are hence non-stationary. To overcome this problem a semiparametric
GARCH (Semi-GARCH) approach is proposed by Feng (2004), by defining the return series as a
product of a (deterministic) smooth scale function and a GARCH model. Another well-known closely
related approach is the Spline-GARCH introduced by Engle and Rangel (2008). In this paper we
will introduce a Semi-Log-GARCH (semiparametric Log-GARCH), defined as a Log-GARCH with
a smooth scale function. We propose to estimate the scale function in the Semi-Log-GARCH model
based on the log-transformation of the squared returns as proposed by Engle and Rangel (2008).

Denote the centralized returns by rt, t = 1, ..., n. The Semi-Log-GARCH model is defined by

rt =
√

v (xt)ζt with ζt =
√

htηt and (12)

ln (ht) = ω +
l

∑
i=1

αi ln
(

ζ2
t−i

)
+

s

∑
j=1

β j ln
(

ht−j

)
, (13)

where v (xt) > 0 is a smooth local variance component, ht > 0 are conditional variances and ηt are
i.i.d. random variables with zero mean and unit variance. It is assumed that ζt also has unit variance
and ζt ̸= 0 almost surely, so that the model is well-defined. Let yt = ln

(
r2

t
)
, ξt = ln

(
ζ2

t
)
− µlz

and m (xt) = ln [v (xt)] + µlz, where µlz = E
[
ln

(
ζ2

t
)]

. We see that the log-transformation of r2
t of

the Semi-Log-GARCH model has the form yt = m (xt) + ξt, which is a special case of Model (1).
Furthermore, define εt = ln

(
η2

t
)
− µle with µle = E

[
ln

(
η2

t
)]

, which are i.i.d. zero mean innovations
in the stationary process ξt. According to Francq and Sucarrat (2018), ξt has the following ARMA
representation:

ξt =
l∗

∑
i=1

φiξt−i +
s

∑
j=1

ψjεt−j + εt (14)

with l∗ = max(l, s). Thus, the Semi-Log-GARCH model is equivalent to a Semi-ARMA of the log-
transformation of r2

t with the restriction that the AR order should not be less than the MA order. Hence,
this model can be simply estimated using the smoots package and the arima() function of the stats
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package. To obtain the total volatilities σt =
√

v (xt) ht, we suggest to utilize the three-step estimation
procedure as proposed in Section 3.3 of Sucarrat (2019), however, we recommend to explicitly conduct
the auxiliary regression in Step 1 in Sucarrat (2019) by using a data-driven local polynomial.

i) Obtain estimates of the nonparametric trend function m̂ (xt) in yt via the smoots package.
ii) Fit an ARMA(l∗, s) model (14) to the residuals ξ̃t = yt − m̂ (xt), for example with the arima()

function of the stats package, and compute the ARMA residuals ε̂t.

iii) Consider µ̂le = − ln
[

1
n ∑n

i=1 exp (ε̂i)
]

as an estimator of the log-moment E
[
ln

(
η2

t
)]

. Then the
total volatilities are estimated as

σ̂t = exp
{[

ξ̃t − ε̂t + m̂ (xt)− µ̂le
]

/2
}

. (15)

Estimates of the conditional volatilities are also calculable similarly by following the same three-
step procedure while replacing (15) with

√
ĥt = exp

[(
ξ̃t − ε̂t + µ̂lz − µ̂le

)
/2

]
, where we suggest

µ̂lz = − ln
[

1
n ∑n

i=1 exp
(
ξ̃i
)]

. An important characteristic of the illustrated estimation procedure is
that explicit estimates of the Log-GARCH parameters ω, αi, for 1 ≤ i ≤ p, and β j, for 1 ≤ j ≤ q,

are not required for computing σ̂t or
√

ĥt (Sucarrat, 2019). If, however, necessary, estimates could
be derived by considering the relationships between the coefficients in (13) and (14), which are
αi = φi + ψi, β j = −ψj, where the non-existing coefficients are assumed to be zero, and ω =(

1 − ∑l∗
i=1 φi

)
µlz −

(
1 + ∑s

j=1 ψj

)
µle. Note that the parametric part of the Semi-Log-GARCH can

also be estimated directly using the R package lgarch (Sucarrat, 2015). Nonetheless, this approach will
not be considered in the current paper.

In the following, the DAX series from 1990 to July 2019 downloaded from Yahoo Finance is
chosen to show the application of the Semi-Log-GARCH model. Note that an observed return can
be sometimes exactly zero. To overcome this problem, the log-transformation is calculated for the
squared centralized returns, which are a.s. non-zero. This would even be a necessary treatment, if the
returns had a very small, but non-zero mean.

# Calculate the centralized log-returns
dax_close <- smoots::dax$Close; dax <- diff(log(dax_close))
rt <- dax - mean(dax); yt <- log(rt ^ 2)

Subsequently, the previously described estimation procedure according to Sucarrat (2019) is imple-
mented by estimating the trend function in the logarithm of the squared returns yt with the function
msmooth() of the smoots package. More specifically, a local cubic trend is fitted, while employing
AlgA.

# Step 1: Estimate the trend in the log-transformed data using 'smoots'
estim3 <- smoots::msmooth(yt, p = 3, alg = "A")
m_xt <- estim3$ye

# Step 2: Fit an ARMA model to the residuals
xi <- estim3$res
arma3 <- arima(xi, order = c(1, 0, 1), include.mean = FALSE)

# Step 3: Estimate further quantities and the total volatilities
mu_le <- -log(mean(exp(arma3$residuals)))
vol <- exp((xi - arma3$residuals + m_xt - mu_le) / 2)

For reference, estim3.2 <- smoots::msmooth(yt, p = 1, alg = "A") is called, i.e. a local linear trend
under consideration of AlgA is estimated as well. The centralized log-returns and the log-transformed
data with the two estimated trends (local linear: blue; local cubic: red) are displayed in Figures 3(a)
and 3(b). Moreover, the selected bandwidths are 0.0869 and 0.1013, respectively. Results in Figure 3(b)
indicate that the unconditional variance of the DAX-returns changes slowly over time. Ultimately, the
local cubic trend is chosen for further analysis, because here the results of the local linear approach
are over-smoothed. The following ARMA(1, 1) model (see Step 2 in the code) is obtained from the
residuals of the log-data

ξ̃t = 0.9692ξ̃t−1 − 0.9221εt−1 + εt, (16)

whereas the re-transformed Log-GARCH(1, 1) formula is given by

ln (ht) = 0.0685 + 0.0471 ln
(

ζ2
t−1

)
+ 0.9221 ln (ht−1) (17)

following the idea of Sucarrat et al. (2016). The estimated conditional volatility (
√

ĥt) and total
volatility (σ̂t) series are displayed in Figures 3(c) and 3(d).
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Figure 3: The demeaned DAX returns are displayed in (a). The log-transformed squared returns and
the estimated trends are shown in (b). Based on the estimated local cubic trend, the corresponding
estimated conditional and total volatilities are illustrated in (c) and (d), respectively.

7 The Semi-Log-ACD model

A more general framework for modeling non-negative financial time series is the ACD (autoregressive
conditional duration, Engle and Russell, 1998) model, which corresponds to a squared GARCH
model and can be applied to both high-frequency or daily financial data. Logarithmic extensions of
this approach were introduced by Bauwens and Giot (2000), where the Type I definition (called a
Log-ACD) corresponds to a squared form of the Log-GARCH. Semiparametric generalization of the
Log-ACD (Semi-Log-ACD) was defined and applied to different kinds of non-negative financial data
by Forstinger (2018). In this paper, the application of the Semi-Log-ACD model will be illustrated by
the CBOE Volatility Index (VIX) from 1990 to July 2019, denoted by Vt, t = 1, ..., n. The data was again
downloaded from Yahoo Finance. The Semi-Log-ACD model for Vt is defined by

Vt = g (xt) λtet, (18)

where ut = λtet follows a Log-ACD and g ≥ 0 is a smooth mean function in Vt, λt ≥ 0 is the
conditional mean and et is an i.i.d. series of non-negative random variables. It is assumed that
E (λt) = E (et) = 1. Further investigation on this model can be carried out similarly to that on
the Semi-Log-GARCH model by replacing r2

t , ht and η2
t there with Vt, λt and et, respectively. The

Semi-Log-ACD model can be similarly estimated. Discussion of those details is omitted. For further
information we refer the reader to Forstinger (2018) and references therein.

# Calculate the logarithm of the index
V <- smoots::vix$Close; lnV <- log(V)
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Figure 4: The VIX series is displayed in (a). The log-transformed index and the estimated trends are
shown in (b). Based on the estimated local linear trend, the corresponding estimated conditional and
total means are illustrated in (c) and (d), respectively.

# Step 1: Estimate the trend in the log-transformed data using 'smoots'
estim4 <- smoots::msmooth(lnV)
estim4.2 <- smoots::msmooth(lnV, p = 3, alg = "B")
m_xt <- estim4$ye

# Step 2: Fit an ARMA model to the residuals
xi <- estim4$res
arma4 <- arima(xi, order = c(1, 0, 1), include.mean = FALSE)

# Step 3: Estimate further quantities and the total means
mu_le <- -log(mean(exp(arma4$residuals)))
means <- exp(xi - arma4$residuals + m_xt - mu_le)

The original series of Vt is shown in Figure 4(a). The trend was estimated from the log-transformation
of Vt using both AlgA and AlgB with the selected bandwidths 0.0771 and 0.1598, respectively. The data
(black), the local linear trend (red) and the local cubic trend (blue) are displayed in Figure 4(b). The
results using both algorithms are quite similar, except the local cubic estimates are smoother. From
the residuals of the local linear approach the following ARMA(1, 1) model (see Step 2 in the code) is
obtained:

ξ̃t = 0.9626ξ̃t−1 − 0.0707εt−1 + εt. (19)

Subsequently, the estimated log-form of the conditional mean function is given by

ln (λt) = 0.0010 + 0.8919 ln (ut−1) + 0.0707 ln (λt−1) . (20)
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The estimated conditional means and the total means in the original data by the local linear approach
are shown in Figures 4(c) and 4(d). We see the results fit the data very well. This model can be applied
for forecasting the VIX in the future.

8 Concluding remarks

In this paper the methodological background for developing the R package smoots (version 1.0.1)
is summarized. The usage of the main functions in this package is explained in detail. To show the
wide applicability of this approach two new semiparametric models for analyzing financial time series
are also introduced. Data examples show that the proposed approach can be applied to different
kinds non-stationary time series and the developed R package works very well for data-driven
implementation of those semiparametric time series models. In particular, non-negative time series
following a semiparametric multiplicative model can be easily estimated via the log-transformation.
It is found that the errors in some examples could exhibit clear long memory. However, the current
package is developed under short memory assumption. It is hence worthy to study the possible
extension of the current approach to semiparametric time series models with long memory errors.
Further extensions of the proposals in this paper, such as the development of suitable forecasting
procedures and tools for testing stationarity of the errors or linearity of the deterministic trend, should
also be studied in the future and included in future versions of the smoots package.

9 Computational details

The numerical results in this paper were obtained using R 4.1.1 with the smoots 1.0.1 package and
the stats 4.1.1 package. R itself and all packages used are available from CRAN at https://CRAN.R-
project.org/.

Acknowledgments: This work was supported by the German DFG project GZ-FE-1500-2-1. The data
used were downloaded from different public sources as indicated in the contexts. We are grateful to
the CRAN-network for great help during the publication of the R package smoots. We would also like
to thank Dr. Marlon Fritz for helpful discussions.
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