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bayesanova: An R package for Bayesian
Inference in the Analysis of Variance via
Markov Chain Monte Carlo in Gaussian
Mixture Models
by Riko Kelter

Abstract This paper introduces the R package bayesanova, which performs Bayesian inference in
the analysis of variance (ANOVA). Traditional ANOVA based on null hypothesis significance testing
(NHST) is prone to overestimating effects and stating effects if none are present. Bayesian ANOVAs
developed so far are based on Bayes factors (BF), which also enforce a hypothesis testing stance.
Instead, the Bayesian ANOVA implemented in bayesanova focusses on effect size estimation and
is based on a Gaussian mixture with known allocations, for which full posterior inference for the
component parameters is implemented via Markov-Chain-Monte-Carlo (MCMC). Inference for the
difference in means, standard deviations and effect sizes between each of the groups is obtained
automatically. Estimation of the parameters instead of hypothesis testing is embraced via the region
of practical equivalence (ROPE), and helper functions provide checks of the model assumptions and
visualization of the results.

1 Introduction

This article introduces bayesanova, an R package for conducting a Bayesian analysis of variance
(ANOVA) via Markov Chain Monte Carlo (MCMC) in a Gaussian mixture model. Classic frequentist
analysis of variance is based on null hypothesis significance testing (NHST), which recently has been
shown to produce serious problems regarding the reproducibility and reliability of scientific results
(Benjamin et al., 2018; Colquhoun, 2017, 2019; Wasserstein et al., 2019; Wasserstein and Lazar, 2016).
NHST is based on test statistics, p-values and significance levels α, which are designed to control the
long-term false-positive rate. Still, in a multitude of settings these approaches do in fact lead to an
inflated rate of false-positive results, undermining the validity and progress of science. Examples
include optional stopping of participant recruiting in studies (Carlin and Louis, 2009) or the necessary
testing for violations of distributional assumptions which some frequentist hypothesis tests make
(Rochon et al., 2012).

As a solution to these problems, Bayesian methods have been proposed recently and are since
gaining popularity in a wide range of scientific domains (McElreath and Smaldino, 2015; Kruschke,
2013, 2015). The Bayesian philosophy proceeds by combining the model likelihood f (x|θ) with the
available prior information p(θ) to obtain the posterior distribution f (θ|x) through the use of Bayes’
theorem:

f (θ|x) ∝ f (x|θ) f (θ) (1)

While the Bayesian philosophy thus allows for flexible modeling, inference for the posterior distri-
bution f (θ|x) can be complicated in practice. Therefore, Markov chain Monte Carlo techniques have
been developed, which make use of the facts that (1) constructing a Markov chain which has the
posterior distribution f (θ|x) as its stationary distribution, and (2) drawing samples from this Markov
chain to approximate the posterior f (θ|x) can be used to obtain the posterior numerically.

The bayesanova package is designed as a Bayesian alternative to the frequentist analysis of
variance. By using a Gaussian mixture model and implementing a Markov Chain Monte Carlo
algorithm for this model, full posterior inference can be obtained. This allows for explicit hypothesis
testing between groups as in the frequentist ANOVA, or for estimation of parameters under uncertainty.
The focus in bayesanova is on the latter perspective and avoids explicit hypothesis testing. While
Bayesian versions of the analysis of variance have been proposed recently by Rouder et al. (2012)
and Bergh et al. (2019), these implementations focus on the Bayes factor as a measure of evidence
(van Doorn et al., 2019; JASP Team, 2019). As the Bayes factor suffers from multiple problems, one
of which is its strong dependence on the used priors – see Kamary et al. (2014) and Robert (2016) –
the implementation in bayesanova avoids the Bayes factor and uses a different posterior index, the
region of practical equivalence (ROPE) (Kruschke, 2018), which has lately been shown to have some
desirable properties, in particular in contrast to the Bayes factor (Makowski et al., 2019b).

The plan of the paper is as follows: The next section introduces the analysis of variance in a
frequentist and Bayesian fashion and gives an overview about packages implementing these methods.
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The following section then introduces the novel approach implemented in bayesanova. The details
on the mixture representation of the Bayesian analysis of variance are discussed and scenarios where
bayesanova is designed to be used are detailed. The section thereafter outlines the structure of the
package and details the included functions. The following section presents a variety of examples
and illustrations using real datasets from biomedical and psychological research as well as synthetic
datasets. The last section then provides a summary of the benefits and drawbacks of the used
implementation, as well as future plans for the package.

2 Frequentist and Bayesian analysis of variance

Traditional ANOVA models using NHST via the F-statistic

In applied statistics, the one-way analysis of variance is a method which can be used to compare
means of two or more samples (typically three). The one-way ANOVA assumes numerical (response)
data in each group and (usually) categorical input data like a group indicator in a randomized clinical
trial (RCT). Interpreting the ANOVA as a linear model, one obtains for data yi,j, where i = 1, ..., n is
an index over the experimental units (patients, participants) and j = 1, ..., k an index over treatment
groups

yi,j = µj + εi,j (2)

if the experiment is completely randomized. Here, ε ∼ N (0, σ2) so that εi,j are normally distributed
zero-mean residuals. µj is the mean of treatment group j and yi,j the response variable which is
measured in the experiment.

The one-way ANOVA then tests the null hypothesis H0 that all samples are drawn from popula-
tions with identical means. To do this, (1) two estimates of the population variance are obtained which
rely on various assumptions and (2) an F-statistic is produced by the ANOVA, which is the ratio of
variance calculated among the means to the variance within the samples. The intuition here is that
if group means are drawn from populations with identical means, the variance of the group means
should be smaller than the variance of samples and a high ratio thereby indicates differing means.
Mathematical details on computing the F-statistic can be found in the Appendix.

The one-way ANOVA as detailed above makes several assumptions, the most important of which
are: (1) variances of populations are equal; (2) responses for a given group are independent and
identical distributed random variables; (3) response variable residuals are normally distributed, that is
ε ∼ N (0, σ2).

While Monte Carlo studies have shown that the ANOVA is quite robust to small to medium
violations of these assumptions (Donaldson, 1966), severe violations of assumptions (1)-(3) will result
in inflated rates of false positives and and thereby unreliable results (Tiku, 1971).

Bayesian ANOVA models

Bayesian models for the ANOVA have been developed recently to solve some of the problems of
NHST. The developed models can be categorized broadly into two approaches: The first approach
relies on the Bayes factor as a measure of relative evidence and was developed by Rouder et al. (2012).
The second approach is based on MCMC algorithms like Gibbs sampling in JAGS (Plummer, 2003) or
Hamiltonian Monte Carlo (HMC) in Stan (Carpenter et al., 2017; Stan Development Team, 2020). This
approach was popularized by Kruschke (2015). Here the region of practical equivalence (ROPE) as
introduced by Kruschke (2015) is used for measuring the evidence given the data. Also, an explicit
hypothesis testing stance is avoided.

The approach of Rouder et al. (2012) can be summarized as follows: An independent Cauchy prior
is considered

p(θ) =
p

∏
i=1

1
(1 + θ2

i )π
(3)

for the vector θ = (θ1, ..., θp)′ of the p effects between different groups. For example, in a three-group
setting there would be three effects θ1, θ2 and θ3 corresponding to the effects between the first and
second, first and third, and second and third group. In the case of k = 4 groups, there are p = 6 effects
and so on. The ANOVA is then rewritten as a linear model

y = µ1 + σXθ+ ε (4)

where µ is the grand mean parameter, 1 a column vector of length n with entries equal to 1, θ a column
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vector of the standardized effect size parameters of length p, and X is the n × p design matrix. The
factor σ in σXθ is attributed to the reparameterization according to Jeffreys: Following Jeffreys (1961)
by reparameterizing δ = µ/σ, where δ is the effect size of Cohen (1988), Rouder et al. (2012) rewrote
the observed data sampling distribution as

yi ∼ N (σδ, σ2) (5)

The residuals ε in Equation (4) are defined to be

ε ∼ N (0, σ2 I) (6)

with I being the identity matrix of size n and 0 a column vector of zeros of size n.

Putting a Jeffreys prior p(µ, σ2) = 1/σ2 on the mean and variance, and assuming the following
g-prior structure

θ|G ∼ N (0, G) (7)

which is based on Zellner (1980), where G is a p × p diagonal matrix, the only open aspect remaining
is putting a prior on the diagonal elements gl of G for l = 1, ..., p. (Rouder et al., 2012) chose

gl ∼ Inverse-χ2
1 (8)

so that the marginal prior on the effect size parameter vector θ results in the independent Cauchy
distribution given in Equation (3). Rouder et al. (2012) then showed that the resulting BF10 can be
written as

BF10 =
∫

g
K(n, g)

(
∑i ∑j(yij − ȳ)2 + 1

g (∑i ci ȳ2
i − (∑i ci ȳi)

2/(∑i ci))

∑i ∑j(yij − ȳ)2

)−(N−1)/2

p(g)dg (9)

if a balanced one-way design is used (equal sample sizes in each group). Here, n = (n1, ..., np)′ is the
vector of sample sizes for each effect 1, ..., p, n = ∑i ni is the full sample size, ci = ni/(ni + 1/g) and

K(n, g) =
√

N
(

∏i 1/(1 + gni)

∑i ni/(1 + gni)

)1/2
(10)

In summary, this Bayes factor of Rouder et al. (2012) can be computed via Gaussian quadrature, as it
constitutes a one-dimensional integral after inserting the necessary quantities.

The second approach of a Bayesian ANOVA model can be credited to Kruschke (2015), who uses
the MCMC sampler JAGS (Plummer, 2003) to obtain full posterior inference in his model instead of
relying on the Bayes factor. The reasons for avoiding the Bayes factor as a measure of evidence are that
(1) it depends strongly on the selected prior modeling (Kamary et al., 2014); (2) the Bayes factor states
only relative evidence for the alternative to the null hypothesis (or vice versa) so that even a large
Bayes factor does not indicate that either one of both hypotheses is a good fit for the actual data (Kelter,
2020a,b); (3) it can be located in the same formalism of hypothesis testing the pioneers of frequentist
testing advocated at the time of invention (Robert, 2016; Tendeiro and Kiers, 2019). In addition,
the calculation of the Bayes factor for increasingly complex models can be difficult, as the above
derivations of Rouder et al. (2012) exemplify, see also Kamary et al. (2014). Importantly, the Bayes
factor assigns positive measure to a Lebesgue-null-set which is puzzling from a measure-theoretic
perspective, compare Kelter (2021c), Rao and Lovric (2016), and Berger (1985).

Kruschke (2015) modeled the Bayesian ANOVA for k groups and n observations y1, ...yn as a
hierarchical Bayesian model, where

yi ∼ N (µ, σ2
y ) (11)

where the standard deviation σy is modelled as

σy ∼ U (L, H) (12)

the mean µi is the linear combination

µ = β0 +
k

∑
j=1

β jxj(i) (13)
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and the coefficients of this linear combination are given as

β0 ∼ N (M0, S0) (14)

β j ∼ N (0, σβ) (15)

where xj(i) is the index for the group the observation yi belongs to. If, for example, yi is in the first
group, x1(i) = 1 and xj(i) = 0 for all j ̸= 1 with j ∈ {1, ..., k}, yielding the group mean µi = β0 + β1
of the first group. Thus, although Equation (11) seems to indicate that there is a single mean µ for
all observations yi, i = 1, ..., n, the mean µ takes k different values depending on which group the
observation yi is located in. These k different values for µ correspond to the different means in the k
groups as shown in Equation (13). The variables L, H, M0, S0 are hyperparameters, and the parameter
β j can be interpreted as the effect size differing from the grand mean β0, which is why the prior on
β j is normal with mean zero so that the expectation of these effect size differences from the grand
mean sum up to zero again. The hyperparameter σβ can either be set constant or given another prior,
extending the multilevel model, where Kruschke (2015) followed the recommendations of Gelman
and Hill (2006) to use a folded t-distribution or a gamma-distribution with non-zero mode.

Inference for the full posterior, that is for the parameters µk, σy, β0, β j∀j, j = 1, ..., k (and σβ, if a
hyperprior like a folded t-distribution or gamma-distribution is used on this parameter) given the
data is provided via the MCMC sampler JAGS (Plummer, 2003), which uses Gibbs sampling to draw
samples from the posterior. Posterior distributions obtained through Gibbs sampling are finally used
to estimate all parameters via 95% Highest-Density-Intervals (HDI). Explicit testing is avoided.

3 Available software

Available software for the traditional ANOVA

Conducting a traditional analysis of variance is possible with an abundance of software, for example
via the stats package (R Core Team, 2020) which is part of the R programming language (R Core Team,
2020).

Available software for the Bayesian ANOVA

The BayesFactor package by Morey and Rouder (2018) provides the Bayesian ANOVA Bayes factor of
Rouder et al. (2012), and various helper functions for analysis of the results.

A simple illustration of the main workflow in the BayesFactor package is given here, using the
ToothGrowth dataset in the datasets package (Cannon et al., 2019). The ToothGrowth dataset contains
three columns: len, the dependent variable each of which is the length of a guinea pig’s tooth after
treatment with vitamin C. The predictor supp corresponds to the supplement type (either orange juice
or ascorbic acid), the predictor dose is the amount of vitamin C administered.

The BayesFactor package’s core function allows the comparison of models M0, ...,Mn with factors
as predictors. The null model without any predictors is most often compared to models including
predictors or even interaction terms using the Bayes factor as detailed above. The function anovaBF
computes several model estimates at once, so that the model with the largest Bayes factor can be
selected. The data are first loaded and the categorial predictors converted to factors:

R> set.seed(42)
R> library(datasets)
R> data(ToothGrowth)
R> head(ToothGrowth,n=3)

len supp dose
1 4.2 VC 0.5
2 11.5 VC 0.5
3 7.3 VC 0.5

R> ToothGrowth$dose = factor(ToothGrowth$dose)
R> levels(ToothGrowth$dose) = c('Low', 'Medium', 'High')

Then, a Bayesian ANOVA is conducted using both predictors dose, supp and the interaction term
dose * supp:
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R> library(BayesFactor)
R> bf = anovaBF(len ~ supp * dose, data = ToothGrowth)

Bayes factor analysis
--------------
[1] supp : 1.198757 +- 0.01%
[2] dose : 4.983636e+12 +- 0%
[3] supp + dose : 2.963312e+14 +- 1.59%
[4] supp + dose + supp:dose : 8.067205e+14 +- 1.94%

Against denominator:
Intercept only

---
Bayes factor type: BFlinearModel, JZS

The results are shown in form of the Jeffreys-Zellner-Siow (JZS) Bayes factor BF10 detailed pre-
viously. As the BF10 for the model including both predictors supp and dose is largest, the Bayesian
ANOVA favours this model over the null model which includes only the intercept. Thus, as there are
the low, medium and high dose groups and the two supplement groups, in total one obtains 3 × 2 = 6
different groups. The results show that there is strong evidence that the model attesting these six
differing groups is favourable over the null model (and every other model as given in output lines
[1], [2] and [3]).

Note, that this solution is also implemented in the open-source software JASP, for an introduction
see Bergh et al. (2019).

The Bayesian ANOVA model of Kruschke (2015) is not implemented in a software package by now.
Instead, users have to write their own model scripts for JAGS (Plummer, 2003) to run the analysis.
Still, recently the package BANOVA was published by Dong and Wedel (2019), which uses JAGS
(Plummer, 2003) and the Hamiltonian Monte Carlo (HMC) sampler Stan (Carpenter et al., 2017) via
the package RStan (Stan Development Team, 2020) to provide similar inferences without the need to
code the JAGS or Stan models on your own.

Note that in the above example, a traditional ANOVA can easily be fit via

R> summary(aov(len ~ supp * dose, data = ToothGrowth))

Df Sum Sq Mean Sq F value Pr(>F)
supp 1 205.4 205.4 15.572 0.000231 ***
dose 2 2426.4 1213.2 92.000 < 2e-16 ***
supp:dose 2 108.3 54.2 4.107 0.021860 *
Residuals 54 712.1 13.2
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

which yields similar results, favouring the full model with both predictors and interaction term, as
both predictors and the interaction term are significant.

4 The Bayesian ANOVA model based on Gaussian mixtures

The method used in the bayesanova package is based on estimation of parameters in a Gaussian
mixture distribution. On this mixture a Gibbs sampling algorithm is applied to produce posterior
distributions of all unknown parameters given the data in the Gaussian components, that is for
µj, σj, j = 1, ..., k and for the differences in means µl − µr, l ̸= r and the effect sizes δlr, l ̸= r where
k is the number of groups in the study or experiment. This way, a relatively complete picture of
the situation at hand can be drawn and while the technical aspects are omitted here, the validity of
the procedure stems from standard MCMC theory, see for example Robert and Casella (2004). The
principal idea of mixture models is expressed by Frühwirth-Schnatter (2006):

Consider a population made up of K subgroups, mixed at random in proportion to the relative
group sizes η1, ..., ηK . Assume interest lies in some random feature Y which is heterogeneous
across and homogeneous within the subgroups. Due to heterogeneity, Y has a different probability
distribution in each group, usually assumed to arise from the same parametric family p(y|θ)
however, with the parameter θ differing across the groups. The groups may be labeled through a
discrete indicator variable S taking values in the set {1, ..., K}.
When sampling randomly from such a population, we may record not only Y, but also the
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group indicator S. The probability of sampling from the group labeled S is equal to ηS, whereas
conditional on knowing S, Y is a random variable following the distribution p(y|θS) with θS being
the parameter in group S. (...) The marginal density p(y) is obviously given by the following
mixture density

p(y) =
K

∑
S=1

p(y, S) = η1 p(y|θ1) + ... + ηS p(y|θK)

Clearly, this resembles the situation of the analysis of variance, in which the allocations S are known.
Traditionally, mixtures are treated with missing allocations but in the setting of the ANOVA these are
known, leading to a much simpler scenario. This interpretation also makes sense from a semantic
point: the inherent assumption of a researcher is that the population is indeed made up of k subgroups
in the case of a k-group ANOVA, which differ in a random feature Y which is heterogeneous across
groups and homogeneous within each group. When conducting for example a randomized clinical
trial (RCT), the group indicator S is of course recorded. The clinician will choose the patients according
to a sampling plan, which could be designed to achieve equally sized groups, that is, η1 = η2 = ... = ηk
for k study groups. Thus, when sampling the population with the target of equally sized groups, the
researcher will sample the objects with equal probability from the population. Consider a treatment
one, treatment two and a control group. In this typical setting, the researcher could flip a coin for each
patient in the RCT to assign him or her to one of the two treatment groups or to the control group,
so that with probability η1 = η2 = η3 = 1/3 for any group, the patient is assigned to it. Repeating
this process then leads to the mixture model given above. After the RCT is conducted, the resulting
histogram of observed Y values will finally take the form of the mixture density p(y) above. If there is
an effect in the treatment, this density p(y) will express three modes which in turn result from the
underlying mixture model of the data-generating process.

If unbalanced groups are the goal, weights can be adjusted accordingly, for example η1 = 0.3,
η2 = 0.2 and η3 = 0.5. After fixing the mixture weights η1, η2, η3, the family of distributions for the
mixture components needs to be selected. The above considerations lead to finite mixtures of normal
distributions which ‘occur frequently in many areas of applied statistics such as [...] medicine’ (Frühwirth-
Schnatter, 2006, p. 169). The components p(y|θi) therefore become fN(y; µj, σ2

j ) for j = 1, ..., k in this

case, where fN(y; µj, σ2
j ) is the density of the univariate normal distribution. Parameter estimation in

finite mixtures of normal distributions consists of estimation of the component parameters (µj, σ2
j ), the

allocations Si, i = 1, ..., n and the weight distribution (η1, ..., ηk) based on the available complete data
(yi, Si), i = 1, ..., n. In the case of the Bayesian ANOVA, the allocations Si (where Si = 1 if yi belongs to
the first component, Si = 2 if yi belongs to the second component, until Si = k if yi belongs to the k-th
group) are known for all observations yi, i = 1, ..., n. Therefore, inference reduces to inference for the
density parameters (µj, σ2

j ) of the normal components of the mixture for the j = 1, ..., k groups.

The Bayesian ANOVA model based on Gaussian mixtures is summarized in Figure 1 using the
three-group case as an example:

Figure 1: Three-component Gaussian mixture with known allocations for the Bayesian analysis of
variance

The measured variables yi follow a three-component Gaussian mixture with known allocations.
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Model Purpose Evidence
measure

Computational
aspects

Frequentist
ANOVA

Testing the global hypothesis that
all samples are drawn from pop-
ulations with identical means
against the alternative

F-statistic
and p-
value

Analytic solution

Bayesian ANOVA
of Rouder et al.
(2012)

Test the global hypothesis that the
effect size vector is zero versus the
alternative

Bayes fac-
tor

Numerical inte-
gration required

Bayesian ANOVA
of Kruschke (2015)

Estimation of effect sizes between
groups via ROPE and 95% HPD

ROPE Gibbs sampling in
MCMC sampler
JAGS (or Stan) re-
quired

Bayesian ANOVA
based on Gaussian
mixtures

Estimation of effect sizes between
groups via the ROPE and posterior
probability mass

ROPE Gibbs sampling
without MCMC
sampler JAGS (or
Stan) required

Table 1: Overview about the four ANOVA models

The first group is normally distributed as N (µ1, σ1), the second group as N (µ2, σ2) and the third
group as N (µ3, σ3). The means µ1, µ2 and µ3 are each distributed as µj ∼ N (b0, B0), j = 1, 2, 3 with
noninformative hyperparameters b0 and B0 and the standard deviations σ1, σ2 and σ3 are distributed
as σj ∼ G−1(c0, C0), j = 1, 2, 3 with noninformative hyperparameters c0 and C0. For details, see Kelter
(2021d, 2020c). As the allocations are known, the weights η1, η2 and η3 are known too, and need not
to be estimated, which is why the parameters η1, η2, η3 are not included in the diagram. The model
visualized in Figure 1 can be generalized for an arbitrary number of mixture components, which then
includes nearly arbitrary ANOVA settings for comparison of multiple groups. A definitive advantage
of this model is that inference is obtained for both means and standard deviations, yielding richer
information compared to the testing perspectives which are stressed in traditional or Bayesian ANOVA
models focussing on the Bayes factor. Also, posterior distributions of effect sizes can be obtained via
MCMC, providing an additional layer of information to draw inferences.

Instead of relying on the Bayes factor, the bayesanova package follows the approach of Kruschke
(2018) to use a region of practical equivalence (ROPE). The effect size δ is routinely categorized as
small, medium or large in medical research when δ ∈ [0.2, 0.5), δ ∈ [0.5, 0.8) or δ ∈ [0.8, ∞), see Cohen
(1988). The approach using the ROPE proceeds by taking these categories as regions of practical
equivalence, that is both δ = 0.25 and δ = 0.26 are identified as a small effect because both are inside
the region of practical equivalence [0.2, 0.5) of a small effect δ. The underlying idea is that measuring
effect sizes only makes sense up to a specific precision, which is given by the above categorization of
effect sizes. By studying how much probability mass of the posterior distribution of δ lies inside some
of the above ROPEs [0.2, 0.5), [0.5, 0.8) and [0.8, ∞) of a small, medium and large positive effect for δ
(negative effects analogue), a continuous statement about the most probable effect size δ given the data
can be made. Kruschke originally advocated to use the location of the 95% highest-posterior-density
(HPD) interval in relation to the ROPE to test whether the null value in the middle of the ROPE should
be accepted or rejected for practical purposes. Here, this approach is generalized by switching to the
amount of posterior probability mass inside the ROPE. Detailed examples are provided later in this
paper.

Table 1 provides an overview about the four ANOVA models and their purpose. Although it
appears that the model of Kruschke (2015) and the Gaussian mixture modeling approach proposed
in this paper have the same purpose, they differ in how data yi are assumed to be generated. In the
mixture approach we assume that the sample of nj participants in group j results from a mixture
process, e.g. by flipping a coin, rolling a dice or using any other randomization device (as is the case in
clinical trials when assigning patients to groups according to a double-blinded protocol). Thus, the
process of data generation is not “one has collected nj participants for group j” but “the given sample
of nj participants in group j is assumed to be a realization of a mixture process where with probability
ηj participants are assigned to group j”. Importantly, note that the realization of nj participants in
group j for j = 1, ..., k is expected under the mixture component weight ηj = nj/n, but also entirely
different group sizes nj can result under such a mixture. In fact, the weights ηj = nj/n which are
assumed to be known are the corresponding maximum-likelihood-estimators of the weight parameters
ηj given the sample sizes nj for j = 1, ..., k, but the conceptual focus of the mixture approach is to
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Function Description

bayes.anova Main function of the package, conducts the MCMC algorithm to provide
full posterior inference in the three-component Gaussian mixture model

assumption.check Helper function for checking the assumption of normality in each group
previous to running a Bayesian ANOVA

anovaplot Provides multiple visualizations of the results, including posterior dis-
tributions, difference in means and standard deviations and effect sizes
as well as a full ROPE-analysis

post.pred.check Provides a posterior predictive check for a fitted Bayesian ANOVA
model

Table 2: Outline of the four main functions implemented in bayesanova

closely mimic the randomization process researchers follow when conducting a randomized controlled
trial. Note further that the model of Kruschke assumes homogeneity of variances in contrast to the
Gaussian mixture model, but Kruschke’s model can easily be extended to account for heterogeneity
of variance, rendering this difference less important. Note that both the frequentist ANOVA and the
Bayesian version of Rouder et al. (2012) assume homogeneity of variance across groups.

5 Package structure and implementation

The bayesanova package has four functions. These provide (1) the MCMC algorithm for conducting the
Bayesian ANOVA in the Gaussian mixture model with known allocations, detailed above, (2) checks
of the model assumptions and (3) visualizations of the posterior results for easy interpretation and
communication of research results. Visualizations of the posterior mixture components in comparison
with the original data are provided by the fourth function. An overview is provided in Table 2.

The core function is bayes.anova, which provides the MCMC algorithm to obtain full posterior
inference in a k-component Gaussian mixture model shown in Figure 1 for the special case of k = 3
components. The function implements a Gibbs sampling algorithm, which iteratively updates

1. the means µj|µ−j, σ1, ..., σk, S, y given the other means µ−j and standard deviations σ1, ..., σk as
well as the full data S, y, where S is the indicator vector for the groups the observations y belong
to

2. the standard deviations σj|σ−j, µ1, ..., µk, S, y given the other standard deviations σ−j and means
µ1, ..., µk as well as the full data S, y, where S is again the indicator vector for the groups the
observations y belong to

The details of the Gibbs sampler can be found in Kelter (2020c, 2021d), and the validity of the method
follows from standard MCMC theory, see for example Robert and Casella (2004).

The bayes.anova function takes as input three numerical vectors first, second and third, which
correspond to the observed responses in each of the three groups and provides multiple optional
parameters:

bayes.anova(n=10000, first, second, third,
fourth = NULL, fifth = NULL, sixth = NULL,
hyperpars="custom", burnin=n/2, sd="sd", q=0.1, ci=0.95)

These are the only mandatory input values, and currently six groups are the limit bayesanova
supports. More than three groups can be handed to the function by providing numerical vectors for
the parameters fourth, fifth and sixth.

If no other parameters are provided, the function chooses a default of n=10000 Gibbs sampling
iterations, where the burn-in of the Markov chains is set to burnin=n/2, so that the first 5000 iterations
are discarded. The default setting uses inference for means µj and standard deviations σj, which is
indicated by the parameter sd="sd", but inference for variances σ2

j instead of standard deviations σj can
easily be obtained by setting sd="var". The credible level for all computed credible intervals defaults
to 0.95, indicated by ci=0.95. The two remaining parameters hyperpars and q define preselected
values for the hyperparameters in the prior, to ensure weakly informative priors are used which
influence the analysis as little as possible. For details, see Kelter (2020c, 2021d), but in general these
values apply to a broad range of contexts so that changing them is not recommended. Note, that
another set of hyperparameters based on Raftery (1996) can be selected via hyperpars="rafterys", if
desired.
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After execution, the function returns a dataframe including four Markov chains for each parameter
of the specified size n-burnin, to make subsequent convergence assessment or post-processing of the
MCMC results possible.

The second function is assumption.check. This function runs a preliminary assumption check on
the data, which is recommended before running a Bayesian ANOVA. The model assumptions are
normality in each mixture component, so that the assumption.check function runs Shapiro-Wilk tests
to check for normality (Shapiro and Wilk, 1965). The input parameters are the three numerical vectors
x1, x2 and x3 including the observed responses in the first, second and third group, and the desired
confidence level conf.level for the Shapiro-Wilk tests:

assumption.check(x1, x2, x3, x4 = NULL, x5 = NULL, x6 = NULL, conf.level=0.95)

The default confidence level is 0.95. More than three groups can easily be added by providing values
for x4, x5 and x6.

The third function is anovaplot, which provides a variety of visualizations of results. The function
takes as input a dataframe dataframe, which should be the result of the bayes.anova function detailed
above, a parameter type, which indicates which visualization is desired, a parameter sd, which
indicates if the provided dataframe includes posterior draws of σj or σ2

j and last a parameter ci, which
again defined the credible level used in the computations.

anovaplot(dataframe, type="rope", sd="sd", ci=0.95)

The default values for sd is "sd", and the default credible level is 0.95. The type parameter takes
one of four possible values: (1) type="pars", (2) type="diff", (3) type="effect" and (4) type="rope".
In the first case, posterior distributions of all model parameters are produced, complemented by
convergence diagnostics in form of trace plots, autocorrelation plots and the Gelman-Brooks-Rubin
shrink factor (Gelman and Brooks, 1998), which should be close to one to indicate convergence to
the posterior. In the second case, the posterior distributions of the differences µi − µj, j ̸= i of the
group means and differences σl − σr, l ̸= r of the group standard deviations (or variances, if sd="var"
and the dataframe includes posterior draws of the σ2

j ’s instead of σj’s) are produced, complemented
by the same convergence diagnostics. In the third case, the posterior distributions of the effect sizes
δlr, l ̸= r are produced, which are most often of interest in applied research. In this case, posteriors
are complemented by the same convergence diagnostics, too. The last and fourth case produces a
full ROPE-analysis, which does provide the posteriors of the effect sizes δlr, l ̸= r, but additionally
computes a partitioning of the posterior probability mass into the standardized ROPEs of small,
medium and large (and no) effect sizes according to Cohen (1988), which are the reference standard in
medical and psychological research.

The last function post.pred.check provides a posterior predictive check for a fitted Bayesian
ANOVA model against the original data, which is routine in a Bayesian workflow Gabry et al. (2019).

6 Illustrations and examples

This section provides illustrations and a variety of examples, in which the bayesanova package can be
used and provides richer information than existing solutions.

Tooth growth of guinea pigs treated with vitamin C

The guinea pig dataset from above is used as a first example. The data are included in the dataset
ToothGrowth in the datasets package which is part of R. First, data is loaded and split into three groups,
corresponding to a low, medium and high administered vitamin C dose:

R> library(datasets)
R> data(ToothGrowth)
R> head(ToothGrowth,n=3)

len supp dose
1 4.2 VC 0.5
2 11.5 VC 0.5
3 7.3 VC 0.5

R> library(dplyr)
R> library(tidyr)
R> library(bayesanova)
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R> grp1 = (ToothGrowth %>% filter(dose==0.5) %>% select(len))$len
R> grp2 = (ToothGrowth %>% filter(dose==1.0) %>% select(len))$len
R> grp3 = (ToothGrowth %>% filter(dose==2.0) %>% select(len))$len

Next, we run the assumption checks on the data

R> assumption.check(grp1, grp2, grp3, conf.level=0.95)

Model assumptions checked. No significant deviations from normality detected.
Bayesian ANOVA can be run safely.
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Figure 2: Assumption checks for the ToothGrowth dataset using the assumption.check() function in
bayesanova, showing that data in the three groups can be assumed as normally distributed so that
running the Bayesian ANOVA based on the Gaussian mixture model is justified

Figure 2 shows the histograms and quantile-quantile plots for all three groups produced by assumption.check().
Clearly, there are no large deviations, and no Shapiro-Wilk test was significant at the 0.05 level.

Next, the Bayesian ANOVA can be run via the bayes.anova function. Therefore, the default
parameter values are used, yielding n=5000 posterior draws:

R> set.seed(42)
R> res = bayes.anova(first = grp1, second = grp2, third = grp3)

|Parameter |LQ |Mean |UQ |Std.Err |
|:-------------|:-----|:-----|:-----|:-------|
|mu1 |8.69 |10.61 |12.5 |0.91 |
|mu2 |18.05 |19.75 |21.46 |0.84 |
|mu3 |24.94 |26.1 |27.25 |0.57 |
|sigma1 |3.02 |4.07 |5.67 |0.67 |
|sigma2 |2.95 |3.96 |5.43 |0.64 |
|sigma3 |2.43 |3.25 |4.42 |0.52 |
|mu2-mu1 |6.7 |9.15 |11.7 |1.25 |
|mu3-mu1 |13.42 |15.49 |17.67 |1.06 |
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|mu3-mu2 |4.36 |6.34 |8.38 |1.01 |
|sigma2-sigma1 |-2.02 |-0.11 |1.68 |0.93 |
|sigma3-sigma1 |-2.62 |-0.81 |0.74 |0.85 |
|sigma3-sigma2 |-2.46 |-0.71 |0.85 |0.82 |
|delta12 |-5.77 |-4.59 |-3.21 |0.65 |
|delta13 |-9.37 |-8.14 |-6.63 |0.71 |
|delta23 |-4.36 |-3.36 |-2.19 |0.56 |

The results table shows the lower and upper quantile, corresponding to the 100·ci+(100−ci)/2 and
(100−ci)/2 quantiles where ci is the credible level chosen above. Also, the posterior mean and
standard error are given for each parameter, difference of parameters and effect size. The results
clearly show that there are huge differences between the groups: For example, one can immediately
spot that the more vitamin c given, the more tooth growth can be observed via tooth lengths. While
the first group (low dose) has a posterior mean of 10.61 with credible interval [8.69, 10.61], the second
group achieves a mean of 19.75 with credible interval [18.05, 21.46]. The third group has a posterior
mean of even 26.1 with credible level [24.94.27.25]. The posterior estimates for the differences µ2 − µ1,
µ3 − µ1 and µ3 − µ2 show that all groups differ from each other with a very high probability, given
the data.

Note that the information provided is much more fine-grained than in the solutions via the
traditional ANOVA and the Jeffreys-Zellner-Siow based Bayes-factor ANOVA above. While in these
two solutions, one could only infer that the model using both predictors and the interaction term is
the best, now we are given precise estimates of the effect sizes between each group defined by the
dose of vitamin c administered. Note also, that including the second predictor supp is no problem,
leading to a setting which incorporates six groups in the mixture then.

Heart rate data for runners

The second example is from the biomedical sciences and uses the heart rate data from Moore et al.
(2012). In the study, heart rates of female and male runners and generally sedentary participants (not
regularly running) following six minutes of exercise were recorded. The participant’s Gender and
Heart.rate are given and which group he or she belongs to (Group=="Runners" or Group=="Control").
In the study, 800 participants were recruited, so that in each of the four groups given by the combina-
tions of Gender and Group 200 subjects participated.

Therefore, the situation requires a 2 × 2 between subjects ANOVA. Specifically, interest lies in the
hypothesis that heart rate differs between gender and groups. The Bayesian ANOVA of bayesanova
can easily be applied in such an often encountered setting. We first load the data and split them into
the four groups:

R> library(dplyr)
R> hr=read.csv("heartrate.csv",sep=",")
R> head(hr)

Gender Group Heart.Rate
1 Female Runners 119
2 Female Runners 84
3 Female Runners 89
4 Female Runners 119
5 Female Runners 127
6 Female Runners 111

R> femaleRunners = (hr %>% filter(Gender=="Female")
+ %>% filter(Group=="Runners")
+ %>% select(Heart.Rate))$Heart.Rate
R> maleRunners = (hr %>% filter(Gender=="Male") %>% filter(Group=="Runners")
+ %>% select(Heart.Rate))$Heart.Rate
R> femaleControl = (hr %>% filter(Gender=="Female")
+ %>% filter(Group=="Control")
+ %>% select(Heart.Rate))$Heart.Rate
R> maleControl = (hr %>% filter(Gender=="Male") %>% filter(Group=="Control")
+ %>% select(Heart.Rate))$Heart.Rate

Then, we check the model assumptions:

R> assumption.check(femaleRunners, maleRunners, femaleControl, maleControl)
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We can thus safely proceed running the Bayesian ANOVA:

R> set.seed(42)
R> resRunners = bayes.anova(first = femaleRunners, second = maleRunners,
+ third = femaleControl, fourth = maleControl)

|Parameter |LQ |Mean |UQ |Std.Err |
|:-------------|:------|:------|:------|:-------|
|mu1 |113.48 |116 |118.5 |1.27 |
|mu2 |102.51 |103.98 |105.55 |0.76 |
|mu3 |145.44 |148.04 |150.52 |1.3 |
|mu4 |127.12 |130.01 |132.82 |1.47 |
|sigma1 |14.38 |15.87 |17.51 |0.8 |
|sigma2 |11.21 |12.35 |13.67 |0.63 |
|sigma3 |14.71 |16.19 |17.85 |0.82 |
|sigma4 |15.46 |17.02 |18.79 |0.85 |
|mu2-mu1 |-14.9 |-12.01 |-9.06 |1.48 |
|mu3-mu1 |28.47 |32.04 |35.6 |1.83 |
|mu4-mu1 |10.19 |14.01 |17.9 |1.96 |
|mu3-mu2 |41.12 |44.05 |46.95 |1.51 |
|mu4-mu2 |22.83 |26.02 |29.21 |1.66 |
|mu4-mu3 |-21.8 |-18.03 |-14.4 |1.92 |
|sigma2-sigma1 |-5.6 |-3.52 |-1.57 |1.02 |
|sigma3-sigma1 |-1.94 |0.32 |2.53 |1.15 |
|sigma4-sigma1 |-1.14 |1.15 |3.51 |1.18 |
|sigma3-sigma2 |1.83 |3.84 |5.85 |1.03 |
|sigma4-sigma2 |2.7 |4.67 |6.8 |1.05 |
|sigma4-sigma3 |-1.48 |0.83 |3.13 |1.17 |
|delta12 |2.4 |3.2 |3.96 |0.4 |
|delta13 |-8.92 |-8.01 |-7.05 |0.48 |
|delta14 |-4.42 |-3.46 |-2.5 |0.49 |
|delta23 |-12.55 |-11.67 |-10.77 |0.45 |
|delta24 |-7.65 |-6.79 |-5.91 |0.45 |
|delta34 |3.52 |4.43 |5.37 |0.48 |

The results reveal multiple insights now. To support the interpretation, we first produce visualisa-
tions of the results via the anovaplot() function:

R> anovaplot(resRunners)

Figure 3 shows the plots produces by the above call to anovaplot(). The first row shows the posterior
distributions of the effect sizes δ12, δ13 and δ23. The second row below is the analysis based on
the ROPE, which partitions the posterior probability mass into the standard ROPES for effect sizes
according to Cohen (1988).

Thus, we can see that for δ12 – which equals the effect size between female runners and male
runners – there is a very large effect with posterior mean 3.2 and 95% credible interval [2.402, 3.96],
confirmed by the fact that 100% of the posterior probability mass are located inside the ROPE of a large
effect according to Cohen (1988) (which includes values ≥ 0.8). Based on the results, the posterior
probability of a large effect between female and male runners given the data is one, which means
female runners have a faster heart beat after exercising six minutes than male runners.

To check if this effect exists also in the control groups, we compare the posterior of δ34, correspond-
ing to the effect size between the female and male controls. The results are given in the right plot of
the third and fourth row in 3 and show that also in the control groups the effect is present. Here, the
effect size is estimated to be even larger than for the runner groups with a posterior mean of 4.427 and
a 95% credible interval [3.517, 5.366]. Thus, regular running seems to reduce the observed heartbeat
differences between males and females in the form of a large effect. We could proceed this way and
compare all other groups, too.

To check the model fit, we use the post.pred.check function, which performs a posterior predic-
tive check against the observed data by drawing reps samples from the posterior distribution and
visualizing the original data’s density with density overlays for the reps sampled posterior predictive
densities of the data:

post.pred.check(anovafit = resRunners, ngroups = 4, out = hr$Heart.Rate ,
reps = 50, eta = c(1/4,1/4,1/4,1/4))

The argument anovafit takes the resulting dataframe of the bayes.anova function as input, the
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Figure 3: Visualisations of the results for the Heart rate dataset using the anovaplot() function in
bayesanova, showing (1) the resulting posterior distributions of the effect sizes between each pair of
groups (first and third row) and (2) the posterior ROPE-analysis for each group comparison (second
and fourth row)

number of groups is specified in ngroups, out is the vector of all data originally observed (no matter
which group), reps is the number of posterior predictive density overlays desired, and eta is the
vector of weights used in the Gaussian mixture. Here, as all four groups include 200 participants, each
weight is 1/4. The resulting posterior predictive check is shown in the left plot of 4, and indicates that
while there is some overdispersion in the center of the posterior predictive distributions simulated,
the overall fit seems reasonable.
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Figure 4: Posterior predictive checks using the post.pred.check function; left: For the runners dataset;
right: For the feelings dataset; in both cases, results show that the overall fit of the Gaussian mixture
model is reasonable

Pleasantness ratings after watching artistic or nude pictures

This example uses data from a study conducted by Balzarini et al. (2017), in which men and women’s
feelings towards their partners after watching either erotic or abstract art pictures were analysed. The
study was published in the Journal of Experimental Social Psychology, and also the average pleasantness
obtained from viewing the pictures was studied, as one of the research questions was whether men
and women rate pleasantness of the pictures differently for nude and abstract art. This leads to a 2 × 2
factorial ANOVA for the variables gender and picture type, coded as Gender and Condition in the
dataframe.

First, data is loaded and split into the four groups of interest:

R> feelings=read.csv("feelings.csv",sep=",")
R> head(feelings)

Gender Age RelLen Condition PartnerAttractiveness
1 Male 43 3.7500 Nudes 21
2 Female 26 3.0000 Nudes 19
3 Female 35 5.2500 Abstract Art 27
4 Female 31 2.0000 Abstract Art 22
5 Female 23 4.0000 Abstract Art 27
6 Male 36 19.9167 Nudes 16
LoveForPartner AveragePleasantness

1 76 5.9375
2 66 4.7500
3 103 6.2500
4 76 5.5625
5 109 2.3750
6 98 5.1250

R> femaleArtistic = (feelings %>% filter(Gender=="Female") %>%
+ filter(Condition=="Abstract Art"))$AveragePleasantness
R> maleArtistic = (feelings %>% filter(Gender=="Male") %>%
+ filter(Condition=="Abstract Art"))$AveragePleasantness
R> femaleNude = (feelings %>% filter(Gender=="Female") %>%
+ filter(Condition=="Nudes"))$AveragePleasantness
R> maleNude = (feelings %>% filter(Gender=="Male") %>%
+ filter(Condition=="Nudes"))$AveragePleasantness

Second, the model assumption of normality in each group is checked:

R> assumption.check(femaleArtistic, maleArtistic, femaleNude, maleNude)
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1: In assumption.check(femaleArtistic, maleArtistic, femaleNude, maleNude) :
Model assumption of normally distributed data in each group is violated.

All results of the Bayesian ANOVA based on a Gaussian mixture
could therefore be unreliable and not trustworthy.
2: In assumption.check(femaleArtistic, maleArtistic, femaleNude, maleNude) :
Run further diagnostics (like Quantile-Quantile-plots) to check if the
Bayesian ANOVA can be expected to be robust to the violations of normality

This time the function gives a warning, that there are violations of the distributional assumptions.
Investigating the results leads to the conclusion that data in the fourth group deviate from normality,
shown in 5 in the QQ-plot. Still, as all other groups show no strong deviations from normality, we
proceed and are cautious when drawing inferences including any statements involving the fourth
group.
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Figure 5: Histogram and quantile-quantile plot for the fourth group in the feelings dataset, showing
that the assumption of normality is violated

Keeping this in mind, the Bayesian ANOVA is run now with default hyperparameters:

R> set.seed(42)
R> resFeelings = bayes.anova(first = femaleArtistic, second = maleArtistic,
+ third = femaleNude, fourth = maleNude)

|Parameter |LQ |Mean |UQ |Std.Err |
|:-------------|:-----|:-----|:-----|:-------|
|mu1 |4.86 |4.9 |4.95 |0.02 |
|mu2 |4.62 |4.66 |4.69 |0.02 |
|mu3 |4.07 |4.2 |4.34 |0.07 |
|mu4 |5.42 |5.47 |5.53 |0.03 |
|sigma1 |0.98 |1.16 |1.4 |0.11 |
|sigma2 |0.86 |1.02 |1.21 |0.09 |
|sigma3 |1.34 |1.66 |2.06 |0.19 |
|sigma4 |1.06 |1.26 |1.52 |0.12 |
|mu2-mu1 |-0.31 |-0.25 |-0.19 |0.03 |
|mu3-mu1 |-0.85 |-0.7 |-0.56 |0.07 |
|mu4-mu1 |0.5 |0.57 |0.64 |0.04 |
|mu3-mu2 |-0.6 |-0.46 |-0.32 |0.07 |
|mu4-mu2 |0.75 |0.81 |0.87 |0.03 |
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|mu4-mu3 |1.12 |1.27 |1.41 |0.07 |
|sigma2-sigma1 |-0.43 |-0.14 |0.12 |0.14 |
|sigma3-sigma1 |0.1 |0.49 |0.95 |0.21 |
|sigma4-sigma1 |-0.21 |0.1 |0.42 |0.16 |
|sigma3-sigma2 |0.27 |0.64 |1.07 |0.21 |
|sigma4-sigma2 |-0.04 |0.24 |0.55 |0.15 |
|sigma4-sigma3 |-0.84 |-0.39 |0.01 |0.22 |
|delta12 |0.18 |0.24 |0.29 |0.03 |
|delta13 |0.47 |0.6 |0.73 |0.07 |
|delta14 |-0.58 |-0.52 |-0.44 |0.04 |
|delta23 |0.27 |0.41 |0.53 |0.06 |
|delta24 |-0.84 |-0.76 |-0.69 |0.04 |
|delta34 |-1.2 |-1.07 |-0.91 |0.07 |

The results show that differences are now much more subtle than in the previous examples. From the
results one can spot that the means in the first three groups are located nearer to each other than in
the previous examples, and the fourth group differs more strongly from the first three. The standard
deviations do not differ a lot between groups, and the magnitude of the posterior effect sizes is now
smaller, too. To investigate the effect sizes, visualisations are produced first:

R> anovaplot(resFeelings)
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Figure 6: Visualisations of the posterior effect sizes for the feelings dataset using the anovaplot()
function in bayesanova, showing which effects are most probable a posteriori based on a ROPE-
analysis for each pair of groups

Figure 6 shows the plots produces by the above call to anovaplot(). The two left plots show that
with 91.91% probability there is a small effect between the first and second group given the data,
which are the female and male artistic pictures groups. Therefore, with large probability females rate
artistic pictures more pleasant than males, where the effect size itself is small. Still, we could argue
that there is nonnegligible probability of 8.09% that there is no effect at all and therefore not draw any
conclusion depending on the posterior probability we require.
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The middle two plots in 6 show the effect between the female artistic and female nude picture
groups. We can see that based on the posterior distribution of δ13, with 95.98% there is a medium
effect between the two groups given the data. Females rate artistic pictures therefore with a probability
near certainty as more pleasant than nude pictures, where the effect size in terms of standardized
differences between ratings is medium.

The right two plots in 6 show the effect between the male artistic and female nude groups. The
posterior reveals that 96.06% indicate a small effect, which could be interpreted as the fact that males
rate artistic pictures even more pleasant than females rate nude pictures, but the effect size is only
small and the remaining 3.94% posterior probability indicate that there is even a medium effect.

Figure 7 shows the effects which include the fourth group. Due to the violations of distributional
assumptions one need to be cautious now, as the results could be deterred. Still, the two right plots
show the effect size between the female and male nude groups, and indicate that the full posterior
(100%) signals a large negative effect. This means, males rate the pleasantness of nude pictures much
higher than females. Still, the result (as well as the results for δ14 and δ24) are questionable due to the
violation of model assumptions, so we do not proceed here.

The posterior predictive check in the right plot of 4 obtained via

post.pred.check(anovafit = resFeelings, ngroups = 4, out = feelings$AveragePleasantness,
reps = 100, eta = c(58/223,64/223,41/223,60/223))

shows that the overall fit seems reasonable, although there is some room for improvement in the range
of average pleasantness ratings between zero and two, and in the peak between average pleasantness
ratings of four and six. Subdividing the data even further and refitting the ANOVA model with a
higher number of components would be an option to improve the fit. Alternatively, one could discuss
the prior hyperparameters chosen here.
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Figure 7: Visualisations of the posterior effect sizes for the feelings dataset using the anovaplot()
function in bayesanova, showing which effects are most probable a posteriori based on a ROPE-
analysis for each pair of groups

A solution via a traditional ANOVA in this case would yield:
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R> summary(aov(AveragePleasantness ~ Gender * Condition, data = feelings))

Df Sum Sq Mean Sq F value Pr(>F)
Gender 1 10.63 10.629 7.605 0.00631 **
Condition 1 1.27 1.267 0.906 0.34210
Gender:Condition 1 31.15 31.155 22.291 4.18e-06 ***
Residuals 219 306.09 1.398
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, the condition is not significant, but the interaction is. The above analysis via the Bayesian mixture
ANOVA made this more explicit: The posteriors for each combination of gender and condition were
derived via MCMC, leading for example to the conclusion that females rate artistic picture as more
pleasant than nude pictures with 95.98% probability for a medium effect size and 4.02% for a small
effect size.

A solution via a Bayes factor based ANOVA would yield:

R> library(BayesFactor)
R> set.seed(42)
R> feelings$Gender = factor(feelings$Gender)
R> feelings$Condition = factor(feelings$Condition)
R> bfFeelings = anovaBF(AveragePleasantness ~ Gender * Condition, data = feelings)

Bayes factor analysis
--------------
[1] Gender : 3.727898 +- 0%
[2] Condition : 0.2532455 +- 0.01%
[3] Gender + Condition : 0.822604 +- 1.01%
[4] Gender + Condition + Gender:Condition : 3048.134 +- 1.14%

Against denominator:
Intercept only

---
Bayes factor type: BFlinearModel, JZS

The conclusions drawn in this case are that the model including both gender, the condition and the
interaction between both is most favourable due to the huge Bayes factor of BF(M4,M0) = 3048.134.
Here too, the information is quite limited compared to the detailed analyses we could obtain from the
Bayesian ANOVA based on the Gaussian mixture model above.

Amyloid concentrations and cognitive impairments

This example uses data from medical research about Alzheimer’s disease. Amyloid-beta (Abeta) is a
protein fragment which has been linked frequently to Alzheimer’s disease. Autopsies from a sample of
Catholic priests included measurements of Abeta (pmol/g tissue from the posterior cingulate cortex)
from three groups: subjects who had exhibited no cognitive impairment before death, subjects who
had exhibited mild cognitive impairment, and subjects who had mild to moderate Alzheimer’s disease.
The original study results were published by Pivtoraiko et al. (2015) in the journal Neurobiology of
Aging and are used here.

The Amyloid dataset is available in the Stat2Data package (Cannon et al., 2019) and includes
a group indicator Group, which takes either one of three values: mAD, which classifies a subject as
having had mild Alzheimer’s disease, MCI, which is a mild cognitive impairment and NCI, which is no
cognitive impairment. Also, the amount of Amyloid-beta from the posterior cingulate cortex is given
in pmol per gram tissue in the variable Abeta.

After loading and splitting the data into the three groups, we run the assumption.check() function:

R> library(Stat2Data)
R> data(Amyloid)
R> head(Amyloid)

Group Abeta
1 NCI 114
2 NCI 41
3 NCI 276
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Figure 8: Model assumption checks for the Amyloid dataset using the assumption.check() function
in bayesanova, showing that the assumption of a Gaussian mixture model is violated

4 NCI 0
5 NCI 16
6 NCI 228

R> NCI = (Amyloid %>% filter(Group=="NCI"))$Abeta
R> MCI = (Amyloid %>% filter(Group=="MCI"))$Abeta
R> mAD = (Amyloid %>% filter(Group=="mAD"))$Abeta
R> assumption.check(NCI, MCI, mAD)

1: In assumption.check(NCI, MCI, mAD) :
Model assumption of normally distributed data in each group is violated.

All results of the Bayesian ANOVA based on a multi-component Gaussian
mixture could therefore be unreliable and not trustworthy.
2: In assumption.check(NCI, MCI, mAD) :
Run further diagnostics (like Quantile-Quantile-plots) to check if the
Bayesian ANOVA can be expected to be robust to the violations of normality

The results in 8 clearly show that the model assumptions are violated. Therefore, it is not recommended
to run a Bayesian ANOVA in this case. A solution via a traditional ANOVA or via a Bayes factor based
ANOVA would not proceed at this point, too.

A small simulation study – Recapturing simulation parameters of synthetic datasets

The next example is more in the veins of a simulation approach. We simulate three-, four-, five- and
six-component Gaussian mixtures with increasing means µj := j and σj = 1. Therefore, the theoretical
parameter values as well as the differences in means and standard deviations and the effect sizes δlr
are known ∀l, r. We simulate 500 datasets with n = 50 observations in each group for each Gaussian
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mixture above, and run the Bayesian ANOVA with default hyperparameters, that is 10000 Gibbs
steps with 5000 burn-in steps, 95% credibility level and standard deviation output. Histograms of the
posterior means for all parameters are shown in 9.
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Figure 9: Recapturing simulation parameters of synthetic datasets with bayes.anova(), showing that
the Gibbs sampler yields consistent estimates of the underlying effect sizes

The results clearly show that even for 500 simulated datasets the true parameters µj = j and
σj = 1 are recaptured for small sample sizes like n = 50 in each group. Also, the differences in means
µl − µr, l ̸= r are near one, and the differences in standard deviations σl − σr, l ̸= r are near zero. The
effect sizes δlr, l ̸= r also are recaptured as expected. More details about the theoretical properties of
the procedure, especially the derivation of the Gibbs sampler for the two-group case can be found in
Kelter (2020c, 2021d). Note that increasing sample sizes in the groups will yield consistent estimates
as a result of MCMC theory Robert and Casella (2004).

7 Conclusion

This paper introduces bayesanova, an R package for conducting a Bayesian analysis of variance
based on MCMC in a Gaussian mixture distribution with known allocations. The Bayesian ANOVA
implemented in bayesanova is based on Gibbs sampling and supports up to six distinct components,
which covers the typical range of ANOVAs used in empirical research.

The package provides four functions to check the model assumptions, run the Bayesian ANOVA,
visualize the results and check the posterior fit. All functions have a variety of optional parameters
to adapt them to a specific workflow or goal. Also, convergence issues can be detected via the built-
in convergence diagnostics of all MCMC results in the anovaplot() function and it is possible to
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post-process the results delivered as raw Markov chain draws by bayes.anova, for example via the R
package bayestestR (Makowski et al., 2019a).

In the paper, multiple examples from medical and psychological research using real datasets were
provided, showing the richness of information provided by the proposed procedure. Also, while
explicit testing (for example via Bayes factors) is not implemented as standard output, it is worth
noting that computing Bayes factors numerically based on the Gaussian mixture model is possible
for example by using numerical techniques such as the Savage-Dickey density ratio (Kelter, 2021a;
Wagenmakers et al., 2010; Dickey and Lientz, 1970; Verdinelli and Wasserman, 1995). However, the
focus of explicit hypothesis testing is replaced in the default output of the procedure by estimation of
the effect sizes between groups (or component density parameters) under uncertainty. If hypothesis
testing is needed, the implemented ROPE can be used for rejecting a hypothesis based on interval
hypothesis tests – compare Kelter (2021b), Linde et al. (2020) and Kruschke (2018) – or by using external
packages like bayestestR (Makowski et al., 2019a) in conjunction with the raw samples provided
by bayes.anova. Also, other indices like the probability of direction (Makowski et al., 2019b) or the
MAP-based p-value (Mills, 2018) can be obtained via the package bayestestR (Makowski et al., 2019a)
if hypothesis testing is desired, for an overview see Kelter (2021a). To offer users the freedom of
choice for their preferred statistical evidence measure, only a ROPE-based estimate of the maximum a
posteriori effect size δ is provided in bayesanova.

A small simulation study showed for the case of three-component Gaussian mixtures, that the
provided MCMC algorithm precisely captures the true parameter values. Similar results hold for the
four- or more-component case, as can easily be checked by adapting the provided R code.

In summary, the bayesanova package provides a novel and easy to apply alternative to existing
packages like stats (R Core Team, 2020) or BayesFactor (Morey and Rouder, 2018), which implement
the traditional frequentist ANOVA and Bayesian ANOVA models based on the Bayes factor.

Future plans include to add prior predictive checks and up to 12-component support, allowing
for 2 × 6 Bayesian ANOVAs. Also, nonparametric mixtures could be applied in the case the model
assumptions are violated, but therefore first theoretical results are necessary.
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Appendix

Details on the F-statistic in frequentist ANOVA

After observing the data, the following quantities are calculated: For group j, j = 1, ..., k, Ij experimental

units are observed and the empirical mean mj = 1/Ij ∑
Ij

l=1 yl j and empirical variance s2
j = 1/(Ij −

1)∑
Ij

l=1(yl j − mj)
2 are calculated (data is assumed to be listed in a table where the groups correspond

to the columns). The sum Σi∈Ij yij and the sum of squares Σi∈Ij (yij)
2 are calculated, to partition the

variance into treatment and error sum of squares

SSTreatment :=
k

∑
j=1

Ij(mj − m)2 SSError :=
k

∑
j=1

(Ij − 1)s2
j (16)

SSTotal :=
k

∑
j=1

n

∑
i=1

(yij − m)2 (17)
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where m := 1/k ∑k
j=1 mj. Standard calculus yields that these sums of squares can be calculated as:

SSTreatment :=
k

∑
j=1

(∑i yij)
2

Ij
−

(∑j ∑i yij)
2

I
SSError :=

k

∑
j=1

∑
i

y2
ij − ∑

j

(∑i yij)
2

Ij
(18)

SSTotal :=
k

∑
j=1

∑
i

y2
ij −

(∑j ∑i yij)
2

I
(19)

Using the corresponding degrees of freedom DFTreatment = k − 1, DFError = n − k and DFTotal = n − 1,
the F-statistic is defined as

F =
MSTreatment

MSError
(20)

where

MSTreatment :=
SSTreatment
DFTreatment

MSError :=
SSError
DFError

(21)

using only the quantities defined above. If the F-statistic is larger than the α-quantile for significance
level α, H0 is rejected.
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