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blindrecalc - An R Package for Blinded
Sample Size Recalculation
by Lukas Baumann, Maximilian Pilz, and Meinhard Kieser

Abstract Besides the type 1 and type 2 error rate and the clinically relevant effect size, the sample
size of a clinical trial depends on so-called nuisance parameters for which the concrete values are
usually unknown when a clinical trial is planned. When the uncertainty about the magnitude of these
parameters is high, an internal pilot study design with a blinded sample size recalculation can be
used to achieve the target power even when the initially assumed value for the nuisance parameter is
wrong. In this paper, we present the R-package blindrecalc that helps with planning a clinical trial
with such a design by computing the operating characteristics and the distribution of the total sample
size under different true values of the nuisance parameter. We implemented methods for continuous
and binary outcomes in the superiority and the non-inferiority setting.

1 Introduction

Determining the sample size that is necessary to achieve a certain target power is a fundamental step
in the planning phase of every clinical trial. The sample size depends on the type 1 error rate α, the
type 2 error rate β, the effect size ∆ and so-called nuisance parameters, which are parameters that
affect the distribution of the test statistic but are not of interest in the test problem. While the type
1 and type 2 error rates are usually predetermined and the minimal clinically important effect size
is known, there is often uncertainty about the magnitude of the nuisance parameters, such as the
variance of the data σ2 for tests with continuous outcomes or the overall response rate p for tests with
binary outcomes.

Consider, as an example, the meta analysis by Nakata et al. (2018) that compares minimally
invasive preservation with splenectomy during distal pancreatectomy. Among others, the overall
morbidity of the two groups is compared and data from 13 studies are reported (cf. Figure 2(c) in
Nakata et al. (2018)). Within these 13 studies, overall morbidity rates pooled over both groups between
0.10 and 0.62 are reported. This illustrates the high uncertainty about the “true” overall morbidity rate,
which is the nuisance parameter in this setting.

In these cases, an internal pilot study design with blinded sample size recalculation can be used.
In such a design, the nuisance parameter is estimated in a blinded way (i.e., without using information
about the group assignment of the patients) after a certain number of outcome data is available, and
the sample size is recalculated using this information (Wittes and Brittain, 1990). While in principle
blinded sample size recalculation could be done without any a priori sample size calculation, it is
still advisable to calculate an initial sample size based on the best guess for the nuisance parameter
available in the planning phase and to determine when to recalculate the sample size based on this
initial calculation. This is done to avoid conducting the recalculation too early (so that there is still a
great uncertainty about the magnitude of the nuisance parameter when recalculation is performed), or
too late (so that there may be no room for adjusting the sample size any longer as the recalculated
sample size is already exceeded). Using this method to recalculate the sample size is an attractive
option because the cost in terms of additional sample size is very small (depending on the outcome)
and in most scenarios the type 1 error rate is unaffected by the blinded sample size recalculation.
Hence, whenever there is uncertainty about the value of a nuisance parameter and the logistics of the
trial allow it, blinded sample size recalculation can be used. Meanwhile, this is even recommended by
regulatory authorities. For instance, the Committee for Medical Products for Human Use (CHMP)
(2006) states that “(w)henever possible, methods for blinded sample size reassessment (. . . ) should be
used”.

Methods to reassess the sample size in a blinded manner in an internal pilot study design have
been developed for a variety of outcomes. Based on the early work by Stein (1945), Wittes and Brittain
(1990) introduced the internal pilot study design for continuous outcomes. Their work was extended
in different manners by different authors (cf. among others Birkett and Day (1994), Denne and Jennison
(1999), and Kieser and Friede (2000)). In all these papers, the main task is to re-estimate the variance of
a continuous outcome in a blinded way. These ideas can be applied to binary outcomes as well where
the re-estimated nuisance parameter is the overall response rate over both treatment arms. Associated
methods were, for instance, presented by Gould (1992) and Friede and Kieser (2004) for superiority
trials and by Friede et al. (2007) for non-inferiority trials.

However, despite the clear benefit of a blinded sample size recalculation and a great number
of publications on that topic, blindrecalc is to the knowledge of the authors the first R-package on
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CRAN, and thus a freely available software, that helps with the planning of a clinical trial with such a
design by computing the operating characteristics and the distribution of the total sample size of the
study. The package can be used for pre-planned and midcourse implemented blinded sample size
reassessments in order to evaluate the potential scenarios the blinded sample size re-estimation may
imply. For continuous outcomes, we implemented the t-test for superiority trials and the shifted t-test
for non-inferiority trials. For binary outcomes, we implemented the chi-squared test for superiority
trials and the Farrington-Manning test for non-inferiority trials.

The structure of the paper is as follows: In the Statistical methods section, we explain the general
way of proceeding when conducting a trial with an internal pilot study and how to obtain a blinded
estimate of the nuisance parameter for continuous and binary outcomes. The structure of the package
is introduced in Package structure. We demonstrate how blindrecalc can be utilized to plan a trial
with an internal pilot study design and blinded sample size recalculation in Usage and example. In
Development principles, we outline the principles of the development process and how we ensure the
quality of our code. Finally, a brief Conclusion complements this paper.

2 Statistical methods

The general procedure for planning and conducting a trial with a blinded sample size recalculation is
as follows: At first, an initial sample size ninit is calculated by using a best guess for the value of the
nuisance parameter. The sample size for the first stage of the trial, n1, is then calculated as a fraction of
ninit, e.g., 0.25, 0.5 or 0.75. After n1 observations are available, the total sample size nrec is recalculated
in a blinded way based on the available data. The final total sample size n is then determined as:

n = min (max (n1, nrec) , nmax) ,

where nmax is a prespecified maximal sample size. This is called the unrestricted design with upper
boundary. A restricted design would use ninit as a lower boundary (Wittes and Brittain, 1990). Often
nmax is set to a multiple of ninit. The special case of nmax = ∞ results in the unrestricted design (Birkett
and Day, 1994). After the final total sample size is calculated, the n2 = n − n1 observations for the
second stage are gathered. Finally, the specified statistical test can be conducted with the data of all n
patients.

In the following, we shortly introduce the implemented tests and how to obtain a blinded estimate
of the nuisance parameter in each case.

Continuous outcomes

Assume a clinical two-arm trial with normally distributed outcomes where a higher value is deemed
to be favorable, with mean values µE (experimental group) and µC (control group) and common
unknown variance σ2. The outcome of interest is the mean difference ∆ := µE − µC. By introducing a
non-inferiority margin δ > 0, the test problem is given by

H0 : ∆ ≤ −δ vs. H1 : ∆ > −δ.

The null hypotheses can be tested by a shifted t-test taking the non-inferiority margin δ into account.
Note that the special case δ = 0 corresponds to the standard t-test for superiority. The approximate
total sample size for a one-sided t-test to detect a mean difference of ∆ = ∆∗ > −δ with a power of
1 − β while controlling the type 1 error rate at level α equals

n = nE + nC =
(1 + r)2

r

(
z1−α/2 + z1−β

)2
σ2

(∆∗ + δ)2 .

Here, r refers to the allocation ratio of the sample sizes between the experimental and the control
group, i.e., r = nE/nC, and z1−q denotes the 1 − q quantile of the standard normal distribution.

In this framework, the nuisance parameter is the unknown variance σ2. Due to potential uncer-
tainty on the value of σ2, it seems appropriate to re-estimate it in a blinded interim analysis to ensure
that the desired power level is met. Inserting σ̂2 observed mid-course into the above sample size
formula may lead to a more reasonable sample size for the respective trial than sticking to the value
assumed in the planning stage. There exist different methods for estimating σ2 in a blinded manner
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(Zucker et al., 1999). In blindrecalc, the one-sample variance estimator is implemented. It is defined as

σ̂2 :=
1

n1 − 1 ∑
j∈{E,C}

n1,j

∑
k=1

(
xj,k − x̄

)2
,

where xj,k is the outcome of patient k in group j, n1,j denotes the first-stage sample size in group j, i.e.,
n1 = n1,E + n1,C, and x̄ equals the mean over all n1 observations. Since the patient’s group allocation
is not considered when computing σ̂2, blinding is maintained when using this variance estimator.

In the superiority case, i.e., if δ = 0, blinded sample size reassessment can be performed without
relevant type 1 error rate inflation (Kieser and Friede, 2003). In the non-inferiority case, however, the
type 1 error rate may be inflated by the internal pilot study design and a correction of the applied
significance level may become necessary to protect the nominal type 1 error rate at level α (Friede and
Kieser, 2003). In particular, this inflation arises if the sample size recalculation is performed too early,
i.e., if n1 is chosen too small.

Interestingly, the cost of this procedure in terms of sample size is quite low. Since the one-sample
variance estimate slightly overestimates the variance, an increase in sample size arises. However,
this increase amounts to only 8 patients with α = 0.025 and β = 0.2 or 12 patients with the same
significance level and β = 0.1 (Friede and Kieser, 2001). In return, the sample size recalculation
procedure implies that the trial’s power meets the target value 1 − β for a wide range of values of σ2.

Lu (2016) gives closed formulas for the exact distribution of the test statistic of the two-sample
t-test in this setting. This allows the simulation of error probabilities and of the sample size distribution
in an acceptable amount of time. The proposals made by Lu (2016) are implemented in blindrecalc.
Thus, the design characteristics for continuous outcomes presented in blindrecalc are obtained by
simulation and not by exact computation. This is the case for for binary outcomes that are presented
in the following.

Binary outcomes

In a superiority trial with binary outcomes where a higher response probability is assumed to be
favorable, the one-sided null and alternative hypothesis are

H0 : pE ≤ pC vs. H1 : pE > pC,

where pE and pC denote the event probabilities in the experimental and the control group, respectively.
While several tests exist for this test problem, the widely used chi-squared test is implemented in
blindrecalc. The sample size for this test can be approximated with the formula (Kieser, 2020):

n =
1 + r

r

(
z1−α/2

√
(1 + r) · p0 · (1 − p0) + z1−β

√
r · pC,A · (1 − pC,A) + pE,A · (1 − pE,A)

)2

∆2 .

Again, r denotes to the allocation ratio of the sample sizes, and z1−α/2 and z1−β are the 1 − α/2 and
the 1 − β quantiles of the standard normal distribution. Furthermore, pC,A and pE,A are the response
probabilities in the control and the experimental group under the assumed alternative, p0 is the overall
response probability, i.e., p0 = (pC,A + r · pE,A) / (1 + r), and ∆ is the effect under the alternative,
i.e. ∆ = pE,A − pC,A. The nuisance parameter here is p0, which can be estimated in a blinded way
after n1 observations with

p̂0 =
X1,E + X1,C
n1,E + n1,C

,

where X1,E and X2,C denote the number of observed events in the experimental and the control group
and n1,E and n1,C represent the first-stage sample sizes in the two groups. Blinded estimates of the event
rates in each group can then be obtained by p̂C,A = p̂0 − ∆ · r/ (1 + r) and p̂E,A = p̂0 + ∆/ (1 + r).
These estimates are used to recalculate the sample size. The benefit of the blinded recalculation is that
the desired power can be maintained, even if the initially assumed value for p0 was wrong.

It is well known that the chi-squared test in a fixed design does not maintain the nominal sig-
nificance level, hence the same can be expected for a chi-squared test with a blinded sample size
recalculation. In fact, Friede and Kieser (2004) showed that the actual levels of the test with and
without recalculating the sample size are very close.

In a non-inferiority trial, the null and alternative hypothesis are

H0 : pE − pC ≤ −δ, H1 : pE − pC > −δ,

where δ > 0 is the fixed non-inferiority margin. The most commonly used test for this problem was
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proposed by Farrington and Manning (1990). An approximate sample size formula for this test is

n =
1 + r

r
·

(
z1−α/2

√
r · p̃C · (1 − p̃C) + p̃E · (1 − p̃E) + z1−β

√
r · pC,A · (1 − pC,A) + pE,A · (1 − pE,A)

)2

(∆ + δ)2 ,

where p̃E and p̃C are large sample approximations of the restricted maximum likelihood estimators
under the null hypothesis restriction pE − pc = −δ (see the Appendix of Farrington and Manning
(1990) for the computation). The same formulas as for the chi-squared test can be used to estimate
p̂E and p̂C in a blinded way, and these estimates have to be used to obtain blinded estimates ˆ̃pE and
ˆ̃pC for the restricted maximum likelihood estimates. Plugging these estimates into the sample size
formula gives the re-estimated sample size.

Like the chi-squared test, the Farrington-Manning test is also no exact test and can exceed the
nominal significance level. Friede et al. (2007) showed that in general no further inflation of the type
1 error rate is caused by blinded re-estimation of the sample size. Nevertheless, it is possible for
the chi-squared test as well as for the Farrington-Manning test to choose the nominal significance
level smaller than α in order to protect the type 1 error rate at level α. Such an adjustment of α is
implemented in blindrecalc for the binary and the continuous case.

3 Package structure

When a clinical trial with an internal pilot study is planned, it is essential to know the characteristics
of the applied design. To this end, the performance in terms of achieved power levels, type I error
rates, and sample size distribution has to be known for different values of the nuisance parameter and
the first-stage sample size n1. The package blindrecalc provides all necessary tools that are needed to
plan a trial with a blinded sample size recalculation with only a small number of functions, which
makes using the package very accessible.

blindrecalc makes use of R’s S4 class system. This allows the application of the same methods for
different design classes and facilitates the usage of the package. Furthermore, this approach makes the
package easily extendable without any changes in the current source code.

The usage of blindrecalc is intended to be as intuitive as possible. To obtain characteristics of a
blinded sample size recalculation procedure, two steps have to be made. At first, the user has to define a
design object to indicate which test and which characteristics such as the desired type 1 and type 2 error
rates are to be applied. To this end, the three functions setupChiSquare, setupFarringtonManning,
and setupStudent exist to define a design object of the class corresponding to the respective test.

Secondly, the trial characteristic of interest can be calculated. Currently, the following methods are
implemented: The method toer allows the computation of the actual type 1 error rate for different
values of the nuisance parameter and the sample size of the internal pilot study. By means of
adjusted_alpha, the adjusted significance level can be calculated that can be applied as nominal
significance level when strict type 1 error rate control is desired. The method pow computes the
achieved power of the design under a given set of nuisance parameters or internal pilot sample sizes.
With n_fix, the sample size of the corresponding fixed design can be computed. Finally, the method
n_dist provides plots and summaries of the distribution of the sample size. For all these methods
(except for n_dist), the logical parameter recalculation allows to define whether a fixed design or a
design with blinded sample size recalculation is analyzed.

4 Usage and example

For each test, there is a setup function (e.g., setupChiSquare for the chi-squared test) that creates an
object of the class of the test. Each setup function takes the same arguments:

• alpha: The one-sided type 1 error rate.
• beta: The type 2 error rate.
• r: The allocation ratio between experimental and control group, with a default of 1.
• delta: The difference in effect size between alternative and null hypothesis.
• alternative: Whether the alternative hypothesis contains greater (default) or smaller values

than the null.
• n_max: The maximal total sample size, with a default value of Inf.

In this example, the nuisance parameter is the overall response rate p. A difference in response
rates between the two treatment groups of ∆ = pE − pC = 0.2 is to be detected. Using blindrecalc, a
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chi-squared test that achieves a power of 1 − β = 0.8 to detect this effect of ∆ = 0.2 and that uses a
nominal type 1 error rate of α = 0.025 can be set up by

design <- setupChiSquare(alpha = 0.025, beta = 0.2, delta = 0.2)

The sample size for a fixed design given one or multiple values of the nuisance parameter (argu-
ment nuisance) can then be calculated with the function n_fix:

n_fix(design, nuisance = c(0.2, 0.3, 0.4, 0.5))
#> [1] 124 164 186 194

The function toer calculates the actual level of a design with blinded sample size recalculation or
of a fixed design (logical argument recalculation) given either one or more values of the total sample
size in a fixed or the sample size for the first stage in a recalculation design (argument n1) or one or
more values of the nuisance parameter. Note that all functions are only vectorized in one of the two
arguments n1 and nuisance. In this example, it is assumed that the internal pilot study contains half
of the fixed sample size that would be needed if the overall response rate p equals 0.2. In this setting,
blindrecalc can be used to compare the actual levels of a fixed design and a recalculation design with
the same parameters.

n <- n_fix(design, nuisance = 0.2)
p <- seq(0.1, 0.9, by = 0.01)
toer_fix <- toer(design, n1 = n, nuisance = p, recalculation = FALSE)
toer_ips <- toer(design, n1 = n/2, nuisance = p, recalculation = TRUE)

In Figure 1, the type 1 error rate in dependence of the nuisance parameter is depicted for the designs
with and without sample size recalculation. Note that, as mentioned in Section Binary outcomes, the
level of significance exceeds the pre-defined level of α = 0.025 in both cases. If strict control of the type
1 error rate is desired, the function adjusted_alpha can be used to to calculate an adjusted significance
level, such that the nominal significance level is preserved.

adj_sig <- adjusted_alpha(design, n1 = n/2, nuisance = p, precision = 0.0001,
recalculation = TRUE)

design@alpha <- adj_sig
toer_adj <- toer(design, n1 = n/2, nuisance = p, recalculation = TRUE)

In this example, the adjusted significance level equals 0.0232 for the trial with internal pilot
study, i.e., using this value as nominal level ensures that the actual significance level does not exceed
α = 0.025. Figure 1 demonstrates that the type 1 error rate is protected at level α = 0.025 if the adjusted
significance level is applied.

In the setting of binary outcomes, adjusting the level such that the nominal type 1 error rate
is protected for any realization of the nuisance parameter in its domain [0, 1] is feasible. However,
when the nuisance parameter has an infinite domain, such as the variance in the case of continuous
outcomes, this is not possible. The solution in these cases is to compute a (1 − γ) confidence interval
of the nuisance parameter in the blinded interim analysis and adjust the significance level such that
the actual level is below α − γ for all values in this confidence interval (Friede and Kieser, 2011). If this
approach is applied, the user can set the parameter gamma.

To calculate the power of either the internal pilot study design or the fixed design, the function pow
can be used. Again, the function is vectorized in either n1 or nuisance. This function can be used to
compare the power values of the two designs under different actual values of the nuisance parameter.

pow_fix <- pow(design, n1 = n, nuisance = p, recalculation = FALSE)
pow_ips <- pow(design, n1 = n/2, nuisance = p, recalculation = TRUE)

As we can see in Figure 2, the power achieved by the internal pilot study design is very close to
the target power of 0.8 in most cases. Only when the overall response rate is very close to 0 or 1, the
power is exceeded. On the other hand, the fixed design is much more sensitive to the actual value
of the nuisance parameter and the actual power can either be way too large or way too small if the
sample size was calculated under wrong assumptions.

Finally, the distribution of the total sample size can be computed under different assumptions
on the nuisance parameter with the function n_dist. This is particularly useful for the planning of
internal pilot study designs since it allows the investigation of what could happen in a certain clinical
trial and helps the applicant to prepare for different scenarios.

p <- seq(0.2, 0.8, by = 0.1)
n_dist(design, n1 = n/2, nuisance = p, plot = TRUE)
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Figure 1: Actual significance level for different nuisance parameters with (right panel) and without
(left panel) adjustment of the nominal significance level. In the adjusted case, the actual level is below
the desired level (red line) for all nuisance parameters in contrast to the un-adjusted case.
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Figure 2: Power values for different nuisance parameters for a fixed design and a design with blinded
sample size recalculation. The design with recalculation meets the target power (red line) for a wider
range of nuisance parameters.
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Figure 3: Distribution of the sample size for a design with blinded sample size recalculation in
dependence of the nuisance parameter. For more extreme values of the nuisance parameter the
variance of the sample size distribution becomes larger.

#> p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8
#> Min. 62.000 78.0000 124.0000 158.0000 124.0000 78.0000 62.000
#> 1st Qu. 108.000 152.0000 182.0000 196.0000 182.0000 152.0000 108.000
#> Median 124.000 170.0000 192.0000 198.0000 192.0000 170.0000 124.000
#> Mean 125.021 164.6057 188.4801 196.5075 188.4801 164.6057 125.021
#> 3rd Qu. 138.000 178.0000 196.0000 200.0000 196.0000 178.0000 138.000
#> Max. 190.000 200.0000 200.0000 200.0000 200.0000 200.0000 190.000

By default, n_dist prints a summary of the sample size distribution for each nuisance parameter.
With plot = TRUE, a series of boxplots is drawn (cf. Figure 3). Since the maximum sample size
is obtained if the overall response rate is estimated to be 0.5 in the sample size recalculation, this
maximum can occur under any true value of the nuisance parameter (except for 0 and 1), albeit with
very small probability. For this reason, sample sizes that occur with a probability of less than 0.01%
are ignored. This is not the case for continuous outcomes since there, the sample size distributions are
determined by simulation.

For continuous outcomes, i.e., the (shifted) t-test, the functional content of blindrecalc is the same
as in the binary case that was presented in this example. The only difference is that in the continuous
case, the numbers are computed by simulation. Thus, the user can set the parameters iters, defining
the number of simulation iterations, and seed, the random seed for the simulation.

5 Development principles

The utilization of R’s object-oriented programming capabilities implies that the example that was
presented for the chi-squared test could very similarly be applied to the Farrington-Manning test or
the t-test. Besides using S4 classes, the following development principles of blindrecalc should be
briefly described.

All calculations for binary outcomes are exact and require nested for-loops. Since for-loops are
known to be very slow in R, all computation-intensive functions for the chi-squared test and the
Farrington-Manning test are implemented in C++ via the Rcpp package (Eddelbuettel and François,
2011) to speed up the calculations significantly.

blindrecalc is developed open-source on GitHub.com. The entire source code can be found at
https://github.com/imbi-heidelberg/blindrecalc. This allows anyone to contribute to blindrecalc
and, furthermore, provides maximal transparency. To ensure a certain quality of the provided code,
blindrecalc is checked by unit tests using the package covr (Hester, 2020). The unit tests compare
numbers for the sample size, type 1 error rate, and power calculated with blindrecalc with numbers
from peer-reviewed publications and, furthermore, check the technical functionality of the package
such as vectorization and display of error messages. Thus, the unit tests do not only monitor the
technical accuracy of the package’s results but also their content-related correctness. The current
version blindrecalc 0.1.3 achieves a code coverage of 100%, i.e., each line of the source code is checked
by at least one unit test.
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6 Conclusion

In this paper, we introduced the R-package blindrecalc that can be used to plan clinical trials with
a blinded sample size recalculation in an internal pilot study design when either continuous or
binary outcomes in a superiority or non-inferiority setting are of interest. We introduced the basic
methodology of internal pilot studies and explained how the package can be used to calculate the
operating characteristics of a trial with such a design.

The scope of blindrecalc can simply be extended due to its modular character. Blinded sample size
recalculation can be applied to many different types of clinical trials. For instance, there exists research
on further kinds of outcomes (e.g., see Friede and Schmidli (2010) for count data) or on different study
designs (e.g., see Golkowski et al. (2014) for bioequivalence trials). The implementation of internal
pilot studies for such cases in blindrecalc is an exciting area of future work.
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