
CONTRIBUTED RESEARCH ARTICLE 6

A Computational Analysis of the
Dynamics of R Style Based on 108 Million
Lines of Code from All CRAN Packages in
the Past 21 Years
by Chia-Yi Yen, Mia Huai-Wen Chang, Chung-hong Chan

Abstract The flexibility of R and the diversity of the R community leads to a large number of
programming styles applied in R packages. We have analyzed 108 million lines of R code from CRAN
and quantified the evolution in popularity of 12 style-elements from 1998 to 2019. We attribute 3 main
factors that drive changes in programming style: the effect of style-guides, the effect of introducing
new features, and the effect of editors. We observe in the data that a consensus in programming style
is forming, such as using lower snake case for function names (e.g. softplus_func) and <- rather than =
for assignment.

1 Introduction

R is flexible. For example, one can use <- or = as assignment operators. The following two functions
can both be correctly evaluated.

sum_of_square <- function(x) {
return(sum(x^2))

}

sum_oF.square=function(x)
{

sum(x ^ 2)}

One area that can highlight this flexibility is naming conventions. According to the previous
research by Bååth (2012), there are at least 6 styles and none of the 6 has dominated the scene. Beyond
naming conventions investigated by Bååth (2012), there are style-elements that R programmers have
the freedom to adopt, e.g. whether or not to add spaces around infix operators, use double quotation
marks or single quotation marks to denote strings. On one hand, these variations provide programmers
with freedom. On the other hand, these variations can confuse new programmers and can have dire
effects on program comprehension. Also, incompatibility between programming styles might also
affect reusability, maintainability (Elish and Offutt, 2002), and open source collaboration (Wang and
Hahn, 2017).

Various efforts to standardize the programming style, e.g. Google’s R Style Guide (Google, 2019),
the Tidyverse Style Guide (Wickham, 2017), Bioconductor Coding Style (Bioconductor, 2015), are
available (Table 1) 1.

Among the 3 style-guides, the major differences are the suggested naming convention and inden-
tation, as highlighted in Table 1. Other style-elements are essentially the same. These style guides are
based on possible improvement in code quality, e.g. style-elements that improve program comprehen-
sion (Oman and Cook, 1991). However, we argue that one should first study the current situation, and
preferably, the historical development, of programming style variations (PSV) to supplement these
standardization efforts. We have undertaken such a task, so that the larger R communities can have
a baseline to evaluate the effectiveness of those standardization efforts. Also, we can have a better
understanding of the factors driving increase and decrease in PSV historically, such that more effective
standardization efforts can be formulated.

1Bååth (2012) lists also Colin Gillespie’s R style guide. Additional style guides that we found include the style
guides by Henrik Bengtsson, Jean Fan, Iegor Rudnytskyi, Roman Pahl, Paul E. Johnson, Joshua Halls, Datanovia,
and daqana. We focus only on the 3 style guides of Tidyverse, Google and Bioconductor is because these 3 are
arguably the most influential. There are groups of developers (e.g. contributors to tidyverse, Google employees,
and Bioconductor contributors) adhering to these 3 styles.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://csgillespie.wordpress.com/2010/11/23/r-style-guide/
https://docs.google.com/document/d/1esDVxyWvH8AsX-VJa-8oqWaHLs4stGlIbk8kLc5VlII/edit
https://jef.works/R-style-guide/
https://irudnyts.github.io//r-coding-style-guide/
https://rpahl.github.io/r-some-blog/my-r-style-guide/
https://cran.r-project.org/web/packages/rockchalk/vignettes/Rstyle.pdf
https://bookdown.org/joshuah40/qa_code/Coding-Guidelines.html
https://www.datanovia.com/en/blog/r-coding-style-best-practices/
https://www.daqana.org/dqstyle-r/
https://CRAN.R-project.org/package=tidyverse


CONTRIBUTED RESEARCH ARTICLE 7

Table 1: Three major style-guides and their differentiating style elements (in Bold): Google, Tidyverse
and Bioconductor

Feature Google Tidyverse Bioconductor

Function name UpperCamel snake_case lowerCamel
Assignment Discourage = Discourage = Discourage =

Line length
“limit your code to
80 characters per

line”

“limit your code to
80 characters per

line”
⩽ 80

Space after a
comma Yes Yes Yes

Space around infix
operators Yes Yes Yes

Indentation 2 spaces 2 spaces 4 spaces

Integer Not specified

Not specified
(Integers are not

explicitly typed in
included code

examples)

Not specified

Quotes Double Double Not specified
Boolean values Use TRUE / FALSE Use TRUE / FALSE Not specified
Terminate a line
with a semicolon No No Not specified

Curly braces
{ same line, then a
newline, } on its

own line

{ same line, then a
newline, } on its

own line
Not specified

2 Analysis

Data Source

On July 1, 2020, we cloned a local mirror of CRAN using the rsync method suggested in the CRAN
Mirror HOWTO (CRAN, 2019). 2 Our local mirror contains all contributed packages as tarball files
(.tar.gz). By all contributed packages, we mean packages actively listed online on the CRAN website
as well as orphaned and archived packages. In this analysis, we include all active, orphaned and
archived packages.

In order to facilitate the analysis, we have developed the package baaugwo (Chan, 2020) to extract
all R source code and metadata from these tarballs. In this study, only the source code from the /R
directory of each tarball file is included. We have also archived the metadata from the DESCRIPTION
and NAMESPACE files from the tarballs.

In order to cancel out the over-representation effect of multiple submissions in a year by a particular
package, we have applied the "one-submission-per-year" rule to randomly selected only one submission
from a year for each package. Unless otherwise noticed, we present below the analysis of this "one-
submission-per-year" sample. Similarly, unless otherwise noticed, the unit of the analysis is exported
function. The study period for this study is from 1998 to 2019.

Quantification of PSV

All exported functions in our sample are parsed into a parse tree using the parser from the lintr (Hester
and Angly, 2019) package.

These parse trees were then filtered for lines with function definition and then linted them using
the linters from the lintr package to detect for various style-elements. Style-elements considered in
this study are:

fx_assign Use = as assignment operators

2Regarding the specification of the hardware used for this analysis, please refer to the README file in our
Github repository: https://github.com/chainsawriot/rstyle

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=lintr
https://github.com/chainsawriot/rstyle


CONTRIBUTED RESEARCH ARTICLE 8

softplusFunc = function(value, leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0L, value, value * 0.01))

}
return(log(1L + exp(value)))

}

fx_opencurly An open curly is on its own line

softplusFunc <- function(value, leaky = FALSE)
{

if (leaky)
{

warnings("using leaky RELU!")
return(ifelse(value > 0L, value, value * 0.01))

}
return(log(1L + exp(value)))

}

fx_infix No spaces are added around infix operators.

softplusFunc<-function(value, leaky=FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value>0L, value, value*0.01))

}
return(log(1L+exp(value)))

}

fx_integer Not explicitly type integers

softplusFunc <- function(value, leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0, value, value * 0.01))

}
return(log(1 + exp(value)))

}

fx_singleq Use single quotation marks for strings

softplusFunc <- function(value, leaky = FALSE) {
if (leaky) {

warnings('using leaky RELU!')
return(ifelse(value > 0L, value, value * 0.01))

}
return(log(1L + exp(value)))

}

fx_commas No space is added after commas

softplusFunc <- function(value,leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0L,value,value * 0.01))

}
return(log(1L + exp(value)))

}

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 9

fx_semi Use semicolons to terminate lines

softplusFunc <- function(value, leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!");
return(ifelse(value > 0L, value, value * 0.01));

}
return(log(1L + exp(value)));

}

fx_t_f Use T/F instead of TRUE / FALSE

softplusFunc <- function(value, leaky = F) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0L, value, value * 0.01))

}
return(log(1L + exp(value)))

}

fx_closecurly An close curly is not on its own line.

softplusFunc <- function(value, leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0L, value, value * 0.01)) }

return(log(1L + exp(value))) }

fx_tab Use tab to indent

softplusFunc <- function(value, leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0L, value, value * 0.01))

}
return(log(1L + exp(value)))

}

We have studied also the naming conventions of all included functions. Using the similar technique
of Bååth (2012), we classified function names into the following 7 categories:

• alllower softplusfunc

• ALLUPPER SOFTPLUSFUNC

• UpperCamel SoftPlusFunc

• lowerCamel softPlusFunc

• lower_snake soft_plus_func

• dotted.func soft.plus.func

• other sOfTPluSfunc

The last style-element is line-length. For each R file, we counted the distribution of line-length. In
this analysis, the unit of analysis is line.

If not considering line-length, the remaining 10 binary and one multinomial leave 7,168 possible
combinations of PSVs that a programmer could employ (7 × 210 = 7, 168).

Methodology of community-specific variations analysis

On top of the overall patterns based on the analysis of all functions, the community-specific variations
are also studied. In this part of the study, we ask the question: do local patterns of PSV exist in various
programming communities? To this end, we constructed a dependency graph of CRAN packages by
defining a package as a node and an import/suggest relationship as a directed edge. Communities in
this dependency graph were extracted using the Walktrap Community Detection Algorithm (Pons

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 10

and Latapy, 2005) provided by the igraph package (Csardi and Nepusz, 2006). The step parameter
was set at 4 for this analysis. Notably, we analyzed the dependency graph as a snapshot, which is built
based on the submission history of every package from 1998 to 2019.

By applying the Walktrap Community Detection on the 2019 data, we have identified 931 commu-
nities in this CRAN dependency graph. The purpose of this analysis is to show the PSV in different
communities. We selected the largest 20 communities for further analysis. The choice of 20 is deemed
enough to show these community-specific variations. These 20 identified communities cover 88% of
the total 14,491 packages, which shows that the coverage of our analysis is comprehensive. Readers
could explore other choices themselves using our openly shared data.

Methodology of within-package variations analysis

As discussed in Gillespie and Lovelace (2016), maintaining a consistent style in source code can enable
efficient reading by multiple readers; it is even thought to be a quality of a successful R programmer.
In addition to community-level analysis, we extend our work to the package-level, in which we
investigate the consistency of different style elements within a package. In this analysis, we studied
12 style elements, including fx_assign, fx_commas, fx_integer, fx_semi, fx_t_f, fx_closecurly, fx_infix,
fx_opencurly, fx_singleq, fx_tab, and fx_name. In other words, 11 binary variables (the first 11) and 1
multinomial variable (fx_name) could be assigned to each function within a package.

We quantified the package-level consistency by computing the entropy for each style element.
Given a style element S of an R package Ri, with possible n choices s1, . . . sn (e.g. n = 2 for binary; n =
7 for fx_names), the entropy H(S) is calculated as:

H(S) = −
n

∑
i=1

P(si) log P(si) (1)

P(si) is calculated as the proportion of all functions in Ri with the style element si. For example,
if a package has 4 functions and the S of these 4 functions are 0,0,1,2. The entropy H(S) is −((0.5 ×
log 0.5) + (0.25 × log 0.25) + (0.25 × log 0.25)) = 0.45.

As the value of H(S) is not comparable across different S with a different number of n, we nor-
malize the value of H(S) into H′(S) by dividing H(S) with the theoretical maximum. The maximum
values of H(S) for n = 2 and n = 7 are 0.693 and 1.946, respectively.

Finally, we calculate the H′(S) of all CRAN packages (i.e. R1 . . . Rn, where n equals the number of
all CRAN packages) by averaging the H′(S).

3 Results

We studied more than 108 million lines of code from 17,692 unique packages. In total, 2,249,326
exported functions were studied. Figure 1 displays the popularity of the 10 binary style-elements
from 1998 to 2019. Some style-elements have very clear trends towards a majority-vs-minority pattern,
e.g. fx_closecurly, fx_semi, fx_t_f and fx_tab. Some styles-elements are instead trending towards
a divergence from a previous majority-vs-minority pattern, e.g. fx_assign, fx_commas, fx_infix,
fx_integer, fx_opencurly and fx_singleq. There are two style-elements that deserve special scrutiny.
Firstly, the variation in fx_assign is an illustrative example of the effect of introducing a new language
feature by the R Development Core Team. The introduction of the language feature (= as assignment
operator) in R 1.4 (Chambers, 2001) has coincided with the taking off in popularity of such style-
element since 2001. Up to now, around 20% of exported functions use such style.

Secondly, the popularity of fx_opencurly shows how a previously established majority style
(around 80% in late 90s) slowly reduced into a minority, but still prominent, style (around 30% in late
10s).

Similarly, the evolution of different naming conventions is shown in Figure 2 3. This analysis can
best be used to illustrate the effect of style-guides. According to Bååth (2012), dotted.func style is very
specific to R programming. This style is the most dominant style in the early days of CRAN. However,
multiple style guides advise against the use of dotted.func style and thus a significant declining trend

3’Other’ is the 4th most popular naming convention. Some examples of function names classified as ’other’ are:
Blanc-Sablon, returnMessage.maxim, table_articles_byAuth, mktTime.market, smoothed_EM, plot.Sncf2D, as.igraph.EPOCG,
TimeMap.new, fT.KB, IDA_stable. These functions were classified as ’other’ because of the placement of capital letters.
For packages using an all capitals object class name (e.g. EPOCG) and S3 generic method names (e.g. as.igraph),
their methods are likely to be classified as ’others’. One could also classify these functions as dotted.func. However,
we follow both lintr and Bååth (2012) to classify a function as dotted.func only when no capital letter is used in its
name.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=lintr


CONTRIBUTED RESEARCH ARTICLE 11

fx_t_f: Use T/F fx_tab: Tab to indent

fx_semi: ; to terminate lines fx_singleq: ' for strings

fx_integer: Not type integers fx_opencurly: { on own line

fx_commas: No space after , fx_infix: Infix no spaces

fx_assign: = as assignment fx_closecurly: } not on own line

20
00

20
05

20
10

20
15

20
20

20
00

20
05

20
10

20
15

20
20

0
20
40
60
80

0
20
40
60
80

0
20
40
60
80

0
20
40
60
80

0
20
40
60
80

Year

S
ha

re
 o

f a
ll 

ex
po

rt
ed

 fu
nc

tio
ns

 (
%

)

Figure 1: Evolution in popularity of 10 style-elements from 1998 to 2019.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 12

is observed. lower_snake and UpperCamel are the styles endorsed by the Tidyverse Style Guide and
the Google’s R Style Guide, respectively. These two styles see an increasing trend since the 2010s,
while the growth of lower_snake is stronger, with almost a 20% growth in the share of all functions in
contrast with the 1-2% growth of other naming conventions. In 2019, lower_snake (a style endorsed
by Tidyverse) is the most popular style (26.6%). lowerCamel case, a style endorsed by Bioconductor, is
currently the second most popular naming convention (21.3% in 2019). Only 7.0% of functions use
UpperCamel, the style endorsed by Google.

0

20

40

60

2000 2005 2010 2015 2020
Year

S
ha

re
 o

f a
ll 

ex
po

rt
ed

 fu
nc

tio
ns

 (
%

)

Naming

dotted.func

ALLUPPER

UpperCamel

other

alllower

lowerCamel

lower_snake

Figure 2: Evolution in popularity of 7 naming conventions from 1998 to 2019.

The evolution of line lengths is tricky to be visualized on a 2-D surface. We have prepared a Shiny
app (https://github.com/chainsawriot/rstyle/tree/master/shiny) to visualize the change in line
distribution over the span of 21 years. In this paper, Figure 3 shows the snapshot of the change in
line length distribution in the range of 40 to 100 characters. In general, developers of newer packages
write with less characters per line. Similar to previous analyses with Python programs e.g.Vanderplas
(2017), artificial peaks corresponding to recommendations from either style-guides, linters, and editor
settings are also observed in our analysis. In 2019, the artificial peak of 80 characters (recommended
by most of the style-guides and linters such as lintr) is more pronounced for lines with comments but
not those with actual code.

Community-based variations

Using the aforementioned community detection algorithm of the dependency graph, the largest 20
communities were extracted. These communities are named by their applications. Table 2 lists the
details of these communities 4.

Using the naming convention as an example, there are local patterns in PSV (Figure 4). For
example, lower_snake case is the most popular naming convention in the "RStudio" community as
expected because it is the naming convention endorsed by the Tidyverse Style-guide. However, only a
few functions exported by the packages from "GUI: Gtk" community uses such convention.

For the binary style-elements, local patterns are also observed (Figure 5). The most salient pattern
is the exceptional high usage of tab indentation in "rJava" and "Bioinformatics" communities, probably
due to influences from Java or Perl. Also, packages in "GUI: Gtk" have an exceptional high usage of
open curly on its own line.

4“Base packages” (core packages come with R) such as methods and utils were included in the dependency
graph. However, the PSV of recommended packages were not analyzed.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://github.com/chainsawriot/rstyle/tree/master/shiny
https://CRAN.R-project.org/package=lintr
https://CRAN.R-project.org/package=methods
https://CRAN.R-project.org/package=utils


CONTRIBUTED RESEARCH ARTICLE 13

2013 2019

2003 2008

40 60 80 10040 60 80 100

0

1

2

3

0

1

2

3

Number of characters

S
ha

re
 o

f a
ll 

lin
es

 (
%

)

comment

No

Yes

Figure 3: Change in line length distribution of comments (orange) and actual code (green): 2003, 2008,
2013 and 2019.

Table 2: The largest 20 communities and their top 3 packages according to PageRank

Community Number of Packages Top 3 Packages

base 5157 methods, stats, MASS
RStudio 4758 testthat, knitr, rmarkdown
Rcpp 826 Rcpp, tinytest, pinp
Statistical Analysis 463 survival, Formula, sandwich
Machine Learning 447 nnet, rpart, randomForest
Geospatial 367 sp, rgdal, maptools
GNU gsl 131 gsl, expint, mnormt
Graph 103 graph, Rgraphviz, bnlearn
Text Analysis 79 tm, SnowballC, NLP
GUI: Tcl/Tk 55 tcltk, tkrplot, tcltk2
Infrastructure 54 rsp, listenv, globals
Numerical Optimization 51 polynom, magic, numbers
Genomics 43 Biostrings, IRanges, S4Vectors
RUnit 38 RUnit, ADGofTest, fAsianOptions
Survival Analysis 33 kinship2, CompQuadForm, coxme
Sparse Matrix 32 slam, ROI, registry
GUI: Gtk 31 RGtk2, gWidgetstcltk, gWidgetsRGtk2
Bioinformatics 29 limma, affy, marray
IO 28 RJSONIO, Rook, base64
rJava 27 rJava, xlsxjars, openNLP

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=tinytest
https://CRAN.R-project.org/package=pinp
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=Formula
https://CRAN.R-project.org/package=sandwich
https://CRAN.R-project.org/package=nnet
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=rgdal
https://CRAN.R-project.org/package=maptools
https://CRAN.R-project.org/package=gsl
https://CRAN.R-project.org/package=expint
https://CRAN.R-project.org/package=mnormt
https://CRAN.R-project.org/package=graph
https://CRAN.R-project.org/package=Rgraphviz
https://CRAN.R-project.org/package=bnlearn
https://CRAN.R-project.org/package=tm
https://CRAN.R-project.org/package=SnowballC
https://CRAN.R-project.org/package=NLP
https://CRAN.R-project.org/package=tcltk
https://CRAN.R-project.org/package=tkrplot
https://CRAN.R-project.org/package=tcltk2
https://CRAN.R-project.org/package=rsp
https://CRAN.R-project.org/package=listenv
https://CRAN.R-project.org/package=globals
https://CRAN.R-project.org/package=polynom
https://CRAN.R-project.org/package=magic
https://CRAN.R-project.org/package=numbers
https://www.bioconductor.org/packages/release/bioc/html/Biostrings.html
https://www.bioconductor.org/packages/release/bioc/html/IRanges.html
https://www.bioconductor.org/packages/release/bioc/html/S4Vectors.html
https://CRAN.R-project.org/package=RUnit
https://CRAN.R-project.org/package=ADGofTest
https://CRAN.R-project.org/package=fAsianOptions
https://CRAN.R-project.org/package=kinship2
https://CRAN.R-project.org/package=CompQuadForm
https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=slam
https://CRAN.R-project.org/package=ROI
https://CRAN.R-project.org/package=registry
https://CRAN.R-project.org/package=RGtk2
https://CRAN.R-project.org/package=gWidgetstcltk
https://CRAN.R-project.org/package=gWidgetsRGtk2
https://CRAN.R-project.org/package=limma
https://www.bioconductor.org/packages/release/bioc/html/affy.html
https://www.bioconductor.org/packages/release/bioc/html/marray.html
https://CRAN.R-project.org/package=RJSONIO
https://CRAN.R-project.org/package=Rook
https://CRAN.R-project.org/package=base64
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=xlsxjars
https://CRAN.R-project.org/package=openNLP


CONTRIBUTED RESEARCH ARTICLE 14

GUI: Gtk

Bioinformatics

RUnit

Survival Analysis

GUI: Tcl/Tk

Geospatial

Genomics

GNU gsl

IO

Numerical Optimization

Statistical Analysis

Graph

Machine Learning

base

Sparse Matrix

rJava

Infrastructure

Rcpp

Text Analysis

RStudio

0 25 50 75 100
Share of all exported functions (%)

dotted.func

ALLUPPER 

UpperCamel 

other 

alllower 

lowerCamel 

lower_snake

Figure 4: Community-specific distribution of naming conventions among 20 large communities.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 15

fx
_o

pe
nc

ur
ly

fx
_a

ss
ig

n
fx

_c
lo

se
cu

rly
fx

_c
om

m
as

fx
_i

nf
ix

fx
_i

nt
eg

er
fx

_s
em

i
fx

_s
in

gl
eq

fx
_t

_f
fx

_t
ab

RStudio
Rcp

p
rJa

va IO

Survi
va

l A
nalys

is

Te
xt 

Analys
is

GNU gsl

Statis
tic

al A
nalys

is
base

RUnit

Geosp
atia

l

Graph

Bioinform
atic

s

Mach
ine Learn

ing

Sparse
 M

atrix

Numeric
al O

ptim
iza

tio
n

Genomics

Infra
str

uctu
re

GUI: T
cl/

Tk

GUI: G
tk

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

S
hare of all exported functions (%

)

Figure 5: Community-specific distribution of style-elements among 20 large communities

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 16

Within-package variations

The result shows that the consistency of style elements within a package varies (Figure 6). For example,
style elements like fx_integer, fx_commas, fx_infix, fx_opencurly, and fx_name have less consistency
within a package than fx_tab, fx_semi, fx_t_f, fx_closecurly, fx_singleq, and fx_assign. Based on our
within-package analysis, we noticed that it is rare for a package to use a consistent style in all of its
functions, except those packages with only a few functions. This finding prompts previous concerns
e.g. Oman and Cook (1991); Elish and Offutt (2002); Wang and Hahn (2017); Gillespie and Lovelace
(2016) that these inconsistent style variations within a software project (e.g. in an R package) might
make open source collaboration difficult.

0.16

0.17

0.21

0.24

0.28

0.28

0.38

0.4

0.45

0.47

0.54

fx_tab: Tab to indent

fx_semi: ; to terminate lines

fx_t_f: Use T/F

fx_closecurly: } not on own line

fx_singleq: ' for strings

fx_assign: = as assignment

fx_name: Naming convention

fx_opencurly: { on own line

fx_infix: Infix no spaces

fx_commas: No space after ,

fx_integer: Not type integers

0.0 0.2 0.4 0.6
entropy

Figure 6: Average package-level entropy of 12 style elements

In Figure 7, we contextualize this finding by showing the distribution of fx_name in 20 R packages
with the highest PageRank (Page et al., 1999) in the CRAN dependency graph. Many of these packages
have only 1 dominant naming convention (e.g. lower_snake or lowerCamel), but not always. For
instance, functions with 6 different naming conventions can be found in the package Rcpp.

4 Discussion

In this study, we study the PSV in 21 years of CRAN packages across two dimensions: 1) temporal
dimension: the longitudinal changes in popularity of various style-elements over 21 years, and 2)
cross-sectional dimension: the variations among communities of the latest snapshot of all packages
from 1998 to 2019. From our analysis, we identify three factors that possibly drive PSV: the effect of
style-guides (trending of naming conventions endorsed by Wickham (2017) and Google (2019)), the
effect of introducing a new language feature (trending of = usage as assignments after 2001), and the
effect of editors (the dominance of 80-character line limit).

From a policy recommendation standpoint, our study provides important insight for the R De-
velopment Core Team and other stakeholders to improve the current situation of PSV in R. First, the

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=Rcpp


CONTRIBUTED RESEARCH ARTICLE 17

bitops

RUnit

XML

lattice

MASS

survival

rstudioapi

Rcpp

digest

jsonlite

xml2

dplyr

covr

ggplot2

magrittr

testthat

rlang

stringr

withr

rmarkdown

0 25 50 75 100
Share of all exported functions (%)

dotted.func

ALLUPPER

UpperCamel

other

alllower

lowerCamel 

lower_snake

Figure 7: Package-specific distribution of naming conventions among the most important packages

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 18

introduction of a new language feature can have a very long-lasting effect on PSV. "Assignments with
the = operator" is a feature that introduced by the R Development Core Team to “increase compatibility
with S-Plus (as well as with C, Java, and many other languages)” (Chambers, 2001). This might be a
good intention but it has an unintended consequence of introducing a very persistent PSV that two
major style-guides, Wickham (2017) and Google (2019), consider as a bad style.

Second, style-guides, linters, and editors are important standardizers of PSV. Although we have
not directly measured the use of style-guides, linters, and editors in our analysis 5, we infer their effect
by studying the time trend (Figure 1). Even with these standardizers, programming styles are slow
to change. As indicated by the local PSV patterns, we found in some communities, some package
developers have their own style. Having said so, we are not accusing those developers of not following
the trendy programming styles. Instead, they follow the mantra of “if it ain’t broke don’t fix it”. Again,
from a policy recommendation standpoint, the existence of local PSV patterns suggests there are many
blind spots to the previous efforts in addressing PSV. The authors of the style guides may consider
community outreach to promote their endorsed styles, if they want other communities to adopt their
styles.

Our analysis also opens up an open question: should R adopt an official style-guide akin the PEP-8
of the Python Software Foundation (Van Rossum et al., 2001)? There are of course pros and cons of
adopting an official style-guide. As written by Christiansen (1998), “style can easily become a religious
issue.” It is not our intention to meddle in this “religious issue.” If such an effort would be undertaken
by someone else, the following consensus-based style could be used as the basis. The following is an
example of a function written in such style.

softplus_func <- function(value, leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0, value, value * 0.01))

}
return(log(1 + exp(value)))

}

In essence,

• Use snake case

• Use <- to assign, don’t use =

• Add a space after commas

• Use TRUE / FALSE, don’t use T / F

• Put open curly bracket on same line then a newline

• Use double quotation mark for strings

• Add spaces around infix operators

• Don’t terminate lines with semicolon

• Don’t explicitly type integers (i.e. 1L)

• Put close curly bracket on its own line

• Don’t use tab to indent

We must stress here that this consensus-based style is only the most popular style based on our
analysis, i.e. the Zeitgeist (the spirit of the age) 6. We have no guarantee that this style can improve
clarity or comprehensibility. As a final remark: although enforcing a consistent style can improve open
source collaboration (Wang and Hahn, 2017), one must also bear in mind that these rules might need
to be adjusted sometimes to cater for programmers with special needs. For example, using spaces
instead of tabs for indentation can make code inaccessible to visually impaired programmers (Mosal,
2019).

5The usage of style-guides, linters, and editors cannot be directly measured from the record on CRAN. The
maintainers usually do not explicitly state the style-guide they endorsed in their code. Similarly, packages that
have been processed with linters do not import or suggest linters such as lintr, styler or goodpractice. It might
be possible to infer the use of a specific editor such as RStudio in the development version of a package with
signals such as the inclusion of an RStudio Project file. These signals, however, were usually removed in the CRAN
submission of the package. Future research should use alternative methods to measure the usage of these 3 things
in R packages. In this study, similar to other studies, e.g. Bafatakis et al. (2019), we use style compliance as a proxy
to usage of a particular style guide, linter or editor.

6In 2019, 5.35% of all functions are in this Zeitgeist style. Using electoral system as an analogy, this style is having
the plurality (have the highest number of votes) but not the absolute majority (have over 50% of the votes)

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=lintr
https://CRAN.R-project.org/package=styler
https://CRAN.R-project.org/package=goodpractice


CONTRIBUTED RESEARCH ARTICLE 19

5 Reproducibility

The data and scripts to reproduce the analysis in this paper are available at https://github.com/
chainsawriot/rstyle. An archived version is available at this DOI: http://doi.org/10.5281/zenodo.
4026589.

6 Acknowledgments

We have presented a previous version of this paper as a poster at UseR! 2019 Toulouse. Interested read-
ers can access it with the following link: https://github.com/chainsawriot/rstyle/blob/master/
docs/Poster_useR2019_Toulouse.png. The work was done prior to Ms Chang joining Amazon Web
Services.

The authors would like to thank Wush Wu, Liang-Bo Wang, Taiwan R User group, R-Ladies Taipei,
attendees of UseR! 2019, and the two reviewers for their valuable comments that greatly improved
this paper.

Bibliography

R. Bååth. The state of naming conventions in R. The R journal, 4(2):74–75, 2012. [p6, 9, 10]

N. Bafatakis, N. Boecker, W. Boon, M. Cabello Salazar, J. Krinke, G. Oznacar, and R. White. Python
Coding Style Compliance on Stack Overflow. 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), May 2019. doi: 10.1109/msr.2019.00042. URL http://dx.doi.org/10.
1109/MSR.2019.00042. [p18]

Bioconductor. Coding style, 2015. URL https://www.bioconductor.org/developers/how-to/coding-
style/. [p6]

J. Chambers. Assignments with the = Operator., 2001. URL http://developer.r-project.org/
equalAssign.html. [p10, 18]

C.-h. Chan. chainsawriot/baaugwo, Sept. 2020. URL https://doi.org/10.5281/zenodo.4016596. [p7]

T. Christiansen. Perl Style: Everyone Has an Opinion, 1998. URL https://www.perl.com/doc/
FMTEYEWTK/style/slide1.html/. [p18]

CRAN. CRAN Mirror HOWTO/FAQ, 2019. URL https://cran.r-project.org/mirror-howto.html.
[p7]

G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006. URL http://igraph.org. [p10]

M. O. Elish and J. Offutt. The adherence of open source Java programmers to standard coding practices.
2002. [p6, 16]

C. Gillespie and R. Lovelace. Efficient R programming: a practical guide to smarter programming. "O’Reilly
Media, Inc.", 2016. [p10, 16]

Google. Google’s R Style Guide, 2019. URL https://google.github.io/styleguide/Rguide.html. [p6,
16, 18]

J. Hester and F. Angly. lintr: A ’Linter’ for R Code, 2019. URL https://CRAN.R-project.org/package=
lintr. R package version 2.0.0. [p7]

C. Mosal. Nobody talks about the real reason to use Tabs over Spaces., 2019. URL https://www.reddit.com/
r/javascript/comments/c8drjo/nobody_talks_about_the_real_reason_to_use_tabs/. [p18]

P. W. Oman and C. R. Cook. A programming style taxonomy. Journal of Systems and Software, 15(3):
287–301, 1991. [p6, 16]

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the
web. Technical report, Stanford InfoLab, 1999. [p16]

P. Pons and M. Latapy. Computing communities in large networks using random walks. In International
symposium on computer and information sciences, pages 284–293. Springer, 2005. [p9]

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://github.com/chainsawriot/rstyle
https://github.com/chainsawriot/rstyle
http://doi.org/10.5281/zenodo.4026589
http://doi.org/10.5281/zenodo.4026589
 https://github.com/chainsawriot/rstyle/blob/master/docs/Poster_useR2019_Toulouse.png
 https://github.com/chainsawriot/rstyle/blob/master/docs/Poster_useR2019_Toulouse.png
http://dx.doi.org/10.1109/MSR.2019.00042
http://dx.doi.org/10.1109/MSR.2019.00042
https://www.bioconductor.org/developers/how-to/coding-style/
https://www.bioconductor.org/developers/how-to/coding-style/
http://developer.r-project.org/equalAssign.html
http://developer.r-project.org/equalAssign.html
https://doi.org/10.5281/zenodo.4016596
https://www.perl.com/doc/FMTEYEWTK/style/slide1.html/
https://www.perl.com/doc/FMTEYEWTK/style/slide1.html/
https://cran.r-project.org/mirror-howto.html
http://igraph.org
https://google.github.io/styleguide/Rguide.html
https://CRAN.R-project.org/package=lintr
https://CRAN.R-project.org/package=lintr
https://www.reddit.com/r/javascript/comments/c8drjo/nobody_talks_about_the_real_reason_to_use_tabs/
https://www.reddit.com/r/javascript/comments/c8drjo/nobody_talks_about_the_real_reason_to_use_tabs/


CONTRIBUTED RESEARCH ARTICLE 20

G. Van Rossum, B. Warsaw, and N. Coghlan. PEP 8: style guide for Python code. Python. org, 1565,
2001. [p18]

J. Vanderplas. Exploring Line Lengths in Python Packages, 2017. URL https://jakevdp.github.io/
blog/2017/11/09/exploring-line-lengths-in-python-packages/. [p12]

Z. Wang and J. Hahn. The effects of programming style on open source collaboration. 2017. URL
https://aisel.aisnet.org/icis2017/DigitalPlatforms/Presentations/22/. [p6, 16, 18]

H. Wickham. The tidyverse style guide, 2017. URL https://style.tidyverse.org/. [p6, 16, 18]

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://jakevdp.github.io/blog/2017/11/09/exploring-line-lengths-in-python-packages/
https://jakevdp.github.io/blog/2017/11/09/exploring-line-lengths-in-python-packages/
https://aisel.aisnet.org/icis2017/DigitalPlatforms/Presentations/22/
https://style.tidyverse.org/


CONTRIBUTED RESEARCH ARTICLE 21

Chia-Yi Yen
Mannheim Business School, Universität Mannheim
L 5, 6, 68131 Mannheim
Germany
https://orcid.org/0000-0003-1209-7789
yen.chiayi@gmail.com

Mia Huai-Wen Chang
Amazon Web Services
Marcel-Breuer-Straße 12, 80807 München
Germany
miachang@amazon.com

Chung-hong Chan
Mannheimer Zentrum für Europäische Sozialforschung, Universität Mannheim
A5, 6, 68159 Mannheim
Germany
https://orcid.org/0000-0002-6232-7530
chung-hong.chan@mzes.uni-mannheim.de

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://orcid.org/0000-0003-1209-7789
mailto:yen.chiayi@gmail.com
mailto:miachang@amazon.com
https://orcid.org/0000-0002-6232-7530
mailto:chung-hong.chan@mzes.uni-mannheim.de

	A Computational Analysis of the Dynamics of R Style Based on 108 Million Lines of Code from All CRAN Packages in the Past 21 Years
	Introduction
	Analysis
	Data Source
	Quantification of PSV
	Methodology of community-specific variations analysis
	Methodology of within-package variations analysis

	Results
	Community-based variations
	Within-package variations

	Discussion
	Reproducibility
	Acknowledgments


