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Visual Diagnostics for Constrained
Optimisation with Application to Guided
Tours
by H. Sherry Zhang, Dianne Cook, Ursula Laa, Nicolas Langrené, and Patricia Menéndez

Abstract A guided tour helps to visualise high-dimensional data by showing low-dimensional projec-
tions along a projection pursuit optimisation path. Projection pursuit is a generalisation of principal
component analysis in the sense that different indexes are used to define the interestingness of the
projected data. While much work has been done in developing new indexes in the literature, less has
been done on understanding the optimisation. Index functions can be noisy, might have multiple
local maxima as well as an optimal maximum, and are constrained to generate orthonormal projection
frames, which complicates the optimization. In addition, projection pursuit is primarily used for
exploratory data analysis, and finding the local maxima is also useful. The guided tour is especially
useful for exploration because it conducts geodesic interpolation connecting steps in the optimisation
and shows how the projected data changes as a maxima is approached. This work provides new
visual diagnostics for examining a choice of optimisation procedure based on the provision of a new
data object which collects information throughout the optimisation. It has helped to diagnose and fix
several problems with projection pursuit guided tour. This work might be useful more broadly for
diagnosing optimisers and comparing their performance. The diagnostics are implemented in the R
package ferrn.

Introduction

Visualisation is widely used in exploratory data analysis (Tukey 1977; Unwin 2015; Healy 2018;
Wilke 2019). Presenting information in graphics often unveils insights that would otherwise not be
discovered and provides a more comprehensive understanding of the problem at hand. Task-specific
tools such as Li, Zhao, and Scheidegger (2020) show how visualisation can be used to understand, for
instance, the behaviour of the optimisation for the example of neural network classification models.
However, no general visualisation tool is available for diagnosing optimisation procedures. The work
presented in this paper brings visualization tools into optimisation problems with the aim to better
understand the performance of optimisers in practice.

The focus of this paper is on the optimisation problem arising in the projection pursuit guided
tour (Buja et al. 2005), an exploratory data analysis technique used for detecting interesting structures
in high-dimensional data through a set of lower-dimensional projections (Dianne Cook et al. 2008).
The goal of the optimisation is to identify the projection, represented by the projection matrix, that
gives the most interesting low-dimensional view. A view is said to be interesting if it can show some
structures of the data that depart from normality, such as bimodality, clustering, or outliers.

The optimization challenges encountered in the projection pursuit guided tour problem are
common to those of optimization in general. Examples include the existence of multiple optima (local
and global), the trade-off between computational burden and proximity to the optima, or dealing
with noisy objective functions that might be non-smooth and non-differentiable (Jones, Schonlau, and
Welch 1998). The visualization tools, optimization methods, and conceptual framework presented in
this paper can therefore be applied to other optimization problems.

The remainder of the paper is organised as follows. The next section provides an overview of
optimisation methods, specifically random search and line search methods. A review of the projection
pursuit guided tour, an overview of the optimisation problem and, outlines of three existing algorithms
follows. The third section presents the new visual diagnostics, including the design of a data structure
to capture information during the optimisation, from which several diagnostic plots are created. An
illustration of how the diagnostic plots can be used to examine the performance of different optimisers
and guide improvements to existing algorithms is shown using simulated data. Finally, an explanation
of the implementation in the R package, ferrn (Zhang et al. 2021), is provided.

Optimisation methods

The type of optimisation problem considered in this paper is constrained optimization (Bertsekas
2014), assuming it is not possible to find a solution to the problem in the way of a closed-form. That is,
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the problem consists in finding the minimum or maximum of a function f ∈ Lp in the constrained
space A, where Lp defines the vector space of function f , whose pth power is integrable.

Gradient-based methods are commonly used to optimise an objective function, with the most
notable one being the gradient ascent (descent) method. Although these methods are popular, they
rely on the availability of the objective function derivatives. As will be shown in the next section,
the independent variables in our optimisation problem are the entries of a projection matrix, and the
computational time required to perform differentiation on a matrix could impede the rendering of
tour animation. In addition, some objective functions rely on the empirical distribution of the data,
which makes it in general not possible to get the gradient. Hence, gradient-based methods are not the
focus of this paper, and consideration will be given to derivative-free methods.

Derivative-free methods (Conn, Scheinberg, and Vicente 2009; Rios and Sahinidis 2013), which do
not rely on the knowledge of the gradient, are more generally applicable. Derivative-free methods
have been developed over the years, where the emphasis is on finding, in most cases, a near-optimal
solution. Here we consider three derivative-free methods, two of which are random search methods:
creeping random search and simulated annealing, and the other one is pseudo-derivative search.

Random search methods (Romeijn 2009; Zabinsky 2013; Andradóttir 2015) have a random sampling
component as part of their algorithms and have been shown to have the ability to optimise non-convex
and non-smooth functions. The initial random search algorithm, pure random search (Brooks 1958),
draws candidate points from the entire space without using any information of the current position
and updates the current position when an improvement on the objective function is made. As the
dimension of the space becomes larger, sufficient sampling from the entire space would require a
long time for convergence to occur, despite a guaranteed global convergence (Spall 2005). Various
algorithms have thus been developed to improve pure random search by either concentrating on a
narrower sampling space or using a different updating mechanism. Creeping random search (White
1971) is such a variation, where a candidate point is generated within a neighbourhood of the current
point. This makes creeping random search faster to compute but global convergence is no longer
guaranteed. On the other hand, simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983; Bertsimas
and Tsitsiklis 1993), introduces a different updating mechanism. Rather than only updating the current
point when an improvement is made, it uses a Metropolis acceptance criterion, where worse candidates
still have a chance to be accepted. The convergence of simulated annealing algorithms has been widely
researched (Mitra, Romeo, and Sangiovanni-Vincentelli 1986; Granville, Krivánek, and Rasson 1994)
and the global optimum can be attained under mild regularity conditions.

The pseudo-derivative search uses a common search scheme in optimisation: line search. In
line search methods, users are required to provide an initial estimate x1 and, at each iteration, a
search direction Sk and a step size αk are generated. Then one moves on to the next point following
xk+1 = xk + αkSk and the process is repeated until the desired convergence is reached. In derivative-
free methods, local information of the objective function is used to determine the search direction. The
choice of step size also needs consideration, as inadequate step sizes might prevent the optimisation
method from converging to an optimum. An ideal step size can be chosen by finding the value of
αk ∈ R that maximises f (xk + αkSk) with respect to αk at each iteration.

Projection pursuit guided tour

A projection pursuit guided tour combines two different methods (projection pursuit and guided tour)
to explore interesting features in a high-dimensional space. Projection pursuit, coined by Friedman
and Tukey (1974), detects interesting structures (e.g., clustering, outliers, and skewness) in multivariate
data via low-dimensional projections. Guided tour (Dianne Cook et al. 1995) is one variation of a
broader class of data visualisation methods, tour (Buja et al. 2005), which displays high-dimensional
data through a series of animated projections.

Let Xn×p be the data matrix with n observations in p dimensions. A d-dimensional projection is
a linear transformation from Rp into Rd defined as Y = X · A, where Yn×d is the projected data and
Ap×d is the projection matrix. We define f : Rn×d 7→ R to be an index function that maps the projected
data Y onto a scalar value. This is commonly known as the projection pursuit index function, or just
index function, and is used to measure the “interestingness” of a given projection. An interesting
projection shows structures that are non-normal since theoretical proofs from Diaconis and Freedman
(1984) have shown that projections tend to be normal as n and p approach infinity under certain
conditions. There have been many index functions proposed in the literature, here are a few examples:
early indexes that can be categorised as measuring the L2 distance between the projection and a normal
distribution: Legendre index (Friedman and Tukey 1974); Hermite index (Hall 1989); natural Hermite
index (D. Cook, Buja, and Cabrera 1993); chi-square index (Posse 1995) for detecting spiral structure;
LDA index (E. Lee et al. 2005) and PDA (E.-K. Lee and Cook 2010) index for supervised classification;
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Figure 1: An illustration for demonstrating the frames in a tour path. Each square (frame) represents
the projected data with a corresponding basis. Blue frames are returned by the projection pursuit
optimisation and white frames are constructed between two blue frames by geodesic interpolation.

kurtosis index (Loperfido 2020) and skewness index (Loperfido 2018) for detecting outliers in financial
time series; and most recently, scagnostic indexes (Laa and Cook 2020) for summarising structures in
scatterplot matrices based on eight scagnostic measures (L. Wilkinson, Anand, and Grossman 2005;
Leland Wilkinson and Wills 2008).

As a general visualisation method, tour produces animations of high-dimensional data via rotations
of low-dimensional planes. There are different versions depending on how the high-dimensional
space is investigated: grand tour (Dianne Cook et al. 2008) selects the planes randomly to provide
a general overview; manual tour (Dianne Cook and Buja 1997) gradually phases in and out one
variable to understand the contribution of that variable in the projection. Guided tour, the main
interest of this paper, chooses the planes with the aid of projection pursuit to gradually reveal the
most interesting projection. Given a random start, projection pursuit iteratively finds bases with
higher index values, and the guided tour constructs a geodesic interpolation between these planes to
form a tour path. Figure 1 shows a sketch of the tour path where the blue squares represent planes
(targets) selected by the projection pursuit optimisation, and the white squares represent planes in
the geodesic interpolation between targets. Mathematical details of the geodesic interpolation can be
found in Buja et al. (2005). (Note that the term frame used in Buja’s paper refers to a particular set of
orthonormal vectors defining a plane. This is also conventionally referred to as a basis, which is used
in this paper and the associated software.) The aforementioned tour method has been implemented in
the R package tourr (H. Wickham et al. 2011).

Optimisation in the tour

In projection pursuit, the optimisation aims at finding the global and local maxima that give interesting
projections according to an index function. That is, it starts with a given randomly selected basis
A1 and aims at finding an optimal final projection basis AT that satisfies the following optimisation
problem:

arg max
A∈A

f (X · A) s.t. A′A = Id , (1)

where f and X are defined as in the previous section, A is the set of all p-dimensional projection
bases, Id is the d-dimensional identity matrix, and the constraint ensures the projection bases, A,
to be orthonormal. It is worth noticing the following: 1) The optimisation is constrained, and the
orthonormality constraint imposes a geometrical structure on the bases space: it forms a Stiefel
manifold. 2) There may be index functions for which the objective function might not be differentiable.
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3) While finding the global optimum is the goal of the optimisation problem, interesting projections
may also appear in the local optimum. 4) The optimisation should be fast to compute since the tour
animation is viewed by the users during the optimisation.

Existing algorithms

Three optimisers have been implemented in the tourr (H. Wickham et al. 2011) package: creeping
random search (CRS), simulated annealing (SA), and pseudo-derivative (PD). Creeping random
search (CRS) is a random search optimiser that samples a candidate basis Al in the neighbourhood
of the current basis Acur by Al = (1 − α)Acur + αArand where α ∈ [0, 1] controls the radius of the
sampling neighbourhood and Arand is generated randomly. Al is then orthonormalised to fulfil the
basis constraint. If Al has an index value higher than the current basis Acur, the optimiser outputs Al
for a guided tour to construct an interpolation path. The neighbourhood parameter α is adjusted by a
cooling parameter: αj+1 = αj ∗ cooling before the next iteration starts. The optimiser terminates when
the maximum number of iteration lmax is reached before a better basis can be found. The algorithm of
CRS can be found in the appendix. Posse (1995) has proposed a slightly different cooling scheme by
introducing a halving parameter c. In his proposal, α is only adjusted if the last iteration takes more
than c times to find a better basis.

Simulated annealing (SA) uses the same sampling process as CRS but allows a probabilistic
acceptance of a basis with lower index value than the current one. Given an initial value of T0 ∈ R+,
the “temperature” at iteration l is defined as T(l) = T0

log(l+1) . When a candidate basis fails to have an
index value larger than the current basis, SA gives it a second chance to be accepted with probability

P = min
{

exp
[
−| Icur − Il |

T(l)

]
, 1
}

,

where I(·) ∈ R denotes the index value of a given basis. This implementation allows the optimiser to
make a move and explore the basis space even if the candidate basis does not have a higher index
value. Hence it enables the optimiser to jump out of a local optimum. The second algorithm in the
appendix highlights how SA differs from CRS in the inner loop.

Pseudo-derivative (PD) search uses a different strategy than CRS and SA. Rather than randomly
sample the basis space, PD first computes a search direction by evaluating bases close to the current
basis. The step size is then chosen along the corresponding geodesic by another optimisation over a 90
degree angle from −π/4 to π/4. The resulting candidate basis A∗∗ is returned for the current iteration
if it has a higher index value than the current one. The third algorithm in the appendix summarises
the inner loop of the PD.

Visual diagnostics

A data structure for diagnosing optimisers in projection pursuit guided tour is first defined. With this
data structure, four types of diagnostic plots are presented.

Data structure for diagnostics

Three main pieces of information are recorded during the projection pursuit optimisation: 1) projection
bases A, 2) index values I, and 3) state S. For CRS and SA, possible states include random_search,
new_basis, and interpolation. Pseudo-derivative (PD) has a wider variety of states, including
new_basis, direction_search, best_direction_search, best_line_search, and interpolation. Mul-
tiple iterators index the information collected at different levels: t is a unique identifier prescribing the
natural ordering of each observation; j and l are the counter of the outer and inner loop, respectively.
Other parameters of interest recorded, V, include method that tags the name of the optimiser, and
alpha that indicates the sampling neighbourhood size for searching observations. A matrix notation
describing the data structure is:
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t A I S j l V1 V2 Description

1 A1 I1 S1 1 1 V11 V12 start basis
2 A2 I2 S2 2 1 V21 V22 search
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 2 l2 . . . . . . search (accepted)
. . . . . . . . . . . . 2 1 . . . . . . interpolation
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 2 k2 . . . . . . interpolation
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . J 1 . . . . . . search
. . . . . . . . . . . . . . . . . . . . . . . . . . .
T AT IT ST J lJ VT1 VT2 search (final)
. . . . . . . . . . . . J 1 . . . . . . interpolation
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . J k J . . . . . . interpolation
. . . . . . . . . . . . J + 1 1 . . . . . . search (last

round)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
T′ AT′ IT′ ST′ J + 1 lJ+1 VT′1 VT′2 search (last

round)

where T′ = T + k J + lJ+1. Note that there is no output in iteration J + 1 since the optimiser does not
find a better basis in the last iteration and terminates. The final basis found is AT with index value IT .

The data structure constructed above meets the tidy data principle (Hadley Wickham 2014) that
requires each observation to form a row and each variable to form a column. With tidy data structure,
data wrangling and visualisation can be significantly simplified by well-developed packages such as
dplyr (Hadley Wickham et al. 2020) and ggplot2 (Hadley Wickham 2016).

Diagnostic 1: Checking how hard the optimiser is working

A starting point of diagnosing an optimiser is to understand how many searches it has conducted,
i.e., we want to summarise how the index is increasing over iterations and how many basis need to
be sampled at each iteration. This is achieved using the function explore_trace_search(): a boxplot
shows the distribution of index values for each try, where the accepted basis (corresponding to the
highest index value) is always shown as a point. When there are only few tries at a given iteration,
showing the data points directly is preferred over the boxplot and this is controlled via the cutoff
argument. Additional annotations are added to facilitate better reading of the plot, and these include
1) the number of points searched in each iteration can be added as text label at the bottom of each
iteration; 2) the anchor bases to interpolate are connected and highlighted in a larger size; 3) the colour
of the last iteration is in greyscale to indicate no better basis found in this iteration.

Figure 2 shows an example of the search plot for CRS (left) and SA (right). Both optimisers quickly
find better bases in the first few iterations and then take longer to find one in the later iterations. The
anchor bases, the ones found with the highest index value in each iteration, always have an increased
index value in the optimiser CRS while this is not the case for SA. This feature gives CRS an advantage
in this simple example to quickly find the optimum.

Diagnostic 2: Examining the optimisation progress

Another interesting feature to examine is the changes in the index value between interpolating bases
since the projection on these bases is shown in the tour animation. Trace plots are created by plotting
the index value against time. Figure 3 presents the trace plot of the same optimisations as Figure
2, and one can observe that the trace is smooth in both cases. It may seem bizarre at first sight that
the interpolation sometimes passes bases with higher index values before it decreases to a lower
target. This happens because, on the one hand, the probabilistic acceptance in SA implies that some
worse bases will be accepted by the optimiser. In addition, the guided tour interpolates between
the current and target basis to provide a smooth transition between projections, and sometimes a
higher index value will be observed along the interpolation path. This indicates that a non-monotonic
interpolation cannot be avoided, even for CRS. Later, in Section A problem of non-monotonicity, there
will be a discussion on improving the non-monotonic interpolation for CRS.
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Figure 2: A comparison of the searches by two optimisers: CRS (left) and SA (right) on a 2D projection
problem of a six-variable dataset, boa6 using the holes index. Both optimisers reach the final basis
with a similar index value, while it takes SA longer to find the final basis. In the earlier iterations,
optimisers quickly find a better basis to proceed, while in the later iterations, most sampled bases
fail to make an improvement on the index value, and a boxplot is used to summarise the distribution
of the index values. There is no better basis found in the last iteration, 9 (left) and 15 (right), before
reaching the maximum number of try and hence it is coloured grey. The colour scale is from the
customised botanical palette in the **ferrn** package.
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Figure 3: An inspection of the index values as the optimisation progress for two optimisers: CRS (left)
and SA (right). The holes index is optimised for a 2D projection problem on the six-variable dataset
boa6. Lines indicate the interpolation, and dots indicate new target bases generated by the optimisers.
Interpolation in both optimisation is smooth, while SA is observed to first pass by some bases with
higher index values before reaching the target bases in time 76-130.
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*

CRS PD

Figure 4: Search paths of CRS (green) and PD (brown) in the PCA-reduced basis space for 1D projection
problem on the five-variable dataset, boa5 using holes index. The basis space, a 5D unit sphere, is
projected onto a 2D circle by PCA. The black star represents the theoretical best basis the optimisers
are aiming to find. All the bases in PD have been flipped for easier comparison of the final bases, and
a grey dashed line has been annotated to indicate the symmetry of the two start bases.

Diagnostic 3a: Understanding the optimiser’s coverage of the search space

Apart from checking the search and progression of an optimiser, looking at where the bases are
positioned in the basis space is also of interest. Given the orthonormality constraint, the space
of projection bases Ap×d is a Stiefel manifold. For one-dimensional projections, this forms a p-
dimensional sphere. A dimensionality reduction method, e.g., principal component analysis, is
applied to first project all the bases onto a 2D space. In a projection pursuit guided tour optimisation,
there are various types of bases involved: 1) The starting basis; 2) The search bases that the optimiser
evaluated to produce the anchor bases; 3) The anchor bases that have the highest index value in
each iteration; 4) The interpolating bases on the interpolation path; and finally, 5) the end basis. The
importance of these bases differs but the most important ones are the starting, interpolating, and
end bases. Sometimes, two optimisers can start with the same basis but finish with bases of opposite
signs. This happens because the projection is invariant to the orientation of the basis, and so is the
index value. However, this creates difficulties for comparing the optimisers since the end bases will
be symmetric to the origin. A sign flipping step is conducted to flip the signs of all the bases in one
routine if different optimisations finish at opposite places.

Several annotations have been made to help understand this plot. As mentioned previously, the
original basis space is a high-dimensional sphere, and random bases on the sphere can be generated
via the geozoo (Schloerke 2016) package. We use PCA to project and visualize the parameters/ bases
in 2D. The centre of the 2D view is the first two PCs of the data matrix. It theoretically should be
a circle but may have some irregular edges due to finite sampling. Thus the edge is smoothed by
using a radius estimated as the largest distance from the centre to any basis. In the simulation, the
theoretical best basis is known and can be labelled to compare how close to this that the optimisers
stopped. Various aesthetics, i.e., size, alpha (transparency), and colour, are applicable to emphasize
critical elements and adjust for the presentation. For example, anchor points and search points are less
important, and hence a smaller size and alpha are used. Alpha can also be applied on the interpolation
paths to show start to finish from transparent to opaque.

Figure 4 shows the PCA plot of CRS and PD for a 1D projection problem. Both optimisers find the
optimum, but PD gets closer. With the PCA plot, one can visually appreciate the nature of these two
optimisers: PD first evaluates points in a small neighbourhood for a promising direction, while CRS
evaluates points randomly in the search space to search for the next target. There are dashed lines
annotated for CRS, and it describes the interruption of the interpolation, which will be discussed in
detail in Section A problem of non-monotonicity.
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Figure 5: Six frames selected from the animated version of the previous plot. With animation, the
progression of the search paths from start to finish is better identified. CRS (green) finishes the
optimisation quicker than PD (brown) since there is no further movement for CRS in the sixth frame.
The full video of the animation can be found in the html version of the paper.

Diagnostic 3b: Animating the diagnostic plots

Animation is another type of display to show how the search progresses from start to finish in the
space. Figure 5 shows the animated version (six frames from the animation if viewed in pdf) of the
PCA plot in Figure 4. An additional piece of information one can learn from this animation is that
CRS finds its end basis quicker than PD since CRS finishes its search in the 5th frame while PD is still
making more progress.

Diagnostic 4a: The tour looking at itself

As mentioned previously, the original p × d dimension space can be simulated via randomly generated
bases in the geozoo (Schloerke 2016) package. While the PCA plot projects the bases from the
direction that maximises the variance, the tour plot displays the original high-dimensional space from
various directions using animation. Figure 6 shows some frames from the tour plot of the same two
optimisations in its original space.

Diagnostic 4b: Forming a torus

While the previous few examples have looked at the space of 1D basis in a unit sphere, this section
visualises the space of 2D basis. Recall that the columns in a 2D basis are orthogonal to each other,
so the space of p × 2 bases is a torus in the p-D space (Buja and Asimov 1986). For p = 3 one would
see a classical 3D torus shape as shown by the grey points in Figure 7. The two circles of the torus
can be observed to be perpendicular to each other and this can be linked back to the orthogonality
condition. Two paths from CRS and PD are plotted on top of the torus and coloured in green and
brown, respectively, to match the previous plots. The final basis found by PD and CRS are shown in a
larger shape and printed below, respectively:

#> [,1] [,2]
#> [1,] 0.001196285 0.03273881
#> [2,] -0.242432715 0.96965761
#> [3,] -0.970167484 -0.24226493

#> [,1] [,2]
#> [1,] 0.05707994 -0.007220138
#> [2,] -0.40196202 -0.915510160
#> [3,] -0.91387549 0.402230054

Both optimisers have found the third variable in the first direction and the second variable in the
second direction. Note, however, the different orientation of the basis, following from the different
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Figure 6: Six frames selected from rotating the high-dimensional basis space, along with the same two
search paths from Figure 4 and 5. The basis space in this example is a 5D unit sphere, on which points
(grey) are randomly generated via the CRAN package geozoo. The full animation can be seen in the
html version of the paper.

sign in the second column. One would expect to see this in the torus plot as the final bases match
each other when projected onto one torus circle (due to the same sign in the first column) and are
symmetric when projected onto the other (due to the different sign in the second column). In Figure 7,
this can be seen most clearly in frame 5 where the two circles are rotated into a line from our view.

Diagnosing an optimiser

In this section, several examples will be presented to show how the diagnostic plots discover something
unexpected in projection pursuit optimisation, and guide the implementation of new features.

Simulation setup

Random variables with different distributions have been simulated as follows:

x1
d
= x8

d
= x9

d
= x10 ∼ N (0, 1) (2)

x2 ∼ 0.5N (−3, 1) + 0.5N (3, 1) (3)

Pr(x3) =

{
0.5 if x3 = −1 or 1
0 otherwise

(4)

x4 ∼ 0.25N (−3, 1) + 0.75N (3, 1) (5)

x5 ∼ 1
3
N (−5, 1) +

1
3
N (0, 1) +

1
3
N (5, 1) (6)

x6 ∼ 0.45N (−5, 1) + 0.1N (0, 1) + 0.45N (5, 1) (7)

x7 ∼ 0.5N (−5, 1) + 0.5N (5, 1) (8)

Variables x1, x8 to x10 are normal noise with zero mean, and unit variance and x2 to x7 are normal
mixtures with varied weights and locations. All the variables have been scaled to have overall unit
variance before projection pursuit. The holes index (Dianne Cook et al. 2008), used for detecting
bimodality of the variables, is used throughout the examples unless otherwise specified.

A problem of non-monotonicity

An example of non-monotonic interpolation has been given in Figure 3: a path that passes bases with a
higher index value than the target one. For SA, a non-monotonic interpolation is justified since target
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Figure 7: Six frames selected from rotating the 2D basis space along with two search paths optimised
by PD (brown) and CRS (green). The projection problem is a 2D projection with three variables using
the holes index. The grey points are randomly generated 2D projection bases in the space, and it can
be observed that these points form a torus. The full video of the animation can be found in the html
version of the paper.

bases do not necessarily have a higher index value than the current one, while this is not the case for
CRS. The original trace plot for a 2D projection problem, optimised by CRS, is shown on the left panel
of Figure 8, and one can observe that the non-monotonic interpolation has undermined the optimiser
to realise its full potential. Hence, an interruption is implemented to stop at the best basis found in the
interpolation. The right panel of Figure 8 shows the trace plot after implementing the interruption,
and while the first two interpolations are identical, the basis at time 61 has a higher index value than
the target in the third interpolation. Rather than starting the next iteration from the target basis on
time 65, CRS starts the next iteration at time 61 on the right panel and reaches a better final basis.

Close but not close enough

Once the final basis has been found by an optimiser, one may want to push further in the close
neighbourhood to see if an even better basis can be found. A polish search takes the final basis of an
optimiser as the start of a new guided tour to search for local improvements. The polish algorithm
is similar to the CRS but with three distinctions: 1) a hundred rather than one candidate bases are
generated each time in the inner loop; 2) the neighbourhood size is reduced in the inner loop, rather
than in the outer loop; and 3) three more termination conditions have been added to ensure the new
basis generated is distinguishable from the current one in terms of the distance in the space, the relative
change in the index value, and neighbourhood size:

1) the distance between the basis found and the current needs to be larger than 1e-3;
2) the relative change of the index value needs to be larger than 1e-5; and
3) the alpha parameter needs to be larger than 0.01.

Figure 9 presents the projected data and trace plot of a 2D projection, optimised by CRS and
followed by the polish step. The top row shows the initial projection, the final projection after CRS,
and the final projection after polish, respectively. The end basis found by CRS reveals the four clusters
in the data, but the edges of each cluster are not clean-cut. Polish works with this end basis and further
pushes the index value to produce clearer edges of the cluster, especially along the vertical axis.

Seeing the signal in the noise

The holes index function used for all the examples before this section produces a smooth interpolation,
while this is not the case for all the indexes. An example of a noisy index function for 1D projections
compares the projected data, Yn×1, to a randomly generated normal distribution, Nn×1, using the
Kolmogorov test. Let F.(n) be the empirical cumulative distribution function (ECDF) with two possible
subscripts, Y and N , representing the projected and randomly generated data, and n denoting the
number of observations, the Kolmogorov index Ink(n), is defined as:
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Figure 8: Comparison of the interpolation before and after implementing the interruption for the 2D
projection problem on boa6 data using holes index, optimised by CRS. On the left panel, the basis
with a higher index value is found during the interpolation but not used. On the right panel, the
interruption stops the interpolation at the basis with the highest index value for each iteration and
results in a final basis with a higher index value, as shown on the right panel.
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Figure 9: Comparison of the projected data before and after using polishing for a 2D projection
problem on boa6 data using holes index. The top row shows the initial projected data and the final
views after CRS and polish search, and the second row traces the index value. The clustering structure
in the data is detected by CRS (top middle panel), but the polish step improves the index value and
produces clearer boundaries of the clusters (top right panel), especially along the vertical axis. Note
that the parameter max.tries is set to 400 in this experiment for CRS to do its best.
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Figure 10: Comparison of the three optimisers in optimising Ink(n) index for a 1D projection problem
on a five-variable dataset, boa5. Both CRS and SA succeed in the optimisation, PD fails to optimise this
non-smooth index. Further, SA takes much longer than CRS to finish the optimisation, but finishes off
closer to the theoretical best.

IK(n) = max [FY(n)− FN (n)] .

With a non-smooth index function, two research questions are raised:

1) whether any optimiser fails to optimise this non-smooth index; and
2) whether the optimisers can find the global optimum despite the presence of a local optimum.

Figure 10 presents the trace and PCA plots of all three optimisers, and as expected, none of the
interpolated paths are smooth. There is barely any improvement made by PD, indicating its failure in
optimising non-smooth index functions. While CRS and SA have managed to get close to the index
value of the theoretical best, the trace plot shows that it takes SA much longer to find the final basis.
This long interpolation path is partially due to the fluctuation in the early iterations, where SA tends
to generously accept inferior bases before concentrating near the optimum. The PCA plot shows the
interpolation path and search points, excluding the last termination iteration. Pseudo-Derivative (PD)
quickly gets stuck near the starting position. Comparing the amount of random search done by CRS
and SA, it is surprising that SA does not carry as many samples as CRS. Combining the insights from
both the trace and PCA plot, one can learn the two different search strategies by CRS and SA: CRS
frequently samples in the space and only make a move when an improvement is guaranteed to be
made, while SA first broadly accepts bases in the space and then starts the extensive sampling in a
narrowed subspace. The specific decision of which optimiser to use will depend on the index curve in
the basis space, but if the basis space is non-smooth, accepting inferior bases at first, as SA has done
here, can lead to a more efficient search in terms of the overall number of points evaluated.

The next experiment compares the performance of CRS and SA when a local maximum exists.
Two search neighbourhood sizes, 0.5 and 0.7, are compared to understand how a large search neigh-
bourhood would affect the final basis and the length of the search. Figure 11 shows 80 paths simulated
using 20 seeds in the PCA plot, faceted by the optimiser and search size. With CRS and a search size
of 0.5, despite being the simplest and fastest, the optimiser fails in three instances where the final basis
lands neither near the local nor the global optimum. With a larger search size of 0.7, more seeds have
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Figure 11: Comparing 20 search paths in the PCA-projected basis space faceted by two optimisers:
CRS and SA, and two search sizes: 0.5 and 0.7. The optimisation is on the 1D projection index, Ink(n),
for boa6 data, where a local optimum, annotated by the cross (x), is presented in this experiment, along
with the global optimum (*).

found the global maximum. Comparing CRS and SA for a search size of 0.5, SA does not seem to
improve the final basis found, despite having longer interpolation paths. However, the denser paths
near the local maximum are an indicator that SA is working hard to examine if there is any other
optimum in the basis space, but the relatively small search size has diminished its ability to reach the
global maximum. With a larger search size, almost all the seeds (16 out of 20) have found the global
maximum, and some final bases are much closer to the theoretical best, as compared to the three other
cases. This indicates that SA, with a reasonable large search window, is able to overcome the local
optimum and optimise close towards the global optimum.

Reconciling the orientation

One interesting situation observed in the previous examples is that, for some simulations, as shown
on the left panel of Figure 12, the target basis is generated on the other half of the basis space, and the
interpolator seems to draw a straight line to interpolate. Bases with opposite signs do not affect the
projection and index value, but we would prefer the target to have the same orientation as the current
basis. The orientation of two bases can be computationally checked by calculating the determinant – a
negative value suggests the two bases have a different orientation. For 1D bases, this can be corrected
by flipping the sign on one basis. For higher dimensions, it can be a bit more difficult because the
orthonormality of the basis needs to be also maintained when an individual vector is flipped. Here,
an orientation check is carried out once a new target basis is generated, and the sign in the target
basis will be flipped if a negative determinant is obtained. The interpolation after implementing the
orientation check is shown on the right panel of Figure 12, where the unsatisfactory interpolation no
longer exists.

Implementation

This project contributes to the software development in two packages: a data collection object is
implemented in tourr (H. Wickham et al. 2011), while the visual diagnostics of the optimisers is
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original flipped

original flipped

Figure 12: Comparison of the interpolation in the PCA-projected basis space before and after reconcil-
ing the orientation of the target basis. Optimisation is on the 1D projection index, Ink(n), for boa6 data
using CRS with seed 2463. The dots represent the target basis in each iteration, and the path shows
the interpolation. On the left panel, one target basis is generated with an opposite orientation to the
current basis (hence appear on the other side of the basis space), and the interpolator crosses the origin
to perform the interpolation. The right panel shows the same interpolation after implementing an
orientation check, and the undesirable interpolation disappears.

implemented in ferrn (Zhang et al. 2021). The functions in the ferrn (Zhang et al. 2021) package are
listed below:

• Main plotting functions:

– explore_trace_search() produces summary plots in Figure 2.
– explore_trace_interp() produces trace plots for the interpolation points in Figure 3.
– explore_space_pca() produces the PCA plot of projection bases on the reduced space.

Figure 4 includes the additional details of anchor and search bases, which can be turned
on by the argument details = TRUE. The animated version in Figure 5 is produced with
argument animate = TRUE.

– explore_space_tour() produces animated tour view on the full space of the projection
bases in Figure 6.

• get_*() extracts and manipulates certain components from the existing data object.

– get_anchor() extracts target observations.
– get_basis_matrix() flattens all the bases into a matrix.
– get_best() extracts the observation with the highest index value in the data object.
– get_dir_search() extracts directional search observations for PD search.
– get_interp() extracts interpolated observations.
– get_interp_last() extracts the ending interpolated observations in each iteration.
– get_interrupt() extracts the ending interpolated observations and the target observations

if the interpolation is .interrupted
– get_search() extracts search observations.
– get_search_count() extracts the count of search observations.
– get_space_param() produces the coordinates of the centre and radius of the basis space.
– get_start() extracts the starting observation.
– get_theo() extracts the theoretical best observations, if given.

• bind_*() incorporates additional information outside the tour optimisation into the data object.

– bind_theoretical() binds the theoretical best observation in simulated experiment.
– bind_random() binds randomly generated bases in the projection bases space to the data

object.
– bind_random_matrix() binds randomly generated bases and outputs in a matrix format.

• add_*() provides wrapper functions to create ggprotos for different components for the PCA
plot
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– add_anchor() for plotting anchor bases.
– add_anno() for annotating the symmetry of start bases.
– add_dir_search() for plotting the directional search bases with magnified distance.
– add_end() for plotting end bases.
– add_interp() for plotting the interpolation path.
– add_interp_last() for plotting the last interpolation bases for comparing with target

bases when interruption is used.
– add_interrupt() for linking the last interpolation bases with target ones when interrup-

tion is used.
– add_search() for plotting search bases.
– add_space() for plotting the circular space.
– add_start() for plotting start bases.
– add_theo() for plotting theoretical best bases, if applicable.

• Utilities

– theme_fern() and format_label() for better display of the grid lines and axis formatting.
– clean_method() to clean up the name of the optimisers.
– botanical_palettes() is a collection of colour palettes from Australian native plants.

Quantitative palettes include daisy, banksia, and cherry, and sequential palettes contain
fern and acacia.

– botanical_pal() as the colour interpolator.
– scale_color_*() and scale_fill_*() for scaling the colour and fill of the plot.

Conclusion

This paper has provided several visual diagnostics that can be used for understanding a complex
optimisation procedure and are implemented in the ferrn package. The methods were illustrated using
the optimisers available for projection pursuit guided tour. Here the constraint is the orthonormality
condition of the projection bases, which corresponds to optimisation over spheres and torii. The
approach described broadly applies to other constrained optimisers. Although the manifold in p-space
might be different the diagnostic techniques are the same. A researcher would begin by saving the
path of the optimiser in a form required to input into the ferrn package, as described in this paper. One
might generally make more samples from the constrained space upon which to assess and compare
the optimisation paths. These high-dimensional data objects can then be viewed using the tour.

The progressive optimisation of a target function and its coverage of the search space can be viewed
in both reduced 2D space and the full space. These visualisations can lead to insights for evaluating
and comparing the performance of multiple optimisers operating on the same task. They can provide
a better understanding of existing methods or motivate the development of new approaches. For
example, we have compared how three optimisers perform when maximising a non-smooth index
function and have illustrated how the pseudo-derivative search fails in this setting. The observations
from our experiments have also been translated into improved optimisation methods for the guided
tour, e.g., we introduced the option to interrupt the search if a better basis is found along the path.

This work might be considered an effort to bring transparency into algorithms. Although little
attention is paid by algorithm developers to providing ways to output information during intermediate
steps, this is an important component for enabling others to understand and diagnose the performance.
Algorithms are an essential component of artificial intelligence that is used to make daily life easier.
Interpretability of algorithms is important to guard against aspects like bias and inappropriate use.
The data object underlying the visual diagnostics here is an example of what might be useful in
algorithm development generally.
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