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tvReg: Time-varying Coefficients in
Multi-Equation Regression in R
by Isabel Casas and Rubén Fernández-Casal

Abstract This article explains the usage of R package tvReg, publicly available for download from the
Comprehensive R Archive Network, via its application to economic and finance problems. The six
basic functions in this package cover the kernel estimation of semiparametric panel data, seemingly
unrelated equations, vector autoregressive, impulse response, and linear regression models whose
coefficients may vary with time or any random variable. Moreover, this package provides methods
for the graphical display of results, forecast, prediction, extraction of the residuals and fitted values,
bandwidth selection and nonparametric estimation of the time-varying variance-covariance matrix
of the error term. Applications to risk management, portfolio management, asset management and
monetary policy are used as examples of these functions usage.

1 Introduction

A very popular research area has been brewing in the field of kernel smoothing statistics applied
to linear models with time-varying coefficients. In econometrics, Robinson (1989) was the first to
analyse these models for linear regressions with time-varying coefficients and stationary variables.
Since then, this literature has extended to models with fewer restrictions in the dependence of the
variables to models with time dependence in the error term and to multi-equation models. Although
these models are potentially applicable to a large number of areas, no comprehensive computational
implementation is, to our knowledge, formally available in any of the commercial programming
languages. The package tvReg contains the aforementioned functionality, input and output interface,
and user-friendly documentation.

Parametric multi-equation linear models have increased in popularity in the last decades due to an
increase in access to multiple datasets. Their application extends to, perhaps, every field of quantitative
research. Just to mention some, they are found in biostatistics, finance, economics, business, climate,
linguistics, psychology, engineering and oceanography. Panel linear models (PLM) are widely used
to account for the heterogeneity in the cross-section and time dimensions. Seemingly unrelated
equations (SURE) and vector autoregressive models (VAR) are the extensions of linear regressions and
autoregressive models to the multi-equation framework. Programs with these algorithms are found in
all major programming languages. Particularly in R, the package plm (Croissant and Millo, 2018, 2008)
contains a comprehensive functionality for panel data models. The package systemfit (Henningsen
and Hamann, 2007) allows the estimation of coefficients in systems of linear regressions, both with
equation error terms correlated among equations (SURE) or uncorrelated. Finally, the package vars
(Pfaff, 2008) provides the tools to fit VAR models and impulse response functions (IRF). All these
functions assume that the coefficients are constant. This assumption might not be true when a time
series runs for a long period, and the relationships among variables do change. The package tvReg is
relevant in this case.

In comparison to parametric models, the appeal of nonparametric models is their flexibility and
robustness to functional form misspecification, with spline-based and kernel-based regression methods
being the two main nonparametric estimation techniques, (e.g. Eubank, 1999). However, fully non-
parametric models are not appropriate when many regressors are in play, as their rate of convergence
decreases with the number of regressors, the infamous “curse of dimensionality”. In the case of
cross-section data, a popular alternative to avoid this problem are the generalised additive models
(GAM), introduced by Hastie and Tibshirani (1993). The GAM is a family of semiparametric models
that extends parametric linear models by allowing for non-linear relationships of the explanatory
variables and still retaining the additive structure of the model. In the case of time-series data, the
most suitable alternative to nonparametric models is the linear models whose coefficients change over
time or follow the dynamics of another random variable. This functionality is coded in R, within the
single-equation framework, in packages mgm (Haslbeck and Waldorp, 2020), and MARSS (Holmes
et al., 2012). Package tvReg uses the identical kernel smoothing estimation as package mgm when
using a Gaussian kernel to estimate a VAR model with varying coefficients (TVVAR). However, the
interpretation of their results is different because they are aimed at different audiences. The mgm
focuses in the field of network models, producing network plots to represent relationships between
current variables and their lags. Whereas the tvReg focuses in the field of economics where a direct
interpretation of the TVVAR coefficients is not meaningful and may be done via the time-varying
impulse response function (TVIRF) instead. Models with coefficients varying over time can also be

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=tvReg
https://CRAN.R-project.org/package=plm
https://CRAN.R-project.org/package=systemfit
https://CRAN.R-project.org/package=vars
https://CRAN.R-project.org/package=mgm
https://CRAN.R-project.org/package=MARSS


CONTRIBUTED RESEARCH ARTICLE 80

expressed in state space form, which assumes that the coefficients change over time in a determined
way for example, as a Brownian motion. These models can be estimated using the Kalman filter or
Bayesian techniques, for instance (Liu and Guo, 2020; Primiceri, 2005). Packages MARSS and bvarsv
(Krueger, 2015) implement this approach based on the Carter and Kohn (1994) algorithm to estimate
the TVVAR. On top of all this and as far as we can tell, the tvReg is the only package containing tools
to estimate time-varying coefficients seemingly unrelated equation (TVSURE) and panel linear models
(TVPLM) in R.

Simply, the main objective of the tvReg is to provide tools to estimate and forecast linear models
with time-varying coefficients in the framework of kernel smoothing estimation, which may be difficult
for the nonspecialised end-user to code. For completion, the tvReg also implements methods for
the time-varying coefficients linear model (TVLM) and the time-varying coefficients autoregressive
(TVAR) model. Often, these can be estimated using packages gam (Hastie, 2022) and mgcv (Wood,
2017), which combine (restricted) marginal likelihood techniques in combination with nonparametric
methodologies. However, the advantage of using the tvReg is that it can handle dependency and any
kind of distribution in the error term because it combines least squares techniques with nonparametric
methodologies. An example of this is shown in Section Standard usage of tvLM.

Summing up, this paper presents a review of the most common time-varying coefficient linear
models studied in the econometrics literature during the last two decades, their estimation using
kernel smoothing techniques, the usage of functions and methods in the package tvReg, and their
latest applications. Along these lines, Table 1 offers a glimpse at the tvReg full functionality, displaying
a summary of its methods, classes and functions.

Function Class Function and Methods for class Based on
tvPLM "tvPLM" tvRE, tvFE, coef, confint, fitted,

forecast, plot, predict, print, resid,
summary

plm::plm

tvSURE "tvsure" tvGLS, bw, coef, confint, fitted,
forecast, plot, predict, print, resid,
summary

systemfit::systemfit

tvVAR "tvvar" tvAcoef, tvBcoef, tvIRF, tvOLS, tvPhi,
tvPsi, bw, coef, confint, fitted,
forecast, plot, predict, print, resid,
summary

vars::VAR

tvIRF "tvirf" coef, confint, plot, print, summary vars::irf
tvLM "tvlm" tvOLS, bw, coef, confint, fitted,

forecast, plot, predict, print, resid,
summary

stats::lm

tvAR "tvar" tvOLS, bw, coef, confint, fitted,
forecast, plot, predict, print, resid,
summary

stats::ar.ols

Table 1: Structure of the package tvReg.

2 Multi-equation linear models with time-varying coefficients

A multi-equation model formed by a set of linear models is defined when each equation has its own
dependent variable and possible different regressors. Seemingly unrelated equations, panel data
models and vector autoregressive models are included in this category.

Time-varying coefficients SURE

The SURE was proposed by Zellner (1962) and is referred to as the seemingly unrelated equations
model (SURE). The SURE model is useful to exploit the correlation structure between the error terms
of each equation. Suppose that there are N linear regressions of different dependent variables,

Yt = Xtβ(zt) + Ut i = 1, . . . , N t = 1, . . . , T, (1)

where Yt = (y1t . . . yNt)
⊤ with yi = (yi1, . . . , yiT)

⊤ denotes the values over the recorded time period
of the i − th dependent variable. Each equation in (1) may have a different number of exogenous
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variables, pi. The regressors matrix, Xt = diag(x1t . . . xNt) with Xi = (xi1, . . . , xipi ) for equation
i and βzt = (β1(zt)

⊤, ..., βN(zt)
⊤)⊤ is a vector of order P = p1 + p2 + . . . + pN . The error vector,

Ut = (u1t . . . uNt)
⊤, has zero mean and covariance matrix E(UtU⊤

t ) = Σt with elements σii′t.

It is important to differentiate between two types of smoothing variables: 1) zt = τ = t/T is the
rescaled time with τ ∈ [0, 1], and 2) zt is the value at time t of the random variable Z = {zt}T

t=1. In
other words, time-varying coefficients may be defined as unknown functions of time, β(zt) = f (τ),
or as unknown functions of a random variable, β(zt) = f (zt). The estimation of the TVSURE has
been studied by Henderson et al. (2015) when for a random zt and by Orbe et al. (2005) and Casas
et al. (2019) for zt = τ. These estimators are consistent and asymptotically normal under certain
assumptions on the size of the bandwidth, kernel regularity and error moments, and dependency.
Details are left out of this text as can be easily found in the related literature.

The estimation of system (1) may be done separately for each equation as if there is no correlation
in the error term across equations, i.e. system (1) has a total of N different TVLM with possibly N
different bandwidths, bi. In this case, the time-varying coefficients are obtained by combining the
ordinary least squares (OLS) and the local polynomial kernel estimator, which is extensively studied
in Fan and Gijbels (1996). The result is the time-varying OLS denoted by TVOLS herein. Two versions
of this estimator are implemented in tvReg: i) the TVOLS that uses the local constant (lc) kernel
method, also known as the Nadaraya-Watson estimator; and ii) the TVOLS which uses the local linear
(ll) method. Focussing in the single equation i, and assuming that βi(·) is twice differentiable, an

approximation of βi(zt) around z is given by the Taylor rule, βi(zt) ≈ βi(z) + β
(1)
i (z)(zt − z), where

β
(1)
i (z) = dβi(z)/dz is its first derivative. The estimates resolve the following minimisation:

(β̂i(zt), β̂
(1)
i (zt)) = arg min

θ0,θ1

T

∑
t=1

[
yi − X⊤

i θ0 − (zt − z)X⊤
i θ1

]2
Kbi

(zt − z).

Roughly, these methodologies fit a set of weighted local regressions with an optimally chosen window
size. The size of these windows is given by the bandwidth bi, and the weights are given by Kbi

(zt − z) =
b−1

i K( zt−z
bi

), for a kernel function K(·). The local linear estimator general expression is(
β̂i(zt)

β̂
(1)
i (zt)

)
=

(
ST,0(zt) S⊤

T,1(zt)

ST,1(zt) ST,2(zt)

)−1 (
TT,0(zt)
TT,1(zt)

)
(2)

with

ST,s(zt) =
1
T

T

∑
i=1

X⊤
i Xi(zi − zt)

sK
(

zi − zt
bi

)

TT,s(zt) =
1
T

T

∑
i=1

X⊤
i (zi − zt)

sK
(

zi − zt
bi

)
yi

and s = 0, 1, 2. The particular case of the local constant estimator is calculated by β̂i,t = S−1
T,0(zt)TT,0(zt)

and it is only necessary that βi(·) has one derivative.

A second option is to use the correlation matrix of the error term in the estimation of system
(1). This is called the time-varying generalised least squares (TVGLS) estimation. Its mathematical
expression is the same as (2) with the following matrix components:

ST,s(zt) =
1
T

T

∑
i=1

X⊤
i K1/2

B,it Σ−1
i K1/2

B,it Xi(Zi − zt)
s

TT,s(zt) =
1
T

T

∑
i=1

X⊤
i K1/2

B,it Σ−1
i K1/2

B,it Yi(Zi − zt)
s, (3)

where KB,it = diag(Kb1,it, ..., KbN ,it) and Kbi ,it = (Tbi)
−1K((Zi − zt)/(Tbi)) is the matrix of weights

introducing smoothness according to the vector of bandwidths, B = (b1, . . . , bN)⊤. Note that this
minimisation problem accounts for the time-varying structure of the variance-covariance matrix of the
errors, Σt.

The TVGLS assumes that the error variance-covariance matrix is known. In practice, this is unlikely
and it must be estimated, resulting in the Feasible TVGLS estimator (TVFGLS). This estimator consists
of two steps:

Step 1 Estimate Σt based on the residuals of a line by line estimation (i.e, when Σt is the identity
matrix). If Σt is known to be constant, the sample variance-covariance matrix from the residuals
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is a consistent estimator of it. If Σt changes over time, a nonparametric estimator such the
one explained in Section Estimating a time-varying variance-covariance matrix is a consistent
alternative.

Step 2 Estimate the coefficients of the TVSURE by plugging in Σ̂t from step 1 into Equation (3).

To ensure a good estimation of Σt, the iterative TVFLGS may be used. First, do steps 1-2 as above to
obtain the residuals from step 2, and repeat step 2 until the estimates of Σt converge or the maximum
number of iterations is reached.

Time-varying coefficients panel data models

Panel data linear models (PLM) are a particular case of SURE models with the same variables for each
equation but measured for different cross-section units, such as countries, and for different points
in time. All equations have the same coefficients apart from the intercept which can be different
for different cross-sections. Therefore, the data from all cross-sections can be pooled together. The
individual effects, αi, account for the heterogeneity embedded in the cross-section dimension. This
package only take into account balanced panel datasets, i.e. with the same number of data points for
each cross-section unit.

Coefficient dynamics can be added to classical PLM models using a time-varying coefficients panel
data model, TVPLM. Recent developments in this kind of models can be found in Sun et al. (2009);
Dong, C. Jiti Gao, J. and Peng, B. (2015); Casas et al. (2021); Dong et al. (2021) among others, with
general model,

yit = αi + x⊤it β(zt) + uit i = 1, . . . , N, t = 1, . . . , T. (4)

Note that the smoothing variable only changes in the time dimension, not like in the SURE model
where it changed over i and t. The three estimators of Equation (4) in the tvReg are:

1. The time-varying pooled ordinary least squares (TVPOLS) has the same expression than estima-
tor (2) with the following terms:

ST,s(zt) =X⊤K∗
b,tX(Z − zt)

s

TT,s(zt) =X⊤K∗
b,tY(Z − zt)

s, (5)

where K∗
b,t = IN ⊗ diag{Kb(z1 − zt), . . . , Kb(zT − zt)}. Note that it is not possible to ignore the

panel structure in the semiparametric model because the coefficients change over time. The
consistency and asymptotic normality of this estimator needs the classical assumptions about
the kernel and the regularity of the coefficients, available in the related literature.

2. The time-varying random effects (TVRE) estimator is also given by Equation (5) with a non-
identity Σ:

ST,s(zt) =X⊤K∗1/2
b,t Σ−1

t K∗1/2
b,t X(Z − zt)

s

TT,s(zt) =K∗1/2
b,t Σ−1

t K∗1/2
b,t Y(Z − zt)

s. (6)

Note that this is a simpler case of (3) with the same bandwidth for all equations. The variance-
covariance matrix is estimated in the same way using the residuals from the TVPOLS and it
may be an iterative algorithm until convergence of the coefficients.

3. The time-varying fixed effects (TVFE) estimator. Unfortunately, the transformation for the
within estimation does not work in the time-varying coefficients model because the coefficients
depend on time (Sun et al., 2009, explain the issue in detail). Therefore, it is necessary to make
the assumption that ∑N

i=1 αi = 0 for identification. The terms in the TVFE estimator are:

ST,s(zt) =X⊤Wb,tX(Z − zt)
s

TT,s(zt) =X⊤Wb,tY(Z − zt)
s, (7)

where Wb,t = D⊤
t K∗

b,tDt, Dt = INT − D(D⊤K∗
b,tD)−1D⊤K∗

b,t, D = (−1N−1, IN−1)
⊤ ⊗ 1T , and 1k

is the unity vector of length k. The fixed effects are given by, α̂ = (D⊤K∗
b,tD)−1D⊤K∗

b,t(Y−X⊤β).
Finally, α̂i =

1
T ∑T

t=1 αit for i = 2, . . . , N.

Time-varying coefficient VAR model

Macroeconomic econometrics experienced a revolution when Sims (1980) presented the vector au-
toregressive (VAR) model: a new way of summarising relationships among several variables while
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getting around the problem of endogeneity of structural models. The VAR model has lagged values
of the dependent variable, yt, as regressors to which further exogenous variables can be added as
regressors. Unless the model is constrained, all variables are the same for every equation, which
simplifies the algebra. The model coefficients and variance-covariance matrix may be estimated by
maximum likelihood, OLS or GLS. VAR coefficients and the variance-covariance matrix do not have
a direct economic interpretation. However, it is possible to use them to recover a structural model
by imposing a number of restrictions and so analyse the transmission of a shock, for example, a new
monetary policy, to the macroeconomy using the impulse response function (IRF). Lütkepohl (2005)
dive into the theoretical properties of these models in detail.

The TVVAR(p) is an N-dimensional system of time-varying autoregressive processes of order p
like

Yt = A0,t + A1,tYt−1 + . . . + Ap,tYt−p + Ut, t = 1, 2, . . . , T. (8)

In Equation (8), Yt = (y1t, . . . , yNt)
⊤ and coefficient matrices at each point in time Aj,t = (aj

1t, . . . , aj
Nt),

j = 1, . . . , p are of dimension N × N. Then, notation Aj,t means that the elements of this matrix
are unknown functions of either the rescaled time value, τ, or of a random variable at time t. The
innovation, Ut = (u1t, . . . , uNt), is an N-dimensional identically distributed random variable with
E(Ut) = 0 and possibly a time-varying positive definite variance-covariance matrix, E(UtU⊤

s ) =
Σt, for t = s, E(UtU⊤

s ) = 0 otherwise. Here, matrix Aj,t is a function of τ, then process (8) is locally
stationary in the sense of Dahlhaus (1997), which occurs when the functions in matrices Aj,t are
constant or change smoothly over time. Then, process (8) at time t has a well defined unique solution
given by the Wold representation,

ȳt =
∞

∑
j=0

Φj,tUt−j, (9)

such that |Yt − ȳt| → 0 almost surely. Matrix Φ0,t = IN and matrix Φs,t = ∑s
j=1 Φs−j,t Aj,t for horizons

s = 1, 2, . . . As for the constant model, Φs,t are the time-varying coefficient matrices of the impulse
response function (TVIRF). Its element (t, i, j) may be interpreted as the expected response of yi,t+s to
an exogenous shock of yj,t ceteris paribus lags of yt when the innovations are orthogonal. Otherwise,
an orthogonal TVIRF can be found as Ψj,t = Φj,tPt for Σt = PtP⊤

t , the Cholesky decomposition of Σt
at time t. More theoretical details in Yan et al. (2021).

In the macroeconomic literature, the Bayesian estimation of process (8) has attracted a lot of
attention in recent years driven by results in Cogley and Sargent (2005); Primiceri (2005) and Kapetanios
et al. (2012). In their approach, the coefficients are assumed to follow a random walk. Recently,
Kapetanios et al. (2017) studied the inference of the local constant estimator of a TVVAR(p) for large
sets, and they found an increase in the forecast accuracy in comparison to the forecast accuracy of the
VAR(p).

3 Standard usage of tvSURE

The main argument of this function is a list of formulas, one for each equation. The formula follows the
format of formula in the package systemfit, which implements estimators of parametric multi-equation
models with constant coefficients. The tvSURE wraps the tvOLS and tvGLS methods to estimate the
coefficients of system (1). The tvOLS method is used by default, calculating estimates for each equation
independently with different bandwidths, bw. The user is able to enter a set of bandwidths or a single
bandwidth to be used in the estimation instead. The tvGLS method has argument Sigma where a
known variance-covariance matrix of the error can be entered in Equation (3). Otherwise, if Sigma
= NULL, the variance-covariance matrix Σt is estimated using function tvCov, which is discussed in
Section Estimating a time-varying variance-covariance matrix.

In addition to formula, function tvSURE has other arguments to control and choose the desired
estimation procedure:

Smoothing random variable
All methods assume by default that the coefficients are unknown functions of τ = t/T and
therefore argument z is set to NULL. The user can modify this setting by entering a numeric
vector in argument z with the values of the random smoothing variable over the corresponding
time period. Note that the current version only allows one single smoothing random variable, z,
common for all equations; and balanced panels.

Bandwidth
When argument bw is set to NULL, it is automatically selected by leave-one-out cross-validation.
It is possible to select it by leave-k-out cross-validation (Chu and Marron, 1991) by setting
argument cv.block = k (k=0 by default). This minimisation can be slow for large datasets, and
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it should be avoided if the user knows an appropriate value of the bandwidth for the required
problem.

Kernel type
The three choices for this argument are tkernel = "Triweight" (default), tkernel = "Epa" and
tkernel = "Gaussian". The first two options refer to the Triweight and Epanechnikov kernels,
which are compact in [-1, 1]. The authors recommend the use of either of those two instead of
the Gaussian kernel which, in general, requires more calculations.

Degree of local polynomial
The default estimation methodology is the Nadaraya-Watson or local constant, which is set as
(est = "lc") and it fits a constant at each interval defined by the bandwidth. The argument est
= "ll" can be chosen to perform a local linear estimation (i.e., to fit a polynomial of order 1).

Singular fit
The tvOLS method used in the estimation wraps the lm.wfit method, which at default allows
the fitting of a low-rank model, and the estimation coefficients can be NAs. The user can change
the argument singular.ok to FALSE, so that the program stops in case of a low-rank model.

The user can restrict certain coefficients in the TVSURE model using arguments R and r. Note
that the restriction is done by setting those coefficients to a constant. Furthermore, argument method
defines the type of estimator to be used. The possible choices in argument method are:

1. "tvOLS" for a line by line estimation, i.e, with Σ the identity matrix.

2. "tvGLS" to estimate the coefficients of the system using Σt, for which the user must enter it in
argument Sigma. Argument Sigma takes either a symmetric matrix or an array. If Sigma is a
matrix (constant over time) then it must have dimensions neq × neq, where neq is the number of
equations in the system. If Σt changes with time, then argument Sigma is an array of dimension
neq × neq × obs, where the last dimension measures the number of time observations. Note that
if the user enters a diagonal variance-covariance matrix with diagonal values different from
one, then a time-varying weighted least squares is performed. If method ="tvGLS" is entered
but Sigma = NULL, then tvSURE is fitted as if method = "tvOLS" and a warning is issued.

3. "tvFGLS" to estimate the coefficients of the system using an estimate of Σt. By default, only one
iteration is performed in the estimation, unless argument control indicates otherwise. The user
can choose the maximum number of iterations or the level of tolerance in the estimation of Σt.
See example the below for details.

The package systemfit contains the Kmenta dataset, which was first described in Kmenta (1986),
to show the usage of the function systemfit to fit SURE models. This example has two equations:
i) a demand equation, which explains how food consumption per capita, consump, depends on the
ratio of food price, price; and disposable income, income; and ii) a supply equation, which shows
how consumption depends on price, ratio prices received by farmers to general consumer prices,
farmPrice; and a possible time trend, trend. Mathematically, this SURE model is

consumpt =β10 + β11 pricet + β12incomet + u1t

consumpt =β20 + β21 pricet + β22 f armPricet + β23t + u2t. (10)

The code below defines the system of equations using two formula calls which are put into a "list".

> data("Kmenta", package = "systemfit")
> eqDemand <- consump ~ price + income
> eqSupply <- consump ~ price + farmPrice + trend
> system <- list(demand = eqDemand, supply = eqSupply)

Two parametric models are fitted to the data using the function systemfit: one assuming that
there is no correlation of the errors setting (the default), OLS.fit below; and another one assuming the
existence of correlation in the system error term setting method = "SUR", FGLS1.fit below. Arguing
that the coefficients in (10) may change over time, the corresponding TVSUREs are fitted by using the
the function tvSURE with the default in the argument method and by method = "tvFGLS", respectively.
They are denoted by TVOLS.fit and TVFGLS1.fit.

> OLS.fit <- systemfit::systemfit(system, data = Kmenta)
> FGLS1.fit <- systemfit::systemfit(system, data = Kmenta, method = "SUR")
> TVOLS.fit <- tvSURE(system, data = Kmenta)
> TVFGLS1.fit <- tvSURE(system, data = Kmenta, method = "tvFGLS")
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In the previous chunk, the FGLS and TVFGLS estimators use only one iteration. However, the
user can choose the iterative FGLS and the iterative TVFGLS models, which estimate the coefficients
iteratively until convergence. The convergence level can be chosen with the argument tol (1e-05 by
default) and the argument maxiter with the maximum number of iterations. The following chunk
illustrates its usage:

> FGLS2.fit <- systemfit::systemfit(system, data = Kmenta, method = "SUR",
+ maxiter = 100)
> TVFGLS2.fit <- tvSURE(system, data = Kmenta, method = "tvFGLS",
+ control = list(tol = 0.001, maxiter = 100))

Some of the coefficients can be restricted to have a certain constant value in tvSURE. This can aid
statistical inference to test certain conditions. See an example of this below. Matrix R has as many
rows as restrictions in r and as many columns as regressors in the model. In this case, Model (10) has
7 coefficients which are ordered as they appear in the list of formulas. Note that the time-varying
coefficient of the variable trend is redundant when an intercept is included in the second equation
of the TVSURE. Therefore, we want to restrict its coefficient to zero. For illustration, we also impose
β11,t − β21,t = 0.5:

> Rrestr <- matrix(0, 2, 7)
> Rrestr[1, 7] <- 1; Rrestr[2, 2] <- 1; Rrestr[2, 5] <- -1
> qrestr <- c(0, 0.5)
> TVFGLS.rest <- tvSURE(system, data = Kmenta, method = "tvFGLS",
+ R = Rrestr, r = qrestr,
+ bw = TVFGLS1.fit$bw, bw.cov = TVFGLS1.fit$bw.cov)

Application to asset management

Several studies have argued that the three-factor model by Fama and French (1993) does not explain
the whole variation in average returns. In this line, Fama and French (2015) added two new factors
that measure the differences in profitability (robust and weak) and investment (conservative and
aggressive), creating their five-factor model (FF5F). This model has been applied in Fama and French
(2017) to analyse the international markets. A time-varying coefficients version of the FF5F has been
studied in Casas et al. (2019), whose dataset is included in the tvReg under the name of FF5F. The
TVFF5F model is

Rit − RFit =ait + bit (RMit − RFit) + sit SMBit + hit HMLit

+ rit RMWit + cit CMAit + uit, (11)

where Rit refers to the price return of the asset of certain portfolio for market i at time t, RFt is the
risk free return rate, and RMt represents the total market portfolio return. Therefore, Rit − RFit is the
expected excess return and RMit − RFit is the excess return on the market portfolio. The other factors,
SMBt stands for “small minus big” and represents the size premium, HMLt stands for “high minus
low” and represents the value premium, RMWt is a profitability factor, and CMAt accounts for the
investment capabilities of the company. Finally, the error term structure is

E(uitujs) =


σiit = σ2

it i = j, t = s
σijt i ̸= j, t = s
0 t ̸= s.

The FF5F dataset has been downloaded from the Kenneth R. French (2016) data library. It contains
the five factors from four different international markets: North America (NA), Japan (JP), Europe
(EU), and Asia Pacific (AP). For the dependent variable, the excess returns of portfolios formed on size
and book-to-market have been selected. The period runs from July 1990 to August 2016 and it has a
monthly frequency. The data contains the Small/Low, Small/High, Big/Low and Big/High portfolios.
The factors in the TVFF5F model explain the variation in returns well if the intercept is statistically
zero. The lines of code below illustrate how to fit a TVSURE to the Small/Low portfolio.

> data("FF5F")
> eqNA <- NA.SMALL.LoBM - NA.RF ~ NA.Mkt.RF + NA.SMB + NA.HML + NA.RMW + NA.CMA
> eqJP <- JP.SMALL.LoBM - JP.RF ~ JP.Mkt.RF + JP.SMB + JP.HML + JP.RMW + JP.CMA
> eqAP <- AP.SMALL.LoBM - AP.RF ~ AP.Mkt.RF + AP.SMB + AP.HML + AP.RMW + AP.CMA
> eqEU <- EU.SMALL.LoBM - EU.RF ~ EU.Mkt.RF + EU.SMB + EU.HML + EU.RMW + EU.CMA
> system2 <- list(NorthA = eqNA, JP = eqJP, AP = eqAP, EU = eqEU)
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> TVFF5F <- tvSURE(system2, data = FF5F, method = "tvFGLS",
+ bw = c(0.56, 0.27, 0.43, 0.18), bw.cov = 0.12)

The package tvReg also includes the functionality to compute confidence intervals for the coef-
ficients of class attributes "tvlm", "tvar", "tvplm", "tvsure" and "tvirf" by extending the confint
method. The algorithm in Fan and Zhang (2000) and Chen et al. (2017) to calculate bootstrap con-
fidence intervals has been adapted for all these class attributes. Argument level is set to 0.95 (95%
confidence interval) by default. Argument runs (100 by default) is the number of resamples used
in the bootstrapping calculation. Note that the calculation using runs = 100 can take long, so we
suggest to try a small value in runs first to get an initial intuition of the results. Because coefficients are
time-varying, only wild bootstrap residual resampling is implemented. Two choices of wildbootstrap
are allowed in argument tboot: the default one proposed in Mammen (1993) (tboot = "wild"); and
the standard normal (tboot = "wild2").

In the backend code, coefficient estimates from all replications are stored in the BOOT variable. In
this way, calculations are not done again if the user chooses a different level for the same object.
In the chunk below, the confint method calculates the 90% confidence interval of the object TVFF5F.
Posteriorly, the 95% interval is calculated quickly because the resample calculations in the first interval
are re-used for the second.Thus, the 90% confidence interval calculation takes around 318 seconds
with a 2.2 GHz Intel Core i7 processor and the posterior 95% confidence interval takes only around 0.7
seconds.

> TVFF5F.90 <- confint(TVFF5F, level = 0.90)
> TVFF5F.95 <- confint(TVFF5F.90)

The plot method is implemented for each of the six class attributes in tvReg. For example, the
95% confidence intervals of the intercept for the North American, Japanese, Asia Pacific and European
markets Figure 1 are with plot statement below, that produces four independent plots of the first
variable (the intercept in this case) in each equation due to argument vars = 1.

> plot(TVFF5F.95, vars = 1)

The user can also choose to plot the coefficients of several variables and/or equations. Plots will
be grouped by equation, with a maximum of three variables per plot. The piece of code below show
how to plot the coefficients of the second and third variables from the Japan market equation, which
results can be seen in Figure 2.

> plot(TVFF5F.95, vars = c(2, 3), eqs = 2)

4 Standard usage of tvPLM

The tvPLM method is inspired by the plm method from the package plm. It converts data into an
object of the class attribute "pdata.frame" using argument index to define the cross-section and time
dimensions. If index = NULL (default), the two first columns of data define the dimensions. The tvPLM
wraps the tvRE and tvFE methods to estimate the coefficients of time-varying panel data models.

The user can provide additional optional arguments to modify the default estimation. See section
2.3 for details on arguments z, bw, est and tkernel. Furthermore, argument method defines the
estimator used. The possible choices based on package plm choices are: "pooling" (default), "random"
and "within".

Application to health policy

The income elasticity of healthcare expenditure is defined as the percentage change in healthcare
expenditure in response to the percentage change in income per capita. If this elasticity is greater
than one, then healthcare expenditure grows faster than income, as luxury goods do, and is driven
by market forces alone. The heterogeneity of health systems among countries and time periods
have motivated the use of panel data models, for example in Gerdtham et al. (1992) who use a FE
model. Recently, Casas et al. (2021) have investigated the problem from the time-varying panel models
perspective using the TVFE estimation. In addition to the income per capita, measured by the log
GDP, the authors use the proportion of population over 65 years old, the proportion of population
under 15 years old and the share of public funding of healthcare. The income elasticity estimate with a
FE implemented in the plm is greater than 1, a counter-intuitive result. This issue is resolved using
the TVFE implemented in the tvReg. The code below estimates coefficients with the parametric and
semiparametric models:
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Figure 1: Intercept estimates of a Small/Low portfolio in the four markets (left to right, top to bottom:
North America, Japan, Asia Pacific and Europe). The solid lines indicate the estimates, the grey bands
are their 95% bootstrap confidence intervals and the red dashed lines indicate zero. Only the Asia
Pacific market intercepts are statistically different from zero during a large period, implying that the
FF5F does not explain excess returns well for the Asia Pacific market.

> data("OECD")
> elast.fe <- plm::plm(lhe ~ lgdp + pop65 + pop14 + public, data = OECD,
+ index = c("country", "year"), model = "within")
> elast.tvfe <- tvPLM (lhe ~ lgdp + pop65 + pop14 + public, data = OECD,
+ index = c("country", "year"), method = "within",
+ bw = 0.67)
> elast.fe <- confint(elast.fe)
> elast.tvfe <- confint(elast.tvfe)

Figure 3 shows the elasticity estimates using the FE and TVFE estimators. The constant coefficients
model (dashed line) suggests that healthcare is a luxury good (over 1), while the time-varying
coefficients (solid line) model suggests it is a value under 0.8.

5 Standard usage of tvVAR and tvIRF

A TVVAR(p) model is a system of time-varying autoregressive equations of order p. The dependent
variable, y, is of the class attribute "matrix" or "data.frame" with as many columns as equations.
Regressors are the same for all equations and they contain an intercept if the argument type = "const"
(default) or not if type = "none"; lagged values of y; and other exogenous variables in exogen.
Econometrically, the tvOLS method is called to calculate the estimates for each equation independently
using one bandwidth per equation. The user can choose between automatic bandwidth selection; or
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Figure 2: Coefficient estimates of excess returns on the market portfolio (JP.Mkt.RF) and JP.SMB factors
for a Small/Low portfolio in the Japan market. The solid line indicates the estimates and the grey
bands are their 95% bootstrap confidence intervals. It seems that the effect of the market return over
the asset return increases slightly over time, while the effect of the size premium over the asset return
has an inverted U shape over the time period.
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Figure 3: Comparison of income elasticity of healthcare expenditure in OECD countries. The dashed
line with a dark grey band corresponds to the FE estimate and its 95% bootstrap confidence interval,
while the solid line with a light band corresponds to the TVFE estimates and their 95% confidence
intervals. There is a clear difference in the elasticity estimates of the two models.

entering a one value in bw, meaning that all equations will be estimated with the same bandwidth; or
a vector of bandwidths, one for each equation. The tvVAR returns a list of the class attribute tvvar,
which can be used to estimate the TVIRF model with the function tvIRF.

Application to monetary policy

The assessment and forecast of the effects of monetary policy on macroeconomic variables, such as
inflation, economic output and employment is commonly modelled using the econometric framework
of VAR and interpreted by the IRF. In recent years, scholars of macroeconometrics have searched
intensely for a way to include time variation in the coefficients and covariance matrix of the VAR
model. The reason for this is that the macroeconomic climate evolves over time and effects of monetary
policy must be identified locally rather than globally. In the Bayesian framework, Primiceri (2005) used
the Carter and Kohn (1994) algorithm to fit the TVP-VAR to this monetary policy problem. Results of
the latter can be replicated with the functions in the package bvarsv and compared with results in the
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tvReg that fits the following TVVAR(4):

inft = a1
t +

4

∑
i=1

b1
it inft−i +

4

∑
i=1

c1
it unet−i +

4

∑
i=1

d1
it tbit−i + u1

t

unet = a2
t +

4

∑
i=1

b2
it inft−i +

4

∑
i=1

c2
it unet−i +

4

∑
i=1

d2
it tbit−i + u2

t

tbit = a3
t +

4

∑
i=1

b3
it inft−i +

4

∑
i=1

c3
it unet−i +

4

∑
i=1

d3
it tbit−i + u3

t .

Central banks commonly regulate the money supply by changing the interest rates to keep a stable
inflation growth. The R code below uses macroeconomic data from the United States, exactly the
one used in Primiceri (2005), with the following three variables: inflation rate (inf), unemployment
rate (une) and the three months treasury bill interest rate (tbi). For illustration, a VAR(4) model is
estimated using the function VAR from the package vars, a TVVAR(4) model is estimated using the
function tvVAR from the package tvReg and a TVP-VAR(4) model is estimated using the function
bvar.sv.tvp from the package bvarsv. Furthermore, their corresponding impulse response functions
with horizon 20 are calculated to forecast how the inflation responds to a positive shock in interest
rates. The TVVAR(4) can also be estimated with function tvmvar from R package mgm, which will give
the same coefficient estimates than the tvVAR for the Gaussian kernel and same bandwidth. However,
package mgm does not have an impulse response function and, for this reason, it is left out of the
example.

> data(usmacro, package = "bvarsv")
> VAR.usmacro <- vars::VAR(usmacro, p = 4, type = "const")
> TVVAR.usmacro <- tvVAR(usmacro, p = 4, bw = c(1.14, 20, 20), type = "const")
> TVPVAR.usmacro <- bvarsv::bvar.sv.tvp(usmacro, p = 4, pdrift = TRUE, nrep = 1000,
+ nburn = 1000, save.parameters = TRUE)

The user can provide additional optional arguments to modify the default estimation. See Section
Standard usage of tvSURE to understand the usage of arguments bw, tkernel, est and singular.ok.
In addition, the function tvVAR has the following arguments:

Number of lags
The number of lags is given by the model order set in the argument p.

Exogen variables
Other exogenous variables can be included in the model using the argument exogen, which
accepts a vector or a matrix with the same number of rows as the argument y.

Type
The default model contains an intercept (i.e., it has a mean different from zero). The user can set
argument type = "none", so the model has mean zero.

The variance-covariance matrix from the residuals of a TVVAR(p) can be used to calculate the
orthogonal TVIRF. The plot method for object of class attribute "tvvar" displays as many plots as
equations, each plot with the fitted and residuals values as it is shown in Figure 4 obtained with:

> plot(TVVAR.usmacro)

Figure 4 shows the residuals of the inflation equation that has a mean close to zero and the fitted
values are fitting the observed values closely.

Function tvIRF estimates the TVIRF with main argument, x, which is an object of class attribute
"tvvar" returned by the function tvVAR. The user can provide additional optional arguments to modify
the default estimation as explained below.

Impulse and response variables
The user has the option to pick a subset of impulse variables and/or response variables using
arguments impulse and response.

Horizon
The horizon of the TVIRF coefficients can be chosen by the user with argument n.ahead, the
default is 10.

Orthogonal TVIRF
The orthogonalised impulse response function is computed by default (ortho = TRUE). In the
orthogonal case, the estimation of the variance-covariance matrix of the errors is estimated as
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Figure 4: Returns and fitted values of object TVVAR.usmacro for the inflation equation. The dots in the
top plot represent the observed values and the red line represents the fitted values, while the black
line in the bottom plot represents the returns of the estimation. The model fits the observed values
well and the returns appear to have zero mean and constant variance.

time-varying (ortho.cov = "tv") by default (see Section Estimating a time-varying variance-
covariance matrix for theoretical details). Note that the user can enter a value of the bandwidth
for the variance-covariance matrix estimation in bw.cov. It is possible to use a constant variance-
covariance matrix by setting ortho.cov = "const".

Cumulative TVIRF
If the user desires to obtain the cumulative TVIRF values, then argument cumulative must be
set to TRUE.

Following the previous example, the lines of code below estimate the IRF using the package vars,
the TVP-IRF using the package bvarsv and the TVIRF using the package tvReg.

> IRF.usmacro <- vars::irf(VAR.usmacro, impulse = "tbi", response = "inf", n.ahead = 20)
> TVIRF.usmacro <- tvIRF(TVVAR.usmacro, impulse = "tbi", response = "inf", n.ahead = 20)
> TVPIRF.usmacro <- bvarsv::impulse.responses(TVPVAR.usmacro, impulse.variable = 3,
+ response.variable = 1, draw.plot = FALSE)

A comparison of impulse response functions from the three estimations is plotted in Figure 5,
whose R code is shown below:

> irf1 <- IRF.usmacro$irf[["tbi"]]
> irf2 <- TVIRF.usmacro$irf[["tbi"]]
> irf3 <- TVPIRF.usmacro$irf
> ylim <- range(irf1, irf2[150,,], irf3[50,])
> plot(1:20, irf1[-1], ylim = ylim, main = "Impulse variable: tbi from 1990Q2",
+ xlab ="horizon", ylab ="inf", type ="l", lwd = 2)
> lines(1:20, irf2[150,,-1], lty = 2, lwd = 2)
> lines(1:20, irf3[50,], lty = 3, lwd = 2)

Figure 5 displays the IRF, the TVIRF and the TVP-IRF (the two latter at time 150 in our database,
which corresponds to the second quarter of 1990) for horizons 1 to 20. The IRF and TVIRF follow a
similar pattern: a positive shock of one unit in the short-term interest rates (tbi) during 1990Q2 results
in an initial drop in inflation during the first three months, followed by an increase for two or three
months and finally in a steady decrease until it plateaus one year after. The left plot shows an increase
in inflation during the first three months and a drop after.

The confint method is also implemented for the class attribute "tvirf". Remember that the
TVIRF model contains one impulse response function for each data time record. So, the full plot of
TVIRF would have as many lines as the number of rows in the dataset. Instead, the plot method
displays only one line by default, the mean value of all those impulse response functions and it issues
a warning. The user can enter one or several values into argument obs.index to plot the IRF at the
desire point(s) in time.
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Figure 5: Estimated response of inflation (inf) to an increase in interest rates (tbi) of one unit during
1990Q2.The dashed line correspond to the IRF estimates, the solid line to the TVIRF and the dotted
line to the Bayesian estimates. It appears that the Bayesian estimates are very different from those of
the other two models.

6 Estimating a time-varying variance-covariance matrix

The time-varying variance-covariance matrix of two or more series is estimated nonparametrically in
tvReg. Given a random process yi = (yi1, . . . , yiT)

⊤, such that E(yit) = 0 and E(yityi′t′ ) = σii′t if t = t′

and zero otherwise. Thus, the variance-covariance matrix for time t is denoted by Σt with elements
σii′ ,t with 1 ≤ i, i′ ≤ N. Given that Σt is locally stationary, its local linear estimator is defined by

vech(Σ̃τ) =
T

∑
t=1

vech(y⊤t yt)Kh(t − τ)
s2 − s1 (τ − t)

s0s2 − s2
1

(12)

where sj = ∑T
t=1(τ − t)jKb(τ − t) for j = 0, 1, 2. As shown previously, Kb(·) is a symmetric kernel

function heavily concentrated around the origin, τ = t/T is the focal point and b is the bandwidth
parameter. Note that a single bandwidth is used for all co-movements, which ensures that Σ̃τ is
positive definite.

The user must be aware that the local linear estimator can return non-positive definite matrices for
small samples. Although the local constant estimator, calculated when s1 = s2 = 1 in (12), does not
have as good asymptotic properties in the boundaries as the local linear estimator, it always provides
positive definite matrices, which is a desirable property of an estimator of a variance-covariance matrix.
Therefore, it is the default estimator in the function tvCov.

The function tvCov is called by the function tvIRF to calculate the orthogonal TVIRF, and by the
function tvSURE for method = "tvFGLS" to estimate the variance-covariance matrix of the error term.
The function tvCov can generally be used to estimate the time-varying covariance matrix of any two
or more series.

Application to portfolio management

Aslanidis and Casas (2013) consider a portfolio of daily US dollar exchange rates of the Australian
dollar (AUS), Swiss franc (CHF), euro (EUR), British pound (GBP), South African rand (RAND),
Brazilian real (REALB) and Japanese yen (YEN), over the period from January 6, 1999 until May 7, 2010
(T = 2855 observations). This dataset contains the standarised rates after “devolatilisation”; i.e., after
standarising the rates using the GARCH(1,1) estimates of the volatility and it is available in the tvReg
under the names of CEES. A portfolio consisting of these currencies is well diversified containing
some safe haven currencies, active and liquid currencies and currencies that perform well in times of
high interest rates. The estimation of the correlation matrix among these currencies is essential for
portfolio management. The model is

rp,t =ω⊤
t rt

hp,t =ω⊤
t Htωt

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 92

where rp,t and hp,t are the return and variance of the portfolio at time t. Variable ωt is a vector with
the weight of each currency in the portfolio strategy at time t. The portfolio variance-covariance
matrix is denoted by Ht, and it may vary with time for a dynamic investment strategy. This matrix
can be estimated using the function tvCov and then used in risk management, for example to calculate
the Value-at-risk, denoted by VaR in the financial literature. The VaR, not be confused with the
VAR, measures the level of financial risk of a portfolio, asset or firm. The VaR of an asset X, with
distribution function FX , at the confidence level α is defined as VaRα = inf{x : FX(x) > α}. Commonly,
the distribution function of X is assumed to be Gaussian with unknown variance. In a portfolio
framework, the variance-covariance matrix is estimated to calculate the VaR of a portfolio together
with the portfolio weights (omega in the code below). The portfolio weights are the percentage of the
total portfolio investment in each asset and can be chosen to be constant or changing over time. In the
code below, weights are calculated by minimum variance at each point in time. The estimated VaR of
this example portfolio is shown in Figure 6.

> data(CEES)
> VaR <- numeric(nrow(CEES))
> Ht <- tvCov(CEES[, -1], bw = 0.12)
> e <- rep (1, ncol(CEES)-1)
> for (t in 1:nrow(CEES)){
+ omega <- solve(Ht[,,t])%*%e/((t(e)%*%solve(Ht[,,t])%*%e)[1])
+ VaR[t] <- abs(qnorm(0.05))*sqrt(max(t(omega)%*%Ht[,,t]%*%omega,0))
+ }
> plot(as.Date(CEES[, "Date"]), VaR, type ="l", xlab = "year",
+ ylab = expression(VaR[t]), main="VaR of CEES over time")
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Figure 6: Dynamics of the Value-at-risk of the CEES exchange rates portfolio over time. The solid line
represents the VaR. It appears that the risk of potential financial losses of this portfolio increased up to
year 2005, decreasing then until 2008 and turn up again afterwards.

7 Single-equation linear models with time-varying coefficients

A varying coefficients linear model (TVLM) is generally expressed by

yt = x⊤t β(zt) + ut, t = 1, . . . , T, (13)

where yt is the response or dependent variable, xt = (x1t, x2t, . . . , xdt)
⊤ is a vector of regressors at

time t, β(zt) is the vector of coefficients at time t and ut is the error term which satisfies E(ut|xt) = 0
and E(u2

t |xt) = σ2. There are not enough degrees of freedom in the TVLM for a meaningful OLS
estimation, but it may be estimated with the TVOLS displayed in Equation 2. The particular case of
xt = (yt−1, yt−2, . . . , yt−p) corresponds to the time-varying autoregressive model, TVAR(p), which is
also estimated with the TVOLS.

The case of zt = τ = t/T was firstly studied in Robinson (1989) for stationary processes and
generalised to nonstationary processes and correlated errors by Chang and Martinez-Chombo (2003)
and Cai (2007) among others. Recently, Chen et al. (2017) apply it to the Heterogeneous Auto-
Regressive (HAR) model of Corsi (2009) for the realized volatility of S&P 500 index returns. It is a very
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flexible approach, but forecasts are not consistent because there is no information from the dependent
variable at time T + 1. On the other hand, the case of a random zt has been studied for iid or stationary
processes by Hastie and Tibshirani (1993) and Cai et al. (2000); and nonstationary regressors or/and
nonstationary zt have been studied by Chang and Martinez-Chombo (2003), Cai et al. (2009), Zhang
and Wu (2012), Sun et al. (2013) and Gao and Phillips (2013). Das (2005) and Xiao (2009) have used the
approach for instrumental variables and cointegration. In summary, this estimator is consistent and
asymptotically normal for several types of dependency of {(xt, zt, ut)}.

8 Standard usage of tvLM

The function tvLM fits a TVLM using the tvOLS method. The tvLM follows the standards of the function
lm with main arguments formula and data. The only mandatory argument is formula, which should
be a single formula for a single-equation model. This arguments follows the standard regression
formula in R. The function tvLM returns an object of the class attribute tvlm. This model is in some
cases a GAM-type model which is implemented in the comprehensive and well-established mgcv
package. The mgcv uses a methodology different from kernel smoothing to estimate the varying
coefficients, involving splines and quasi-maximum likelihood estimation. The advantage of using
kernel smoothing techniques to estimate the TVLM is that it can handle dependency and any kind of
distribution in the error term. For illustration of this difference between the two packages in relation
to the TVLM, the following model is generated:

yt = β1tx1t + β2tx2t + ut, t = 1, . . . , T, (14)

where β1t = sin(2πτ) and β2t = 2τ with τ = t/T and T = 1000. The regressors, x1t ∼ t2 (symmetric)
and x2t ∼ χ2

4, are independent of the error term, ut ∼ χ2
2 which has an exponential dependency in

the covariance matrix given by Cov(ut, ut+h) = e−|h|/10 and does not follow an exponential-family
distribution. The LM, TVLM and GAM models are fitted to the data. The process generation and the
fitting of a classical LM, a TVLM and a GAM are shown in the following chunk. Figure 7 compares
the different estimates with the true β1t, β2t. As expected, the estimates from lm are constant and lie
around the average of all β1t and β2t, while the estimates of tvLM and gam follow the dynamics of
the varying coefficients. Besides the estimates of gam fit β1t well, but not β2t although the latter is a
simple linear function. This issue is caused by the autocorrelated error term with a non-exponential
distribution. On the other hand, the tvLM, although it requires for a longer computation time, it is able
to fit both coefficients well.

> tau <- seq(1:1000)/1000
> d <- data.frame(tau, beta1 = sin(2 * pi * tau), beta2 = 2 * tau,
+ x1 = rt(1000, df = 2), x2 = rchisq(1000, df = 4))
> error.cov <- exp(-as.matrix(dist(tau))/10)
> error <- t(chol(error.cov)) %*% rchisq(N, df = 2)
> d <- transform(d, y = x1 * beta1 + x2 * beta2 + error)
> lm1 <- stats::lm(y ~ x1 + x2, data = d)
> TVLM1 <- tvLM(y ~ x1 + x2, data = d, bw = 0.05, est ="ll")
> gam1 <- mgcv::gam(y ~ s(tau, by = x1) + s(tau, by = x2), data = d)

In addition to formula, the function tvLM has the arguments described in Section Standard usage of
tvSURE above. Also methods confint, fitted, print, plot, residuals and summary are implemented
for class "tvlm".

The summary method displays: (i) a summary of all coefficient values over the whole time period,
(ii) the value of the bandwidth(s), and (iii) a measure of goodness-of-fit, pseudo-R2. The latter is
printed for the class attributes "tvsure", "tvplm", "tvvar", "tvlm" and "tvar" and it is calculated
with the classical equation,

R2 = 1 − ∑T
t=1(yt − ŷ)2

∑T
t=1(yt − ȳ)2

,

where yt is the dependent variable, ȳ is its mean and ŷt are the fitted values. For multiple equation
models, one pseudo-R2 is calculated for each equation.

9 Standard usage of tvAR

A TVAR model is a particular case of TVLM whose regressors contain lagged values of the dependent
variable, y. The number of lags is given by the model order set in the argument p. Other exogenous
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Figure 7: Comparison of the lm, tvLM and gam estimates of β1t and β2t. The true values are plotted
in black, the red lines represent the lm estimates, the green lines refer to the tvLM estimates and the
blue lines represent the gam estimates. This result suggests that the TVLM is preferable for modelling
non-linear varying coefficients under strong dependency.

variables can be included in the model using the argument exogen, which accepts a vector or a matrix
with the same number of rows as the argument y. An intercept is included by default unless the
user enters type = "none" into the function call. Econometrically, this function also wraps the tvOLS
estimator, which needs a bandwidth bw that is automatically selected when the user does not enter
any number. An object of the class attribute "tvar" is returned by the function tvAR.

The user can provide additional optional arguments to modify the default estimation of the
function tvAR. See Section Standard usage of tvSURE to understand the usage of arguments bw, tkernel,
est and singular.ok and Section Standard usage of tvVAR and tvIRF to understand the usage of
argument type. In addition, the function tvAR has the following argument:

Coefficient restrictions
An autoregressive process of order p does not necessarily contain all the previous p lags of yt.
Argument fixed, with the same format as in the function arima from the package stats, permits
to impose these restrictions. The order of variables in the model is: intercept (if any), lag 1, lag 2,
. . ., lag p and exogenous variable (if any). By default, the argument fixed is a vector of NAs
with length the number of coefficients in the model. The user can enter a vector in the argument
fixed with zeros in the positions corresponding to the restricted coefficients.

Application to risk management

The realized variance (RV) model was popularised in the financial literature by Andersen and Bollerslev
(1998), who show that the use of intraday data can offer an accurate forecast of daily variance. It
is defined as RVt = ∑N

i=1 r2
it, where rit is the price return at minute i of day t. The autocorrelation

function of the RV also shows signs of long memory in the process, which can be accounted for by the
heterogeneous RV (HAR) model of Corsi (2009):

RVt = β0 + β1RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut. (15)

Here, RVt−1|t−k = 1
k ∑

j
i=1 RVt−i. In this model, the current RVt depends on its immediately previous

value, RVt−1, its medium-term memory factor, RVt−1|t−5 and its long-term memory factor, RVt−1|t−22.
Basically, the HAR model may be seen as an AR(1) model with two exogenous variables.

It is likely that changes in the business cycles affect the coefficients in (15). Chen et al. (2017) coined
the time-varying coefficient HAR, whose coefficients are functions of the rescaled time period. The
RV dataset contains daily variables running from January 3, 1990 until December 19, 2007 that have
been computed from 5 minute intraday data from Store (2017). This period coincides with the period
in Bollerslev et al. (2009). The variable names in this dataset are RV, RV_lag, RV_week, RV_month and
RQ_lag_sqrt and correspond to the RVt, RVt−1, RVt−1|t−5, RVt−1|t−22 and RQ1/2

t−1 in Model (15).

> data("RV")
> RV2 <- head(RV, 2000)
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> HAR <- with(RV2, arima(RV, order = c(1, 0, 0), xreg = cbind(RV_week, RV_month)))
> TVHAR<- with(RV2, tvAR(RV, p = 1, bw = 0.8, exogen = cbind(RV_week, RV_month)))

Bollerslev et al. (2016) extended the Model (15) to control for the effect of the realized quarticity
(RQ) on the relationship between the future RV and its near past values. They present the HARQ
model,

RVt =β0 + (β1 + β1QRQ1/2
t−1) RVt−1 + β2 RVt−1|t−5 + β3 RVt−1|t−22 + ut. (16)

The HARQ model is a HAR model whose RVt−1 term’s coefficient is a linear function of the squared
root of RQ at time t − 1. The RQ changes over time and it will be larger during periods of more
uncertainty. Casas et al. (2018) appreciated that the variation of this coefficient may not be linear and
proposed the TVHARQ model,

RVt = β0(zt) + β1(zt) RVt−1 + β2(zt) RVt−1|t−5 + β3(zt) RVt−1|t−22 + ut, (17)

where the smoothing variable, zt = RQ1/2
t−1. This model is a TVAR(1) process and can be estimated

with the function tvAR or with the function tvLM as it is shown in the chunk below.

> HARQ <- with(RV2, lm(RV ~ RV_lag + I(RV_lag*RQ_lag_sqrt) + RV_week + RV_month))
> TVHARQ <- with(RV2, tvAR(RV, p = 1, exogen = cbind(RV_week, RV_month),
+ z = RQ_lag_sqrt, cv.block = 10))

10 Prediction and forecast in time-varying coefficient models

Estimation is a useful tool to understand the patterns and processes hidden in known data. Prediction
and forecast are the mechanisms to extend this understanding to unknown data. Although the two
terms are often used indistinctively, the term prediction is broader than the term forecast which is
reserved for time-series models and consists on using historical data to infer the future. For example,
we speak of predicting values from a linear regression fitted to cross-sectional data and of forecasting
future values from an AR(p) model.

The prediction of the dependent variable at time T + h (horizon of length h) in a linear regression
is ŷT+h = x⊤T+h β̂ for h ≥ 1. Future values, xT+h, must be known to calculate the prediction. In time
series, the prediction of future values has a slightly different nature and then is when we use the
word forecast. The regressors in the 1-step-ahead forecast are known, but they are effectively unknown
for for longer horizons and must be forecasted first. For example, given yt = 5 − 0.5yt−1 + ut for
t = 1, . . . , T; the 1-step-ahead forecast is ŷ∗T+1 = 5 − 0.5yT with known yT . However, the 2-step-ahead
forecast is ŷ∗T+2 = 5 − 0.5ŷ∗T+1, which uses the previous forecast value, ŷ∗T+1.

In the tvReg, we refer to prediction when zt is a random variable and to forecast when zt = τ. Note
that future values of the conditional variable, zT+h, must be given for prediction. For example, the
prediction problem ŷT+h = x⊤T+h β̂(zt) for h ≥ 1 requires the future values xT+h and zT+h. Whereas,
the forecast problem ŷ∗T+h = x⊤T+h β̂(T + h) requires only the future values xT+h. Thus, the predict
and forecast methods in tvReg are slightly different.

11 Standard usage of predict and forecast

The forecast method is implemented for the class attributes "tvsure", "tvplm", "tvar", "tvlm" and
"tvar". As an example, the three days ahead forecast of model TVHAR, evaluated in Section Application
to risk management using the first 2000 values of the dataset RV, is provided in the lines of code
below. This is a TVAR(1) model with two exogenous variables, RV_week and RV_month. The argument
newexogen requires three values of these exogenous variables and variable n.ahead = 3.

> newexogen <- cbind(RV$RV_week[2001:2003], RV$RV_month[2001:2003])
> forecast(TVHAR, n.ahead = 3, newexogen = newexogen)

[1] 2.200921e-05 2.566854e-05 2.466637e-05

The forecast method requires the argument object. In addition, other arguments are necessary,
some of them depending on the class attribute of object.

Forecast horizon The argument n.ahead is a scalar with the forecast horizon. By default, it is set to 1.
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Type of forecast It is possible to run either an increasing window forecast (default), when the argu-
ment winsize = 0 or a rolling window forecast with a window size defined in the argument
winsize.

newdata
These arguments belong to the forecast methods and it is a "vector", "data.frame" or
"matrix" containing the new values of the regressors in the model. It is not necessary to
enter the intercept. Note that this newdata does not refer to the variables in exogen which might
be part of the "tvar" and "tvvar" objects. Those must be included in newexogen, if needed.

newexogen
This argument appears in the forecast method for the class attributes "tvar" and "tvvar"
and it must be entered when the initial model contains exogen variables. It is a "vector",
"data.frame" or "matrix".

The predict method is implemented for the same class attributes than the forecast. It does not
require arguments n.ahead and winsize, but arguments newdata and newexogen are defined as in
forecast. In addition, new values of the smoothing variable must be entered into the argument newz.
This must be of the class attribute "vector" or "numeric". The code below, predicts three future values
of the TVHAR model fitted above.

> newdata <- RV$RV_lag[2001:2003]
> newexogen <- cbind(RV$RV_week[2001:2003], RV$RV_month[2001:2003])
> newz <- RV$RQ_lag_sqrt[2001:2003]
> predict(TVHARQ, newdata, newz, newexogen = newexogen)

[1] 1.741663e-05 2.402516e-05 2.088794e-05

The example below shows the usage of the forecast and predict methods for the class attribute
"tvsure".

The lines of code below forecast three values for model TVOLS.fit evaluated in Section Standard
usage of tvSURE. The method needs a set of new values in the argument newdata, which must have
the same number of columns as the original dataset.

> newKmenta <- data.frame(consump = c(95, 100, 102), price = c(90, 100, 103),
+ farmPrice = c(70, 95, 103), income = c(82, 94, 115),
+ trend = c(21:23))
> forecast(TVOLS.fit, newdata = newKmenta, n.ahead = 3)

demand supply
[1,] 97.92300 95.32852
[2,] 98.94076 103.48589
[3,] 105.36951 106.26576

In case the smoothing variable in the model is a random variable, the predict method for the
class attribute "tvsure" requires also a new set of values in argument newz. The chunk below first
fits a TVSURE model, tvOLS.z.fit, to the Kmenta data with the same system of equations as in the
TVOLS.fit, but with random variable as the smoothing variable, which is generated as an ARMA(2,2)
process. Three values of the dependent variable are predicted with the predict method. In addition
to new values in the argument newdata, it requires a set of new smoothing values in the argument
newz. It returns the predicted values as a matrix with as many columns as equations in the system.

> nobs <- nrow (Kmenta)
> smoothing <- arima.sim(n = nobs + 3, sd = sqrt(0.1796),
+ list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)))
> smoothing <- as.numeric(smoothing)
> tvOLS.z.fit <- tvSURE(system, data = Kmenta, z = smoothing[1:nobs])
> newSmoothing <- tail(smoothing, 3)
> predict(tvOLS.z.fit, newdata = newKmenta, newz = newSmoothing)

demand supply
[1,] 100.0195 96.50136
[2,] 100.3919 105.29293
[3,] 106.1426 107.97822

The forecast and predict methods for the rest of the class attributes in the package follow similar
patterns, and further examples can be found in the documentation of the tvReg.
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12 Summary

Research of time-varying coefficient linear models and their estimation using kernel smoothing
methods has seen a great theoretical development during the last two decades. Our own work in this
field has served as inspiration to code the tvReg because we encounter a lack of computer applications
with this functionality. Indeed, we expect that this package empowers empirical researchers working
with regression and time series models with a computing tool that allows for more flexible models.

Within the R framework: (i) the tvReg extends functions in the R packages systemfit, plm and vars;
(ii) it extends functions lm, ar.ols and arima to allow for varying coefficients; (iv) it complements R
packages mgcv and gam for the linear regression model by providing a consistent estimator of this
model for in case of dependency and a general distribution in the error term; (v) it complements R
package mgm by adding the time-varying impulse response (TVIRF) function which is commonly
used in macroeconomics; and (vi) it complements R package bvarsv and MARSS which estimate the
TVVAR and TVIRF within the state-space framework. In addition, the confint, fitted, forecast,
plot, predict, print, resid and summary methods are implemented for all class attributes in the tvReg
and will allow the user to conveniently produce their research output. In any case, the user is able
to produce customised plots and summaries from the returns of the functions, whose elements are
accessible in the same manner as other R "list" objects.

Finally, the tvReg shows multiple applications in economics and finance. Specifically in asset
management, portfolio management, risk management, health policy and monetary policy. The
methods and datasets permit to verify results in Aslanidis and Casas (2013); Casas et al. (2018, 2019,
2021). Models in this paper are used in other fields too. For example, Reikard (2009) uses the TVLM to
forecast the wave energy flux and Haslbeck et al. (2021) uses the TVVAR in different applications in
psychology. The tvReg is therefore not only relevant and original but also timely.
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