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cpsurvsim: An R Package for Simulating
Data from Change-Point Hazard
Distributions
by Camille J. Hochheimer and Roy T. Sabo

Abstract Change-point hazard models have several practical applications, including modeling pro-
cesses such as cancer mortality rates and disease progression. While the inverse cumulative distribu-
tion function (CDF) method is commonly used for simulating data, we demonstrate the shortcomings
of this approach when simulating data from change-point hazard distributions with more than a scale
parameter. We propose an alternative method of simulating this data that takes advantage of the
memoryless property of survival data and introduce the R package cpsurvsim which implements both
simulation methods. The functions of cpsurvsim are discussed, demonstrated, and compared.

1 Introduction: Simulating from time-to-event processes in R

When modeling time-to-event processes, especially over long periods of time, it is often unreasonable
to assume a constant hazard rate. In these cases, change-point hazard models are applicable. The
majority of research surrounding change-point hazard models focuses on the Cox proportional hazards
and piecewise exponential models with one change-point (Yao, 1986; Gijbels and Gurler, 2003; Wu
et al., 2003; Rojas et al., 2011; Dupuy, 2006), likely due to the straightforward extension for including
fixed and time-varying covariates (Zhou, 2001; Hendry, 2014; Montez-Rath et al., 2017a; Wong et al.,
2018). Research on hazard models with multiple change-points is also expanding as these models have
a wide range of applications in fields such as medicine, public health, and economics (Liu et al., 2008;
Goodman et al., 2011; He et al., 2013; Han et al., 2014; Qian and Zhang, 2014; Cai et al., 2017). In the
interest of simulating time-to-event data featuring trends with multiple change-points, Walke (2010)
presents an algorithm for simulating data from the piecewise exponential distribution with fixed type I
censoring using the location of the change-points, the baseline hazard, and the relative hazard for each
time interval in between change-points. As the research surrounding parametric change-point hazard
models with multiple change-points continues to grow, likewise does the need to simulate data from
these distributions. Simulation is also a powerful and popular tool for assessing the appropriateness
of a model for one’s data or conducting a power analysis.

Several R packages available from the Comprehensive R Archive Network (CRAN) provide
functions for simulating time-to-event data in general, with a heavy focus on the Cox model. Some of
the more popular packages are provided in Table 1, which expands on the METACRAN compilation
(Allignol and Latouche, 2020). Although considerably smaller in scope, a few R packages provide
functions for simulating data with change-points. CPsurv has functionality for simulating both
nonparametric survival data and parametric survival data from the Weibull change-point distribution
but requires existing data as an argument and only allows for one change-point (Krügel et al., 2017).
SimSCRPiecewise simulates data using the piecewise exponential hazard model within the Bayesian
framework, however, this method requires at least one covariate as an argument (Chapple, 2016).

Our package cpsurvsim allows users to simulate data from a both the exponential and Weibull
hazard models with type I right censoring allowing for multiple change-points (Hochheimer, 2021).
cpsurvsim provides two methods for simulating data, which are introduced in the following section.
The first method draws on Walke (2010), using the inverse hazard function to simulate data. The
second employs the memoryless simulation method, the details of which are also discussed in the next
section. We then demonstrate how to simulate data using cpsurvsim and compare the performance of
these methods through a simulation study with the motivation of enabling users to determine which
method is best for their data.
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Package Title Brief Description

coxed Simulates data for the Cox model using the flexible-hazard
method and allows for the inclusion of time-varying covariates
(Kropko and Harden, 2019)

CPsurv Simulates one change-point for non-parametric survival analysis
or parametric survival analysis using the Weibull distribution
(Krügel et al., 2017)

cpsurvsim Simulates data with multiple change-points from the exponential
and Weibull distributions (Hochheimer, 2021)

discSurv Simulates survival data from discrete competing risk models
(Welchowski and Schmid, 2019)

gems Simulates data from multistate models and allows for
non-Markov models that account for previous events
(Blaser et al., 2015)

genSurv Gives users the option to generate data with a binary,
time-dependent covariate
(Araújo et al., 2015; Meira-Machado and Faria, 2014)

ipred Provides a function for simulating survival data for tree-
structured survival analysis (Peters and Hothorn, 2019)

MicSim Performs continuous time miscrosimulations to simulate life
courses (Zinn, 2018)

PermAlgo Uses a permutational algorithm to generate time-to-event data
allowing for the inclusion of several time-dependent covariates
(Sylvestre et al., 2010)

prodlim Has functions for simulating right censored non-parametric
survival data with two covariates and with or without competing
risks (Gerds, 2018)

simMSM Uses inversion sampling to simulate data from multi-state
models allowing for non-linear baseline hazards, time-varying
covariates, and dependence on past events (Reulen, 2015)

simPH Simulates data from Cox proportional hazards models
(Gandrud, 2015)

simsurv Simulates data from various parametric survival distributions,
2-component mixture distributions, and user-defined hazards
(Brilleman, 2019)

SimSCRPiecewise Uses Bayesian estimation to simulate data from the piecewise
exponential hazard model allowing for the inclusion of covariates
(Chapple, 2016)

SimulateCER While not a formal R package, this package extends the methods
found in PermAlgo and can be downloaded from GitHub
(Montez-Rath et al., 2017b)

survsim Allows users to simulate time-to-event, competing risks, multiple
event, and recurrent event data (Moriña and Navarro, 2014)

Table 1: R packages for simulating time-to-event data
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2 Simulating data from popular change-point hazard models

The piecewise exponential model with multiple change-points (τk, k = 1, . . . , K) can be expressed as

f (t) =


θ1 exp{−θ1t} 0 ≤ t < τ1

θ2 exp{−θ1τ1 − θ2(t − τ1)} τ1 ≤ t < τ2
...
θK+1 exp{−θ1τ1 − θ2(τ2 − τ1)− . . . − θK+1(t − τK)} t ≥ τK

(1)

with corresponding hazard function

h(t) =


θ1 0 ≤ t < τ1

θ2 τ1 ≤ t < τ2
...

...
θK+1 t ≥ τK .

(2)

We draw on the work of Walke (2010) in that we use the inverse hazard function to simulate survival
time t. Walke (2010) uses a baseline hazard and relative hazards to simulate each time interval between
change-points, whereas our simulation is based on the value of the scale parameter (θi, i = 1, . . . , K + 1)
corresponding to each interval as specified by the user. Starting with the relationship between the
cumulative density function (CDF) and the cumulative hazard function (F(t) = 1 − exp(−H(t))
where H(t) =

∫
h(t)dt) and noting that F(t) = U where U is a uniform random variable on (0,1),

we derive t = H−1(− log(1 − U)). Seeing as x = − log(1 − U) ∼ Exp(1), we can simulate random
variables from the exponential distribution and plug them into the inverse hazard function to get
simulated event time t. With this in mind, the inverse cumulative hazard function for the exponential
change-point hazard model with four change-points is

H−1(x) =



x
θ1

0 ≤ x < A
x−A

θ2
+ τ1 A ≤ x < A + B

x−A−B
θ3

+ τ2 A + B ≤ x < A + B + C
x−A−B−C

θ4
+ τ3 A + B + C ≤ x < A + B + C + D

x−A−B−C−D
θ5

+ τ4 x ≥ A + B + C + D

(3)

where A = θ1τ1, B = θ2(τ2 − τ1), C = θ3(τ3 − τ2), and D = θ4(τ4 − τ3). In cpsurvsim, this method
of simulating time-to-event data is considered the CDF method. An end-of-study time horizon (or
maximum measurement time) is specified by the user and all simulated event times with values
greater than the end time are censored at that point (type I right censoring).

The Weibull distribution is another popular parametric model for survival data due to its flexibility
to fit a variety of hazard shapes while still satisfying the proportional hazards assumption. Note that
when γ = 1, it is identical to the exponential distribution. The Weibull change-point model has the
probability density function

f (t) =



θ1tγ−1 exp{− θ1
γ tγ} 0 ≤ t < τ1

θ2tγ−1 exp{− θ2
γ (tγ − τ

γ
1 )−

θ1
γ τ

γ
1 } τ1 ≤ t < τ2

...
θK+1tγ−1 exp{− θK+1

γ (tγ − τ
γ
K )−

θK
γ (τγ

K − τ
γ
K−1)− . . . − θ1

γ τ
γ
1 } t ≥ τK

(4)

with corresponding hazard function

h(t) =


θ1tγ−1 0 ≤ t < τ1

θ2tγ−1 τ1 ≤ t < τ2
...

...
θK+1tγ−1 t ≥ τK .

(5)

As with the exponential model, event times can be simulated using the inverse hazard function (shown
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Function Hazard model Simulation method

exp_cdfsim Piecewise constant Inverse hazard function
exp_memsim Piecewise constant Memoryless
weib_cdfsim Weibull change-point Inverse hazard function
weib_memsim Weibull change-point Memoryless

Table 2: Summary of functions for simulating data using cpsurvsim

here with four change-points)

H−1(x) =



( γ
θ1

x)1/γ 0 ≤ x < A
[ γ

θ2
(x − A) + τ

γ
1 ]

1/γ A ≤ x < A + B
[ γ

θ3
(x − A − B) + τ

γ
2 ]

1/γ A + B ≤ x < A + B + C
[ γ

θ4
(x − A − B − C) + τ

γ
3 ]

1/γ A + B + C ≤ x < A + B + C + D
[ γ

θ5
(x − A − B − C − D) + τ

γ
4 ]

1/γ x ≥ A + B + C + D

(6)

where A = θ1
γ τ

γ
1 , B = θ2

γ (τγ
2 − τ

γ
1 ), C = θ3

γ (τγ
3 − τ

γ
2 ), and D = θ4

γ (τγ
4 − τ

γ
3 ).

Zhou (2001) touches on the idea of the memoryless property as a means of interpreting the
piecewise exponential model, however, we take this one step further by using this property to simulate
data from change-point hazard models. In survival analysis, the memoryless property states that
the probability of an individual experiencing an event at time t is independent of the probability
of experiencing an event up to that point. Likewise, the probability of an event occurring after a
change-point is independent of the probability that the event occurs before the change-point.

Our memoryless simulation method uses this extension of the memoryless property in that data
between change-points are simulated from independent exponential or Weibull hazard distributions
with scale parameters θi corresponding to each time interval. Participants with simulated survival
times past the next change-point are considered surviving at least to that change-point and then an
additional survival time is simulated for them in the next time interval. Total time to event is calculated
as the sum of time in each interval between change-points, with those surviving past the study end
time censored at that point. Survival times within each interval are calculated using the inverse hazard
of the independent exponential or Weibull function representing that time period. In this way, the
inverse hazard and memoryless methods are equivalent when there are no change-points.

3 The cpsurvsim package

The cpsurvsim package can be installed from CRAN. Functions for simulating data are summarized
in Table 2

As an example of the functions exp_cdfsim and weib_cdfsim, which simulate data using the
inverse hazard method from the exponential and Weibull distributions, respectively, consider the
following:

library(cpsurvsim)
dta1 <- exp_cdfsim(n = 50, endtime = 100, theta = c(0.005, 0.01, 0.05),
+ tau = c(33, 66))
head(dta1)

time censor
1 100.00000 0
2 85.99736 1
3 78.21772 1
4 71.03138 1
5 100.00000 0
6 82.71520 1

dta2 <- weib_cdfsim(n = 50, endtime = 100, gamma = 2,
+ theta = c(0.0001, 0.0002, 0.0001), tau = c(33, 66))
head(dta2)
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time censor
1 11.36844 1
2 100.00000 0
3 81.04904 1
4 100.00000 0
5 71.93590 1
6 56.40275 1

When simulating using the memoryless method, we use the following calls from cpsurvsim:

dta3 <- exp_memsim(n = 50, endtime = 100, theta = c(0.005, 0.01, 0.05),
+ tau = c(33, 66))
head(dta3)

time censor
1 93.64262 1
2 63.47413 1
3 84.54253 1
4 89.01574 1
5 73.92685 1
6 23.67631 1

dta4 <- weib_memsim(n = 50, endtime = 100, gamma = 2,
+ theta = c(0.0001, 0.0002, 0.0001), tau = c(33, 66))
head(dta4)

time censor
1 59.47848 1
2 100.00000 0
3 62.08739 1
4 100.00000 0
5 100.00000 0
6 100.00000 0

As seen in these examples, all four functions return a dataset with the survival times and a censoring
indicator.

4 Comparison of simulation methods

To compare the performance of the inverse hazard method with the memoryless method under
different settings, we conducted a simulation study using cpsurvsim. We simulated data with one,
two, three, and four change-points using both the exponential and Weibull distributions. In our
simulation, time t ranged from 0-100 and change-points occurred at various times within that range.
Sample sizes of 50, 100, and 500 were tested and values of θ were chosen to demonstrate differences
between the simulation methods when the hazard rate changes (e.g., smaller to larger hazard versus
larger to smaller hazard). For the Weibull simulations, we set γ = 2. We conducted 10,000 simulations
of each setting. We are primarily interested in comparing the ability of these two simulation methods
to simulate data with the correct change-points τi. Therefore, we compared how often the estimated
value (τ̂i) was within a 10% range, in this case [τi − 5, τi + 5] based on our time range. We also
evaluated whether the known values of τi fell within the 95% confidence interval of the average
simulated values for both methods as well as discuss bias in the model parameters. This simulation
study was conducted in R 3.6.1.

When simulating from the exponential distribution, these two simulation methods had comparable
accuracy in terms of the location of the change-points (see Figure 1). Sample size, however, had a large
impact on the accuracy regardless of the simulation method. When estimating one change-point with
a sample size of 50, there were a few simulation templates where less than a third of estimates τ̂ were
within range of the known change-point (Figure 1a). In general, accuracy improved as the sample
size increased. For every simulation scenario using the exponential distribution, the 95% confidence
interval for the mean estimate of τi included the known value.

Simulations for the Weibull distribution, however, revealed important differences in accuracy
between the two methods (see Figure 2). Although accuracy of the two methods was similar when
simulating one change-point, there were many cases where accuracy was very low, even with a sample
size of 500 (Figure 2a). In almost one quarter (4/18) of the simulation scenarios, the true value of τ
was not within the 95% confidence interval of the average estimate for either method. In three of
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(a) One change-point.
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(b) Two change-points.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Inv τ1 Mem τ1 Inv τ2 Mem τ2 Inv τ3 Mem τ3

P
ro

po
rt

io
n 

w
ith

in
 ±

 5

Sample size ● ● ●50 100 500

(c) Three change-points.
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(d) Four change-points.

Figure 1: Accuracy of change-point simulations for the exponential distribution. The y-axis represents
the proportion of change-point estimates (τ̂) within 10% of the known value. “Inv” refers to the inverse
hazard method and “Mem” refers to the memoryless method. This figure demonstrates that accuracy
is higher with a larger sample size and is similar for both simulation methods.

those scenarios, both simulation methods severely underestimated τ when the true value was 80.
When simulating two change-points (Figure 2b), accuracy of the first change-point was often much
lower when using the memoryless method, especially with a larger sample size. All except one of the
simulation scenarios where the known value of τ1 did not fall within the 95% confidence interval of
the average estimate for the memoryless method had a sample size of 500. Accuracy was lower for
all change-points in the three change-point simulations when using the memoryless method and the
discrepancies between the two methods were larger for larger sample sizes (Figure 2c). In almost half
of the simulation scenarios at least one value of τi was not within the 95% confidence interval of the
mean estimate for the memoryless method and all except one of those scenarios had a sample size
of 500. When simulating four change-points (Figure 2d), for most scenarios there was a large drop
in accuracy at the first and third change-point for the memoryless method compared to the inverse
hazard method. At the second and fourth change-points, however, there was a drop in accuracy for
sample sizes of 50 and 100 whereas most simulation scenarios with a sample size of 500 had similar
accuracy between the two methods. Every simulation scenario for four change-points with a sample
size of 500 using the memoryless method had at least one change-point where the 95% confidence
interval did not include the known value of τi. The known value of τ4 was, however, included in the
95% confidence interval for every scenario with a sample size of 500.

We suspected that the inaccurate estimates using the Weibull distribution were due to inaccuracies
in estimating the shape parameter γ, which is assumed constant across all time intervals. Indeed, γ
was often under-estimated as seen in Figure 3. Values of γ, however, were similar for both methods
except when there were three change-points (Figure 3c), in which case the estimates of γ using the
inverse hazard method were closer to the known value of two. We were unable to estimate γ for the
simulations using the memoryless method when there was a sample size of 50 (Figure 3d).
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(a) One change-point.
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(b) Two change-points.
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(c) Three change-points.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Inv τ1 Mem τ1 Inv τ2 Mem τ2 Inv τ3 Mem τ3 Inv τ4 Mem τ4

P
ro

po
rt

io
n 

w
ith

in
 ±

 5

Sample size ● ● ●50 100 500

(d) Four change-points.

Figure 2: Accuracy of change-point simulations for the Weibull distribution. The y-axis represents the
proportion of change-point estimates (τ̂) within 10% of the known value. “Inv” refers to the inverse
hazard method and “Mem” refers to the memoryless method. This figure demonstrates that accuracy
is generally higher with larger sample sizes and when using the inverse hazard method.

5 Summary

The R package cpsurvsim provides implementation of the standard method of simulating from a
distribution, using the inverse CDF, and a new method that exploits the memoryless property of
survival analysis. When simulating from the exponential distribution with multiple change-points,
these methods have comparable performance. Simulating multiple change-points from the Weibull
hazard, however, suggested that the inverse hazard method produces more accurate estimates of
the change-points τi. The accuracy of the exponential simulations suffered when the sample size
was less than 500 whereas in some cases, simulations of the Weibull distribution had worse accuracy
with a sample size of 500. In practice, change-point hazard models are often applied to data from
large longitudinal cohort studies where the sample size is very large (e.g., Goodman et al. (2011)
and Williams and Kim (2013)). These results suggest that larger sample sizes are preferred when
using an exponential model but to use caution even with a large sample when using the Weibull
model. We hope that having an R package for simulating data from multiple change-point hazard
distributions will aid in the development of extensions and alternatives to our research on tests for
multiple change-points (Hochheimer and Sabo, 2021).

The inspiration to develop the memoryless simulation method and test it came from observing
the shortcomings of the inverse hazard method in our research. The memoryless method performs
better in some simulation scenarios, which led us to implement both methods in this R package.
This simulation study, however, suggests that in the majority of cases the inverse hazard method
simulates values of τi more accurately. Our simulation study also highlighted accuracy issues with
both methods when simulating data from sample sizes of 50 or 100, which we suspect are due to
using a relatively small amount of data to estimate several model parameters. One should consider
exploring other methods to simulate a multiple change-point distribution with a small sample size.
The acceptance-rejection method, for example, may produce more accurate parameter estimates at
the cost of more computational time needed to reach the desired sample size, a cost that might be
worthwhile if the sample size is smaller to begin with (Rizzo, 2007). Alternatively, one might run a
simulation study to determine which of these two methods is best suited for their specific parameters.
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Figure 3: Estimated values of shape parameter γ for the Weibull distribution. Dots indicate the average
estimated value for each simulation scenario with the vertical lines representing the 95% CI. The solid
horizontal line represents the known value of γ. This plot demonstrates inaccurate estimates of γ for
both simulation methods except when there are three change-points, in which case the estimates are
more accurate using the inverse hazard method.

An important limitation of the exp_cdfsim and weib_cdfsim functions is that they only accom-
modate up to four change-points. While it’s possible to have more than this many change-points
in a dataset, it’s also important to make sure that there is a meaningful interpretation for multiple
change-points. Also, cpsurvsim only accommodates type I right censoring. For the Weibull distri-
bution, γ is assumed fixed for every interval between change-points. In our simulation study, we
only estimated an overall value of γ due to convergence issues when trying to estimate it within
each interval between change-points. In an effort to be concise, the accuracy of the scale parameters
θi are not discussed here, however, in some cases this parameter may be of more interest than the
change-point τ. Thus, we briefly discuss these results in the appendix. Future versions of cpsurvsim
could incorporate additional features such as accommodating informative censoring.
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1 Appendix: Analysis of scale parameters

While the change-points can be estimated without knowing the values of the scale parameters, the
reverse is not possible. Thus, we used the estimated values of the change-points in order to estimate
values of θi. As the number of change-points increased, so did the difficulty in estimating values of θi,
especially with a smaller sample size.

With a few exceptions, the estimates of θi for the exponential distribution were similar between
both methods (Figure 4). These exceptions were θ2 in the two change-point (Figure 4b) and three
change-point models (Figure 4c), where the memoryless method with a sample size of 100 had a
much larger proportion of bias. We were only able to estimate the shape parameters for the four
change-point model when the sample size was 500.
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Figure 4: Accuracy of scale parameter θ̂i for the exponential distribution. The y-axis represents the
average proportion of bias of θ̂i relative to the known value of θi. A proportion of bias of 2 represents
estimates with at least 200% bias. “Inv” refers to the inverse hazard method and “Mem” refers to the
memoryless method. This figure demonstrates that bias was generally similar between simulation
methods with a few exceptions where bias was larger using the memoryless method.

Estimates of θi for the one change-point Weibull model were similar across simulation methods
but bias was high even when the sample size was large (Figure 5a). Bias was generally smaller when
using the memoryless method to estimate θi in the two change-point Weibull model (Figure 5b). On
the other hand, bias was larger when using the memoryless method to estimate the shape parameter
for the three change-point Weibull model (Figure 5c). We were unable to estimate θ using the results
from the memoryless method for any of the four change-point simulations.
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(a) One change-point.
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(b) Two change-points.
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Figure 5: Accuracy of scale parameter θ̂i for the Weibull distribution. The y-axis represents the average
proportion of bias of θ̂i relative to the known value of θi. A proportion of bias of 2 represents estimates
with at least 200% bias. “Inv” refers to the inverse hazard method and “Mem” refers to the memoryless
method. This figure demonstrates similar bias between methods when there is one change-point,
smaller bias using the memoryless method when there are two change-points, and smaller bias using
the inverse hazard method when there are three change-points.
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